Processing Concepts and Scenarios: Electrophysiological Findings on Language Representation

  • S. Weiss
  • H. M. Müller
  • P. Rappelsberger


Studying the underlying neuronal substrate of language processing with electrophysiological techniques, we could provide evidence for a physiological reality of linguistic categories. The processing of abstract concepts (Nouns) activates a less complicated network in the brain, thus showing different functional representation than concrete concepts. As we have demonstrated earlier this is only true with respect to those frequency bands of the EEG, which reflect higher cognitive processes. In other frequency bands the processing of both abstract and concrete nouns activates similar networks. This can be explained by the fact that mere acoustical and visual word perception does not differ between concrete and abstract nouns. The comprehension of complex sentences requires analysis of whole scenarios depending on phonological, syntactic and semantic entities across time. This can also be monitored by EEG-analysis. Even working memory demands can be observed in frontal cortical regions during sentence processing. EEG coherence analysis seems to be an important tool for the investigation of the physiology of language representation and supports theoretical findings in linguistics and philosophy of language.


Stimulus Onset Asynchrony Sentence Processing Electrophysiological Finding Frontal Electrode Concrete Noun 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdullaev, Y. G. & Bechtereva, N. P. (1993) Neuronal correlate of the higher-order semantic code in human prefrontal cortex in language tasks. International Journal of Psychophysiology 14: 167–177.PubMedCrossRefGoogle Scholar
  2. Basar-Eroglu, C., Strüber, D., Schürmann, M., Stadler, M. & Basar, E. (1996) Gamma-band responses in the brain: a short review of psychophysiological correlates and functional significance. International Journal of Psychophysiology 24: 101–112.PubMedCrossRefGoogle Scholar
  3. Bleasdale, F. A. (1987) Concreteness-Dependent Associative Priming: Separate Lexical Organization for Concrete and Abstract Words. Journal of Experimental Psychology: Learning, Memory and Cognition 13: 582–594.CrossRefGoogle Scholar
  4. Bressler, St. L. (1990) The gamma wave: a cortical information carrier? Trends in Neurosciences 13: 161–162.PubMedCrossRefGoogle Scholar
  5. Coltheart, M., Patterson, K. E. & Marshall, J. C. (1987) Deep dyslexia. 2nd Ed. London: Routledge and Kegan Paul.Google Scholar
  6. Damasio, H., Grabowski, T. J., Tranel, D., Hichwa, R. D. & Damasio, A. R. (1996) A neural basis for lexical retrieval. Nature 380: 499–505.PubMedCrossRefGoogle Scholar
  7. Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M. & Reitböck, H. J. (1988) Coherent oscillations: A mechanism for feature linking in the visual cortex? Biological Cybernetics 60: 121–130.PubMedCrossRefGoogle Scholar
  8. Eviatar, Z., Menn, L. & Zaidel, E. (1990) Concreteness: nouns, verbs, and hemispheres. Cortex 26: 611–624.PubMedGoogle Scholar
  9. Farah, M. J. (1989) The neural basis of mental imagery. Trends in Neurosciences 12: 395–399.PubMedCrossRefGoogle Scholar
  10. Gallistel, C. R. & Gelman, R. (1992) Preverbal and verbal counting and computation. Cognition 44: 43–74.PubMedCrossRefGoogle Scholar
  11. Gazzaniga, M. S. (ed.) (1995) The Cognitive Neurosciences. Cambridge: MIT Press.Google Scholar
  12. Gray, C. M., König, P., Engel, A. K. & Singer, W. (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338: 334–337.PubMedCrossRefGoogle Scholar
  13. Hillis, A. E. & Caramazza, A. (1995) Representation of grammatical categories of words in the brain. Journal of Cognitive Neuroscience 7: 396–407.Google Scholar
  14. Hinton, G. E. & Shallice, T. (1991) Lesioning an attractor network: investigations of acquired dyslexia. Psychological Review 98: 74–95.PubMedCrossRefGoogle Scholar
  15. Kesner, R. P. & Olton, D. S. (eds.) (1990) Neurobiology of Comparative Cognition. Hillsdale: Erlbaum.Google Scholar
  16. König, P., Engel, A. K. & Singer, W. (1995) Relation between oscillatory activity and long-range synchronization in cat visual cortex. Proceedings of the National Academy of Sciences, USA 92: 290–294.CrossRefGoogle Scholar
  17. Kutas, M. & Van Petten, C. K. (1994) Psycholinguistics Electrified. Event-related Brain Potential Investigations. In: Gernsbacher, M. A. (ed.) Handbook of Psycholinguistics. San Diego: Academic Press.Google Scholar
  18. Llinás, R. & Paré, D. (1996) The brain as a closed system modulated by the senses. In: Llinás, R. & Churchland, P.S. (eds.) The Mind-Brain Continuum. Cambridge: MIT Press.Google Scholar
  19. Lopes da Silva, F. (1991) Neural mechanisms underlying brainwaves: from neural membranes to networks. Electroencephalography and Clinical Neurophysiology 79: 81–93.CrossRefGoogle Scholar
  20. Malsburg, C. v. d. (1981) The Correlation theory of brain function. Internal report, Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany.Google Scholar
  21. Müller, H. M. (1990) Sprache und Evolution: Grundlagen der Evolution und Ansätze einer evolutionstheoretischen Sprachwissenschaft. Berlin: de Gruyter.Google Scholar
  22. Müller, H. M. & Kutas, M. (1996) What’s in a name? Electrophysiological differences between spoken nouns, proper names, and one’s own name. NeuroReport 8: 221–225.PubMedCrossRefGoogle Scholar
  23. Müller, H. M., King, J. W. & Kutas, M. (1997) Event related potentials elicited by spoken relative clauses. Cognitive Brain Research 5: 193–203.PubMedCrossRefGoogle Scholar
  24. Müller, H. M., Weiss, S. & Rappelsberger, P. (1997) EEG coherence analysis of auditory sentence processing. In: Witte, H., Zwiener, U., Schack, B. & Döring, A., (eds.) Quantitative and Topological EEG and MEG Analysis. Jena: Druckhaus Mayer Jena, pp. 429–431.Google Scholar
  25. Oakhill, J. & Garnham, A. (1996) Mental models in cognitive science: essays in honour of Phil Johnson-Laird. Hove: Psychology Press.Google Scholar
  26. Petersen, S. P., Fox, P. T., Posner, M. I., Mintun, M. & Raichle, M. E. (1988) Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature 331: 585–589.PubMedCrossRefGoogle Scholar
  27. Petsche, H., Etlinger, S. C. & Filz, O. (1993) Brain electrical mechanisms of bilingual speech management: an initial investigation. Electroencephalography and Clinical Neurophysiology 86: 385–394.PubMedCrossRefGoogle Scholar
  28. Rappelsberger, P. & Petsche, H. (1988) Probability Mapping: Power and Coherence Analyses of Cognitive Processes. Brain Topography 1:46–54.PubMedCrossRefGoogle Scholar
  29. Sanford, A. J. & Garrod, S. C. (1981) Understanding written language. Chichester: Wiley.Google Scholar
  30. Singer, W. (1993) Synchronization of cortical activity and its putative role in information processing and learning. Annual Review of Physiology 55: 349–374.PubMedCrossRefGoogle Scholar
  31. Singer, W. (1994) Coherence as an organizing principle of cortical functions. International Review of Neurobiology 37: 153–183.PubMedCrossRefGoogle Scholar
  32. Tyler, L. K., Moss, H. E. & Jennings, F. (1995) Abstract word deficits in Aphasia: Evidence from semantic priming. Neuropsychology 9: 354–363.CrossRefGoogle Scholar
  33. Weiss, S. (1994) EEG als Korrelat mentaler Prozesse: Spektralanalyse des Spontan-EEG in Ruhe und wdhrend sprachlicher Aufgaben. Doctoral thesis, University of Vienna.Google Scholar
  34. Weiss, S. & Rappelsberger, P. (1996) EEG coherences within the 13-18 Hz band as correlates of a distinct lexical organization of concrete and abstract nouns in humans. Neuroscience Letters 209: 17–20.PubMedCrossRefGoogle Scholar
  35. Weiss, S., Rappelsberger, P. & Petsche, H. (1995) Amplitude and coherence analysis of visual imagery and visual perception. In: Eiselt, M., Zwiener, U. & Witte, H. (eds.) Quantitative and topological EEG and MEG analysis. Jena: Universitätsverlag, pp. 181–186.Google Scholar
  36. Weiss, S. (1997) EEG-Kohärenz und Sprachverarbeitung: Die funktionelle Verkopplung von Gehirnregionen während der Verarbeitung unter-schiedlicher Nomina. In: Rickheit, G. (ed.) Studien zur klinischen Linguistik: Modelle, Methoden, Intervention. Opladen: Westdeutscher Verlag, pp. 125–146.Google Scholar
  37. Weiss, S., Schack, B. & Rappelsberger, P. (1997) Lexical processing within the brain: evidence from EEG spectral analysis and dynamic topographic coherence analysis In: Witte, H., Zwiener, U., Schack, B. & Döring, A., (eds.) Quantitative and Topological EEG and MEG Analysis. Jena: Druckhaus Mayer, pp. 403–405.Google Scholar
  38. Weiss, S. & Rappelsberger, P. (1998) Left frontal EEG coherence reflects modality independent language processes. Brain Topography 11: 33–42.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • S. Weiss
    • 1
    • 2
  • H. M. Müller
    • 2
  • P. Rappelsberger
    • 1
  1. 1.Institute of NeurophysiologyUniversity of ViennaViennaAustria
  2. 2.Experimental Neurolinguistics Group, Faculty of LinguisticsUniversity of BielefeldBielefeldGermany

Personalised recommendations