Does the Brain Represent the World? Evidence Against the Mapping Assumption

  • Astrid von Stein


Whatever approach regarding internal representations, the idea was always that of a mapping of an outside world, more or less successfully performed by our cognitive apparatus. In the following we want to develop a principally different approach where representation is no more considered any kind of mapping of a predefined external reality, but simply as stabilities in the coupling between organisms and their local environment. Since this kind of representation evolves in the dynamic interaction with the environment it is a fundamentally active process of construction and not a passive mapping. Neuroscientific and psychological evidence favor this concept over old concepts on purely bottom-up mapping of the environment.


Cortical Network Alpha Rhythm Autopoietic System Environmental Entity Motor Loop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abeles, M. (1991) Corticonics. Cambridge: Cambridge University Press.Google Scholar
  2. Amit, D. J. (1989) Modeling Brain Function. The World of Attractor Neural Networks. Cambridge: Cambridge University Press.Google Scholar
  3. Arieli, A., Sterkin, A., Grinvald, A. & Aertsen, A. (1996) Dynamics of ongoing activity/explanation of the large variability in evoked cortical responses. Science 2(73): 1868–1871.CrossRefGoogle Scholar
  4. Braitenberg, V. & Schüz, A. (1991) Anatomy of the Cortex. Statistics and Geometry. Berlin: Springer.Google Scholar
  5. Bullier, J., Hupé, J.-M., James, A. C. & Girard, P. (1996) Functional interactions between areas VI and V2 in the monkey. J. Physiol. 90: 217–220.Google Scholar
  6. Cauller, L. J. & Kulics, A. T. (1991) The neural basis of the behaviorally relevant NI component of the somatosensory-evoked potential in SI cortex of awake monkeys: evidence that backward cortical projektions signal conscious touch sensation. Experimental Brain Research 84(1991): 607–619Google Scholar
  7. Douglas, R. J. & Martin, K.A. (1998) Neocortex. In: Shephard, G. M. (ed.) The Synoptic Organization of the Brain. Oxford University Press.Google Scholar
  8. Dudai, Y. (1989) The Neurobiology of Memory. Oxford University Press.Google Scholar
  9. Elman, J. L. (1990) Finding structure in time. Cognitive Science 14: 179–211.CrossRefGoogle Scholar
  10. Fritsch, G. & Hitzig, E. (1960) Über die elektrische Erregbarkeit des Grosshirns. Arch. Anat. Wiss. Med., pp. 300–322. (Engl.: G. von Bonin (trans) In: Some papers on the Cerebral Cortex. Springfield, IL: Thomas, pp. 73–96.)Google Scholar
  11. König, P. & Engel, A. K. (1995) Correlated firing in sensory-motor systems. Current Opinion in Neurobiology 5: 511–519.PubMedCrossRefGoogle Scholar
  12. Maturana, H. R. & Varela, F. J. (1980) Autopoiesis and Cognition. The Realization of the Living. Dordrecht, Boston, London: D. Reidel Publishing Company.Google Scholar
  13. Mountcastle, V. B. (1957) Modality and topographic properties of single neurons of cat somatic sensory cortex. Journal of Neurophysiology 20: 408–434.PubMedGoogle Scholar
  14. Peschl, M. (1994) Autonomy vs. environmental dependency in neural knowledge representation. In: Brooks, R. & Maes, P. (eds.) Artificial Life IV. Cambridge: MIT Press.Google Scholar
  15. Petsche H, von Stein, A. & Filz, O. (1996) EEG aspects of mentally playing an instrument. Cogn Brain Res 1: 115–123.CrossRefGoogle Scholar
  16. Petsche, H., Kaplan, S., von Stein, A. & Filz, O. (1996) The possible meaning of the upper and lower alpha frequency for cognitive and creative tasks: a probability mapping study. In: Basar, E., Lopes da Silva, F. & Hari, R. (eds.) Alpha Processes of the Brain. Boston: Birkhäuser.Google Scholar
  17. Piaget, J. (1970) Carmichael’s Manual of Child Psychology. New York: J. Wiley and Sons, Inc.Google Scholar
  18. Piaget, J. (1959) La naissance de líntelligence chez l’enfant. Neuchatel, Switzerland: Delachaux et Niestlé S.A.Google Scholar
  19. Rumelhart, D. E., McClelland, J. L. and the PDP Research Group (1986) Parallel Distributed Processing. Cambridge: MIT Press.Google Scholar
  20. Sarnthein, J., Rappelsberger, P., Shaw, G., & von Stein, A. (1998) Synchronization between prefrontal and posterior association cortex during human working memory. Proceedins of the National Academy of Science, USA, Vol.95, pp. 7092–7096.CrossRefGoogle Scholar
  21. Silva, R., Amitai, Y. & Connors, B. W. (1991) Intrinsic oscillations of neocortex generated by layer 5 pyramidal neurons. Science 251: 432–435PubMedCrossRefGoogle Scholar
  22. Singer, W. (1993) Synchronization of cortical activity and its putative role in information processing and learning. Ann. Rev. Physiol. 55(1993): 349–374.CrossRefGoogle Scholar
  23. von der Marlsburg, C. & Schneider, W. (1986) A neural cocktail-party processor. Biol.Cybern. 54(1986) 29–40.CrossRefGoogle Scholar
  24. von Glasersfeld, E. (1985) Einführung in den radikalen Konstraktivismus. In: Watzlawick, P. (ed.) Die erfundene Wirklichkeit. München: Piper.Google Scholar
  25. von Stein, A., Chiang, C. & König, P. (1996) Expectancy driven synchronization between primary visual cortex and parietal cortex in cats. Society for Neuroscience Abstracts.Google Scholar
  26. von Stein, A. & Peschl, M. (1994) Synchronization-Desynchronization. In: Eiselt, M., Zwiener, U. & Witte, H. (eds.) Quantitative and Topological EEG and MEG Analysis. Jena: Universitätsverlag Druckhaus-Mayer GmbH.Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • Astrid von Stein
    • 1
  1. 1.Institute of NeuroinformaticsUniversity/ETH ZurichZurichSwitzerland

Personalised recommendations