Behavior: The Process of Host-Plant Selection

Part of the Contemporary Topics in Entomology book series (COTE, volume 2)


As we have seen in Chapter 1, all phytophagous insects exhibit some degree of selectivity in the foods they eat. Consequently, they will all be faced with the necessity of selecting an appropriate host at some stage in their life history. In this chapter we describe the more important behavior patterns associated with selection.


Host Plant Colorado Potato Beetle Odor Source Phytophagous Insect Oviposition Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Odor-induced attraction

  1. Bell, W.J. 1984. Chemo-orientation in walking insects. In Bell, W.J. and Cardé, R.T. (eds.) Chemical Ecology of Insects. Chapman & Hall, New York, pp. 93–109.Google Scholar
  2. Bjostad, L.B. and Hibbard, B.E. 1992. 6-methoxy-2-benzoxazolinone: a semiochemical for host location by western corn rootworm larvae. J.Chem.Ecol. 18: 931–944.CrossRefGoogle Scholar
  3. Cardé, R.T. 1984. Chemo-orientation in flying insects. In Bell, W.J. and Cardé, R.T. (eds.) Chemical Ecology of Insects. Chapman & Hall, New York, pp. 111–124.Google Scholar
  4. Carle, S.A., Averill, A.L., Rule, G.S., Reissig, W.H. and Roelofs, W.L. 1987. Variation in host fruit volatiles attractive to apple maggot fly, Rhagoletis pomonella. J.Chem.Ecol. 13: 795–805.CrossRefGoogle Scholar
  5. Chapman, R.F., Bernays, E.A. and Simpson, S.J. 1981. Attraction and repulsion of the aphid, Cavariella aegopodii, by plant odors. J.Chem.Ecol. 7: 881–888.CrossRefGoogle Scholar
  6. Elkinton, J.S. and Cardé, R.T. 1984. Odor dispersion. In Bell, W.J. and Cardé, R.T. (eds.) Chemical Ecology of Insects. Chapman & Hall, New York, pp. 73–91.Google Scholar
  7. Feeny, P., Städler, E., Ahman, I. and Carter, M. 1989. effects of plant odor on oviposition by the black swallowtail butterfly, Papilio polyxenes (Lepidoptera: Papilionidae). J.Ins.Behav. 2: 803–827.CrossRefGoogle Scholar
  8. Fein, B.L., Reissig, W.H. and Roeloffs, W.L. 1982. Identification of apple volatiles attractive to apple maggot, Rhagoletis pomonella. J.Chem.Ecol. 8: 1473–1487.CrossRefGoogle Scholar
  9. Finch, S. and Skinner, G. 1982. Trapping cabbage root flies in traps baited with plant extracts and with natural and synthetic isothiocyanates. Entomologia Exp.Appl. 31: 133–139.Google Scholar
  10. Hibbard, B.E. and Bjostad, L.B. 1988. Behavioral responses of western corn rootworm larvae to volatile semiochemicals from corn seedlings. J.Chem.Ecol. 14: 1523–1539.CrossRefGoogle Scholar
  11. Košťál, V. 1992. Orientation behavior of newly hatched larvae of the cabbage maggot, Delia radicum (L.) (Diptera: Anthomyiidae), to volatile plant metabolites. J.Insect Behav. 5: 61–70.CrossRefGoogle Scholar
  12. Lampman, R.L., Metcalf, R.L. and Abersen, J.F. 1987. Semiochemical attractants of Diabrotica undecimpunctata howardi Barber, southern corn rootworm, and Diabrotica virgifera virgifera Leconte, the western corn rootworm (Coleoptera: Chrysomelidae). J.Chem.Ecol. 13: 959–975.CrossRefGoogle Scholar
  13. Landolt, P.J. 1989. Attraction of the cabbage looper to host plants and host plant odor in the laboratory. Entomologia Exp.Appl. 53: 117–124.CrossRefGoogle Scholar
  14. Mitchell, E.R., Tingle, F.C. and Heath, R.R. 1991. Flight activity of Heliothis virescens (F.) females (Lepidoptera: Noctuidae) with reference to host-plant volatiles. J.Chem.Ecol. 17: 259–266.CrossRefGoogle Scholar
  15. Murlis, J. 1986. The structure of odour plumes. In Payne, T.L., Birch, M.C. and Kennedy, C.E.J. (eds.) Mechanisms in Insect Olfaction. Clarendon Press, Oxford, pp. 27–38.Google Scholar
  16. Murlis, J., Elkinton, J.S. and Cardé, R. 1992. Odor plumes and how insects use them. A.Rev.Entomol. 37: 505–532.CrossRefGoogle Scholar
  17. Nottingham, S.F., Son, K.-C, Severson, R.F., Arrendale, R.F. and Kays, S.J. 1989. Attraction of adult sweet potato weevils, Cylas formicarius elegantulus (Summers), (Coleoptera: Curculionidae), to sweet potato leaf and root volatiles. J.Chem.Ecol. 15: 1095–1106.CrossRefGoogle Scholar
  18. Pivnick, K.A., Lamb, R.J. and Reed, D. 1992. Response of flea beetles, Phyllotreta spp., to mustard oils and nitriles in field trapping experiments. J.Chem.Ecol. 18: 863–873.CrossRefGoogle Scholar
  19. Puttick, G.M., Morrow, P.A. and Lequesne, P.W. 1988. Trirhabda canadensis (Coleoptera: Chrysomelidae) responses to plant odors. J.Chem.Ecol. 14: 1671–1686.CrossRefGoogle Scholar
  20. Roseland, C.R., Bates, M.B., Carlson, R.B. and Oseto, C.Y. 1992. Discrimination of sunflower volatiles by the red sunflower seed weevil. Entomologia Exp.Appl. 62: 99–106.CrossRefGoogle Scholar
  21. Ryan, M.F. and Guerin, P.M. 1982. Behavioural responses of the carrot fly larva, Psila rosae, to carrot root volatiles. Physiol.Entomol. 7: 315–324.Google Scholar
  22. Saxena, K.N. and Prabha, S. 1975. Relationship between the olfactory sensilla of Papilio demoleus L. larvae and their orientation responses to different odours. J.Entomol. (A) 50: 119–126.Google Scholar
  23. Sutherland, O.R.W. and Hillier, J.R. 1974. Olfactory response of Costelytra zealandica (Coleoptera: Melolonthinae) to the roots of several pasture plants. N.Z.J.Zool. 1: 365–369.Google Scholar
  24. Thibout, E., Auger, J. and Lecomte, C. 1982. Host plant chemicals responsible for attraction and oviposition in Acrolepiopsis assectella. In Visser, J.H. and Minks, A.K. (eds.) Insect-Plant Relationships. Centre for Agricultural Publishing, Wageningen, pp. 107–115.Google Scholar
  25. Tingle, F.C. and Mitchell, E.R. 1992. Attraction of Heliothis virescens (F.) (Lepidoptera: Noctuidae) to volatiles from extracts of cotton flowers. J.Chem.Ecol. 18: 907–914.CrossRefGoogle Scholar
  26. Tingle, F.C, Heath, R.R. and Mitchell, E.R. 1989. Flight response of Heliothis subflexa (Gn.) females (Lepidoptera: Noctuidae) to an attractant from groundcherry, Physalis angulata L. J.Chem.Ecol. 15: 221–231.CrossRefGoogle Scholar
  27. Visser, J.H. 1986. Host odor perception in phytophagous insects. A.Rev.Entomol. 31: 121–144.CrossRefGoogle Scholar
  28. Visser, J.H. and Taanman, J.W. 1987. Odour-conditioned anemotaxis of apterous aphids (Cryptomyzus korschelti) in response to host plants. Physiol.Entomol. 12: 473–479.Google Scholar
  29. Willis, M.A. and Arbas, E.A. 1991. Odor-modulated upwind flight of the sphinx moth, Manduca sexta L. J.Comp.Physiol. (A) 169: 427–440.CrossRefGoogle Scholar

Shape and size

  1. Harris, M.O. and Miller, J.R. 1984. Foliar form influences ovipositional behaviour of the onion fly. Physiol.Entomol. 9: 145–155.Google Scholar
  2. Mackay, D.A. and Jones, R.E. 1989. Leaf shape and the host-finding behavior of two ovipositing monophagous butterfly species. Ecol.Entomol. 14: 423–431.Google Scholar
  3. Saxena, K.N. and Khattar, P. 1977. Orientation of Papilio demoleus larvae in relation to size, distance, and combination pattern of visual stimuli. J.Insect Physiol. 23: 1421–1428.CrossRefGoogle Scholar
  4. Wallace, G.K. 1958. Some experiments on form perception in the nymphs of the desert locust, Schistocerca gregaria Forskål. J.Exp.Biol. 35: 765–775.Google Scholar


  1. Campbell, C. A.M. 1991. Response of Phorodon humuli to yellow and to green hop foliar colours. Entomologia Exp.Appl. 60: 95–99.CrossRefGoogle Scholar
  2. Harris, M.O. and Miller, J.R. 1983. Color stimuli and oviposition behavior of the onion fly, Delia antiqua (Meigen)(Diptera: Anthomyiidae). Ann.Entomol.Soc.Am. 76: 766–771.Google Scholar
  3. Prokopy, R.J. 1968. Visual responses of apple maggot flies, Rhagoletis pomonella (Diptera: Tephritidae): orchard studies. Entomologia Exp.Appl. 11: 403–422.CrossRefGoogle Scholar
  4. Prokopy, R.J. and Owens, E.D. 1978. Visual generalist-visual specialist phytophagous insects: host selection behaviour and application to management. Entomologia Exp.Appl. 24: 609–620.CrossRefGoogle Scholar
  5. Prokopy, R.J., Collier, R.H. and Finch, S. 1983. Leaf color used by cabbage root flies to distinguish among host plants. Science 221: 190–192.CrossRefPubMedGoogle Scholar
  6. Prokopy, R.J., Collier, R.H. and Finch, S. 1983. Visual detection of host plants by cabbage root flies. Entomologia Exp.Appl. 34: 85–89.CrossRefGoogle Scholar
  7. Scherer, C. and Kolb, G. 1987. Behavioral experiments on the visual processing of color stimuli in Pieris brassicae L. (Lepidoptera). J.Comp.Physiol. A 160: 645–656.CrossRefGoogle Scholar
  8. Traynier, R.M.M. 1984. Associative learning in the ovipositional behaviour of the cabbage butterfly, Pieris rapae. Physiol.Entomol. 9: 465–472.Google Scholar
  9. Vernon, R.S. and Gillespie, D.R. 1990. Spectral responsiveness of Frankliniella occidentalis (Thysanoptera: Thripidae) determined by trap catches in greenhouses. Environ. Entomol. 19: 1229–1241.Google Scholar

Physical properties of the plant

  1. Hoffman, G.D. and McEvoy, P.B. 1985. Mechanical limitations of feeding by meadow spittlebugs Philaenus spumarius (Homoptera: Cercopidae) on wild and cultivated host plants. Ecol.Entomol. 10: 415–426.Google Scholar
  2. Mook, J.H. 1967. Habitat selection by Lipara lucens Mg. (Diptera, Chloropidae) and its survival value. Arch.Néerl.Zool. 17: 469–549.CrossRefGoogle Scholar
  3. Roessingh, P. and Städler, E. 1990. Foliar form, colour and surface characteristics influence oviposition behaviour in the cabbage root fly Delia radicum. Entomologia Exp.Appl. 57: 93–100.CrossRefGoogle Scholar
  4. Walters, D.S., Craig, R. and Mumma, R.O. 1989. Glandular trichome exudate is the critical factor in geranium resistance to foxglove aphid. Entomologia Exp.Appl. 53: 105–109.CrossRefGoogle Scholar

Leaf odor

  1. Boer, G. de 1991. Effect of diet experience on the ability of different larval chemosensory organs to mediate food discrimination by the tobacco horn worm, Manduca sexta. J.Insect Physiol. 37: 763–769.CrossRefGoogle Scholar

The plant surface

  1. Blaney, W.M. and Simmonds, M.S. J. 1985. Food selection by locusts: the role of learning in rejection behaviour. Entomologia Exp.Appl. 39: 273–278.Google Scholar
  2. Eigenbrode, S.D., Espelie, K.E. and Shelton, A.M. 1991. Behavior of neonate diamondback moth larvae (Plutella xylostella (L.)) on leaves and on extracted leaf waxes of resistant and susceptible cabbages. J.Chem.Ecol. 17: 1691–1704.CrossRefGoogle Scholar
  3. Chapman, R.F. 1977. The role of the leaf surface in food selection by acridoids and other insects. Coll.Internat.C.N.R.S. 265: 134–149.Google Scholar
  4. Chapman, R.F. and Bernays, E.A. 1989. Insect behavior at the leaf surface and learning as aspects of host plant selection. Experientia 45: 215–222.CrossRefGoogle Scholar
  5. Feeny, P., Sachdev, K., Rosenberry, L. and Cater, M. 1988. Luteolin 7-o-(6″-o-malonyl)b-D-glucoside and transchlorogenic acid: oviposition stimulants for the black swallowtail butterfly. Phytochemistry 27: 3439–3448.CrossRefGoogle Scholar
  6. Loon, J.J.A. van, Blaakmeer, A., Griepink, F.C., Beek, T.A. van, Schoonhoven, L.M. and Groot, A. de. 1992. Leaf surface compounds form Brassica oleracea (Cruciferae) induces oviposition by Pieris brassicae (Lepidoptera: Pieridae). Chemoecology 3: 39–44.CrossRefGoogle Scholar
  7. Renwick, J.A.A., Radke, CD., Sachdev-Gupta, K. and Stadler, E. (1992). Leaf surface chemicals stimulating oviposition by Pieris rapae (Lepidoptera: Pieridae) on cabbage. Chemoecology 3: 33–38.CrossRefGoogle Scholar
  8. Rivet, M.-P. and Albert, P.J. 1990. Oviposition behavior in spruce budworm Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae). J.Insect Behav. 3: 395–400.CrossRefGoogle Scholar
  9. Roessingh, P., Städler, E., Schoni, R. and Feeny, P. 1991. Tarsal chemoreceptors of the black swallowtail butterfly Papilio polyxenes: responses to phytochemicals from host-and non-host plants. Physiol.Entomol. 16: 485–495.Google Scholar
  10. Städler, E. and Buser, H.-R. 1984. Defense chemicals in leaf surface wax synergistically stimulate oviposition by a phytophagous insect. Experientia 40: 1157–1159.CrossRefGoogle Scholar
  11. Woodhead, S. 1983. Surface chemistry of Sorghum bicolor and its importance in feeding by Locusta migratoria. Physiol.Entomol. 8: 345–352.Google Scholar


  1. Bernays, E.A., Howard, J.J., Champagne, D. and Estesen, B.J. 1991. Rutin: a phagostimulant for the polyphagous acridid Schistocerca americana. Entomologia Exp.Appl. 60: 19–28.CrossRefGoogle Scholar
  2. Blom, F. 1978. Sensory activity and food intake: a study of input-output relationships in two phytophagous insects. Netherlands J.Zool. 28: 277–340.CrossRefGoogle Scholar
  3. Bowers, M.D. 1984. Iridoid glycosides and host-plant specificity in larvae of the buckeye butterfly, Junonia coenia (Nymphalidae). J.Chem.Ecol. 10: 1567–1577.CrossRefGoogle Scholar
  4. Bowers, M.D. 1991. Iridoid glycosides. In Rosenthal, G.A. and Berenbaum, M.R. (eds.) Herbivores. Their Interactions with Secondary Metabolites. Academic Press, San Diego, pp. 297–325.Google Scholar
  5. Chapman, R.F. and Thomas, J.G. 1978. The numbers and distribution of sensilla on the mouthparts of Acridoidea. Acrida 7: 115–148.Google Scholar
  6. Ma, W.C. 1972. Dynamics of feeding responses in Pieris brassicae Linn. as a function of chemosensory input: a behavioural, ultrastructural and electrophysiological study. Meded.Landbouwhog.Wageningen 72,no.11.Google Scholar
  7. Matsuda, K. and Matsuo, H. 1985. A flavonoid, luteolin-7-glucoside, as well as salicin and populin, stimulating the feeding of leaf beetles attacking salicaceous plants. Appl.Entomol.Zool. 20: 305–313.Google Scholar
  8. Metcalf, R.L., Rhodes, A.M., Metcalf, R.A., Ferguson, J. Metcalf, E.R. and Lu, P.Y. 1982. Cucurbitacin contents and diabroticite (Coleoptera: Chrysomelidae) feeding upon Cucurbita spp. Env.Entomol. 11: 931–937.Google Scholar
  9. Nayer, J.K. and Thorsteinson, A.J. 1963. Further investigations into the chemical basis of insect-host plant relationships in an oligophagous insect, Plutella maculipennis (Curtis) (Lepidoptera:Plutellidae). Can.J.Zool. 41: 923–929.Google Scholar
  10. Nielsen, J.K., Kirkeby-Thomsen, A.H. and Petersen, M.K. 1989. Host plant recognition in monophagous weevils: specificity in feeding responses of Ceutorhynchus constrictus and the variable effect of sinigrin. Entomologia Exp.Appl. 53: 157–166.CrossRefGoogle Scholar
  11. Soldaat, L.L. 1991. Nutritional ecology of Tyria jacobaea L. Ph. D. thesis, University of Leiden.Google Scholar
  12. Sperling, J.H.L. and Mitchell, B.K. 1991. A comparative study of host recognition and the sense of taste in Leptinotarsa. J.Exp.Biol. 157: 439–459.Google Scholar


  1. Boppré, M. Redefining “pharmacophagy”. 1984. J.Chem.Ecol. 10: 1151–1154.CrossRefGoogle Scholar
  2. Boppré, M., Seibt, U. and Wickler, W. 1984. Pharmacophagy in grasshoppers? Entomologia Exp.Appl. 35: 115–117.CrossRefGoogle Scholar
  3. Nishida, R. and Fukami, H. 1990. Sequestration of distasteful compounds by some pharmacophagous insects. J.Chem.Ecol. 16: 151–164.CrossRefGoogle Scholar
  4. Schneider, D. 1987. The strange fate of pyrrolizidine alkaloids. In Chapman, R.F., Bernays, E.A. and Stoffolano, J.G. (eds.) Perspectives in Chemoreception and Behavior. Springer Verlag, New York, pp. 123–142.Google Scholar


  1. Bartlet, E. and Williams, I.H. 1991. Factors restricting the feeding of the cabbage stem flea beetle (Psylliodes chrysocephala). Entomologia Exp.Appl. 60: 233–238.CrossRefGoogle Scholar
  2. Bernays, E.A. and Chapman, R.F. 1976. Deterrent chemicals as a basis of oligophagy in Locusta migratoria (L.). Ecol.Entomol. 2: 1–18.Google Scholar
  3. Bernays, E.A. and Chapman, R.F. 1978. Plant chemistry and acridoid feeding behaviour. In Harborne, J.B. (ed.) Biochemical Aspects of Plant and Animal Coevolution. Academic Press, London, pp. 91–141.Google Scholar
  4. Blaney, W.M., Simmonds, M.S.J., Ley, S.V. and Katz, R.B. 1987. An electrophysiological and behavioural study of insect antifeedant properties of natural and synthetic drimane-related compounds. Physiol.Entomol. 12: 281–291.Google Scholar
  5. Blaney, W.M., Simmonds, M.S.J., Ley, S.V. and Jones, P.S. 1988. Insect antifeedants: a behavioural and electrophysiological investigation of natural and synthetically derived clerodane diterpenoids. Entomologia Exp.Appl. 46: 267–274.CrossRefGoogle Scholar
  6. Chapman, R.F., Bernays, E.A. and Wyatt, T. 1988. Chemical aspects of host-plant specificity in three Larrea-feeding grasshoppers. J.Chem.Ecol. 14: 561–579.CrossRefGoogle Scholar
  7. Hsiao, T.H. 1974. Chemical influence on feeding behavior of Leptinotarsa beetles. In Barton Browne, L. (ed.) Experimental Analysis of Insect Behaviour. Springer-Verlag, Berlin, pp 237–248.Google Scholar
  8. Hsiao, T.H. 1988. Host specificity, seasonally and bionomics of Leptinotarsa beetles. In Jolivet, P., Petitpierre, E. and Hsiao, T.H. (eds.) Biology of Chrysomelidae. Kluwer, Dordrecht, pp 581–599.Google Scholar
  9. Jermy, T. 1966. Feeding inhibitors and food preference in chewing phytophagous insects. Entomologia Exp.Appl. 9: 1–12.CrossRefGoogle Scholar
  10. Morgan, E.D. and Mandava, N.B. 1985. Handbook of Natural Pesticides vol 6, Insect Attractants and Repellents. CRC Press, Boca Raton.Google Scholar
  11. Nayar, J.K. and Thorsteinson, A.J. 1963. Further investigations into the chemical basis of insect-host plant relationships in an oligophagous insect, Plutella maculipennis (Curtis) (Lepidoptera: Plutellidae). Can.J.Zool. 41: 923–929.Google Scholar
  12. Norris, D.M. 1986. Anti-feeding compounds. In Chemistry of Plant Protection vol. 1. Springer Verlag, Berlin, pp. 97–146.Google Scholar
  13. Rees, S.B. and Harborne, J.B. 1985. The role of sesquiterpene lactones and phenolics in the chemical defence of the chicory plant. Phytochemistry 24: 2225–2231.CrossRefGoogle Scholar
  14. van Drongelen, W. 1979. Contact chemoreceptors of host plant specific chemicals in larvae of various Yponomeuta species (Lepidoptera). J.Comp.Physiol. 134A: 265–279.CrossRefGoogle Scholar
  15. Zalucki, M.P., Brower, L.P. and Malcolm, S.B. 1990. Oviposition by Danaus plexippus in relation to cardenolide content of three Asclepias species in southeastern U.S.A. Ecol.Entomol. 15: 231–240.Google Scholar

Making the unpalatable palatable

  1. Becerra, J.X. and Venable, D.L. 1990. Rapid-terpene-bath and “squirt-gun” defense in Bursera schlechtendalii and the counterploy of chrysomelid beetles. Biotropica 22: 320–323.CrossRefGoogle Scholar
  2. Bernays, E.A., Chapman, R.F. et al. 1977. The relationship of Zonocerus variegatus with cassava, Manihot esculenta. Bull.Entomol.Res. 67: 391–404.CrossRefGoogle Scholar
  3. Dussourd, D.E. 1993. Foraging with finesse: caterpillar adaptations for circumventing plant defenses. In Stamp, N.E. and Casey, T.E. (eds.) Caterpillars. Chapman & Hall, New York, pp. 92–131.Google Scholar
  4. Dussourd, D.E. and Denno, R.F. 1991. Deactivation of plant defense: correspondence between insect behavior and secretory canal architecture. Ecology 72: 1383–1396.CrossRefGoogle Scholar
  5. Dussourd, D.E. and Eisner, T. 1987. Vein-cutting behavior: insect counterploy to the latex defense of plants. Science 237: 898–901.PubMedCrossRefGoogle Scholar
  6. Parrott, W.L., Jenkins, J.N. and McCarty, J.C. 1983. Feeding behavior of first-stage tobacco budworm (Lepidoptera: Noctuidae) on three cotton cultivars. Ann.Entomol.Soc.Am. 76: 167–170.Google Scholar
  7. Zalucki, M.P. and Brower, L.P. 1992. Survival of first instar larvae of Danaus plexippus (Lepidoptera: Danainae) in relation to cardiac glycoside and latex content of Asclepias humistrata (Asclepiadaceae). Chemoecology 3: 81–93.CrossRefGoogle Scholar

What happens in the field?

  1. Damman, H. and Feeny, P. 1988. Mechanisms and consequences of selective oviposition by the zebra swallowtail butterfly. Anim.Behav. 36: 563–573.CrossRefGoogle Scholar
  2. Jermy, T., Szentesi, À. and Horvath, J. 1988. Host plant finding in phytophagous insects: the case of the Colorado potato beetle. Entomologia Exp.Appl. 49: 83–98.CrossRefGoogle Scholar
  3. Kennedy, J.S., Booth, C.O., and Kershaw, W.J.S. 1959. Host finding by aphids in the field I. Gynoparae of Myzus persicae (Sulzer). Ann.Appl.Biol. 47: 410–423.Google Scholar
  4. Kennedy, J.S., Booth, C.O., and Kershaw, W.J.S. 1959. Host finding by aphids in the field II. Aphis fabae Scop, (gynoparae) and Brevicoryne brassicae L.; with a re-appraisal of the role of host-finding behaviour in virus spread. Ann.Appl.Biol. 47: 424–444.Google Scholar
  5. Mackay, D.A. and Jones, R.E. 1989. Leaf shape and the host-finding of two ovipositing monophagous butterfly species. Ecol.Entomol. 14: 423–431.Google Scholar
  6. Morris, W.F. and Kareiva, P.M. 1991. How insect herbivores find suitable host plants: the interplay between random and nonrandom movement. In Bernays, E. A. (ed.) Insect-Plant Interactions vol. 3. CRC Press, Boca Raton, pp. 175–208.Google Scholar
  7. Raubenhiemer, D. and Bernays, E.A. 1993. Patterns of feeding in the polyphagous grasshopper Taeniopoda eques: a field study. Anim.Behav. 45: 153–167.CrossRefGoogle Scholar
  8. Rausher, M.D. 1980. Host abundance, juvenile survival, and oviposition preferences in Battus philenor. Evolution 34: 342–355.CrossRefGoogle Scholar
  9. Rausher, M.D. and Papaj, D.R. 1983. Host plant selection by Battus philenor butterflies: evidence for individual differences in foraging behaviour. Anim.Behav. 31: 341–347.CrossRefGoogle Scholar
  10. Schultz, J.C. 1983. Habitat selection and foraging tactics of caterpillars in heterogeneous trees. In Denno, R.F. and McClure, M.S. (eds.) Variable Plants and Animals in Natural and Managed Systems. Academic Press, New York, pp. 61–90.Google Scholar
  11. Singer, M.C. 1984. Butterfly-hostplant relationships: host quality, adult choice and larval success. In Vane-Wright, R.I. and Ackery, P.R. (eds.) The Biology of Butterflies. Academic Press, London, pp. 81–88.Google Scholar
  12. Stanton, M.L. 1982. Searching in a patchy environment: foodplant selection by Colias p. eriphyle butterflies. Ecology 63: 839–853.CrossRefGoogle Scholar
  13. Stanton, M.L. 1984. Short-term learning and the searching accuracy of egg-laying butterflies. Anim.Behav. 32: 33–40.CrossRefGoogle Scholar
  14. Wiklund, C. 1984. Egg-laying patterns in butterflies in relation to their phenology and the visual apparency and abundance of their host plant. Oecologia 63: 23–29.CrossRefGoogle Scholar

Further Reading

  1. Ahmad, S. 1983. Herbivorous insects: host-seeking behavior and mechanisms. Academic Press, New York.Google Scholar
  2. Dethier, V.G., Barton Browne, L. and Smith, C.N. 1960. The designation of chemicals in terms of the responses they elicit from insects. J.Econ.Entomol. 53: 134–136.Google Scholar
  3. Hsiao, T.H. 1985. Feeding behavior. In Kerkut, G. A. and Gilbert, L.I. (eds.) Comprehensive Insect Physiology, Biochemistry and Pharmacology vol. 9. Pergamon Press, Oxford, pp. 471–512.Google Scholar
  4. Juniper, B. and Southwood, R. 1986. Insects and the Plant Surface. Arnold, LondonGoogle Scholar
  5. Prokopy, R.J. and Owens, E.D. 1983. Visual detection of plants by herbivorous insects. A.Rev.Entomol. 28: 337–364.CrossRefGoogle Scholar
  6. Ramaswamy, S.B. (ed.) 1988. Host finding and feeding in adult phytophagous insects. J. Insect Physiol. 34: 151–268.Google Scholar

Copyright information

© Chapman & Hall, New York, NY 1994

Personalised recommendations