Mental Representations: A Computational-Neuroscience Scheme

  • Marius Usher
  • Ernst Niebur


We discuss a series of problems facing referential theories of mental representations and we propose a scheme based on neurophysiological principles that avoids previous limitations. According to this scheme, mental representations are brain traces linked to stimuli in the environment, via a causal but probabilistic process of categorical perception, and fluctuations in activity reflect fluctuations in the confidence-level of perceptual and cognitive hypotheses. The scheme provides an explanation for cases of misrepresentation and is consistent with the abundance of recurrent connections in the cortex, which play an important role in mediating a process of interpretation and of binding of relational properties via temporal synchronisation.


Mental Representation Local Field Potential Brain State Categorical Perception Neural Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allman, J., Miezin, R, & McGuinness, E. (1985) Direction-and velocity-specific responses from beyond the classical receptive field in the middle temporal visual area (MT). Perception 14: 105–126.PubMedCrossRefGoogle Scholar
  2. Amit, D. J. (1989) Modelling Brain Function. Cambridge: Cambridge University Press.Google Scholar
  3. Amit, D. J., Sagi, D., & Usher, M. (1990) Architecture of attractor neural Networks performing cognitive fast scanning. Network 2: 189–216.CrossRefGoogle Scholar
  4. Anderson, J. A., Silverstein, J. W., Ritz, S. A., & Jones, R. S. (1977) Distinctive features, categorical perception and probability learning: Some applications of a neural model. Psychological Review 84: 413–451.CrossRefGoogle Scholar
  5. Arieli, A., Sterkin, A., Grinvald, A., & Aertsen, A. (1996) Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273: 1868–1871.PubMedCrossRefGoogle Scholar
  6. Barlow, H. B. (1972) Single units and sensation: a neuron doctrine for perceptual psychlogy?. Perception 1: 371–394.PubMedCrossRefGoogle Scholar
  7. Brentano, R. (1973, orig. published 1874) Psychology from an empirical standpoint (translated by A. Pancurello and D. Terrell and L. McAlister). New York: Humanities.Google Scholar
  8. Collins, A. M., & Loftus, E. F. (1975) A spreading activation theory of semantic processing. Psychological Review 5: 85–88.Google Scholar
  9. Collins, A. M, & Quillian, M. R. (1969) Retrieval time from semantic memory. Journal of Verbal Learning and Verbal Behavior 8: 240–247.CrossRefGoogle Scholar
  10. Cover, T. M., & Thomas, J. A. (1991) Elements of Information Theory. New York: Wiley.Google Scholar
  11. Crane, T. (1995) The mechanical mind. London, UK: Penguin.Google Scholar
  12. Crick, F., & Koch, C. (1990a) Some reflections on visual awareness. Cold Spring Harbor Symp. Quant. Biol. 55: 953–962.PubMedGoogle Scholar
  13. Crick, F., & Koch, C. (1990b) Towards a neurobiological theory of consciousness. Seminars in the Neurosciences 2: 263–275.Google Scholar
  14. Cummins, R. (1991) Meaning and metal represen tation. A Bradford Book. Cambridge, MA: MIT Press.Google Scholar
  15. Decharms, R. C, & Merzenich, M. M. (1996) Primary cortical representation of sounds by the coordination of action potential timing. Nature 381: 610–613.PubMedCrossRefGoogle Scholar
  16. Douglas, R. J., & Martin, K. A. C. (1991) A functional microcircuit for cat visual cortex. J. Physiologic. 440: 735–769.Google Scholar
  17. Douglas, R. J., Martin, K. A. C, & Whitteridge, D. (1988) Selective responses of visual cortical cells do not depend on shunting inhibition. Nature 332: 642–644.PubMedCrossRefGoogle Scholar
  18. Dretske, F. (1981) Knowledge and the flow of information. Oxford: Blackwell.Google Scholar
  19. Dretske, F. (1983) Précis of Dretske Knowledge and the Flow of Information. Behavioral and Brain Sciences 6(1): 55–63.CrossRefGoogle Scholar
  20. Eells, E. (1991) Probabilistic causality. Cambridge, UK: Cambridge University Press.Google Scholar
  21. Elman, J. (1990) Finding Structure in Time. Cognitive Science 14: 179–211.CrossRefGoogle Scholar
  22. Fahle, M. (1993) Figure ground discrimination for temporal information. Proceedings of the Royal Soc. London 254: 199–203.CrossRefGoogle Scholar
  23. Ferster, D., & Spruston, N. (1995) Cracking the neuronal code. Science 270: 756–757.PubMedCrossRefGoogle Scholar
  24. Fodor, J. (1987) Psychosemantics. Cambridge, MA: MIT Press.Google Scholar
  25. Fodor, J. (1990) A theory of content and other essays. Cambridge, MA: MIT Press.Google Scholar
  26. Georgopoulos, A. P., Kettner, R. E., & Schwartz, A. B. (1986) Neuronal population coding of movement direction. Science 233: 1416–1419.PubMedCrossRefGoogle Scholar
  27. Gray, C., König, P., Engel, A., & Singer, W. (1989) Oscillatory responses in cat visual cortx exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338: 334–337.PubMedCrossRefGoogle Scholar
  28. Gregory, R. L. (1998) Eye and Brain: The psychology of seeing (5 edition). Oxford: Oxford University Press.Google Scholar
  29. Hansel, D., & Sompolinsky, H. (1996) Chaos and synchrony in a model of a hypercolumn in visual cortex. Journal of Computational Neuroscience 3(1): 7–34.PubMedCrossRefGoogle Scholar
  30. Harnad, S. (1987) Categorical perception: The groundwork of cognition. Cambridge, UK: Cambridge University Press.Google Scholar
  31. Hopfield, J. J. (1984) Neurons with Graded Responses Have Collective Computational Properties Like Those of Two-State Neurons. Proc. Nat. Acad. Sci., USA 81.Google Scholar
  32. Knierim, J. J., & Van Essen, D. C. (1992) Neuronal responses to static texture patterns in area VI of the alert macaque monkey. J. Neurophysiology 67(4): 961–980.Google Scholar
  33. LaMotte, R. H., & Mountcastle, V. B. M. (1979) Discorders in somethesis following lesions of parietal lobe. J. Neurophysiology 42(2): 400–419.Google Scholar
  34. Leonards, U., Singer, W., & Fahle, M. (1996) The Influence of Temporal Phase Differences on Texture Segmentation. Vision Res. 36(17): 2689–2697.PubMedCrossRefGoogle Scholar
  35. McClelland, J., Rumelhart, & Hinton, G. (1986a) The appeal of parallel distributed processing.In: Rumelhart, D., & McClelland, J. (eds.) Parallel Distributed Processing, Vol.1. Cambridge: MIT Press, pp. 3–44.Google Scholar
  36. McClelland, J., Rumelhart, D., & the PDP Research Group (1986b) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 2. Cambridge: MIT Press.Google Scholar
  37. Milner, P. (1974) A model for visual shape recognition. Psychol. Rev. 81: 521–535.PubMedCrossRefGoogle Scholar
  38. Mirollo, R., & Strogatz, S. (1990) Synchronization of pulse-coupled biological oscillators. SIAM J. on Applied Mathematics 50(6): 1645–1662.CrossRefGoogle Scholar
  39. Miyashita, Y., & Chang, H. (1988) Neural correlate of pictorial short term memory in primate temporal cortex. Nature 331: 68–70.PubMedCrossRefGoogle Scholar
  40. Niebur, E., & Koch, C. (1994) A model for the neuronal implementation of selective visual attention based on temporal correlation among neurons. Journal of Computational Neuroscience 1(1): 141–158.PubMedCrossRefGoogle Scholar
  41. Putnam, H. (1981) Reason, truth, and history. New York: Cambridge University Press.Google Scholar
  42. Searle, J. R. (1983) Intentionality: An essay in the philosophy of mind. Cambridge: CUP.Google Scholar
  43. Shadlen, M. N., & Newsome, W. T. (1995) Is there a signal in the noise? Current Opinion in Neurobiology 5: 248–250.PubMedCrossRefGoogle Scholar
  44. Singer, W., & Gray, C. M. (1995) Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci. 18: 555–586.PubMedCrossRefGoogle Scholar
  45. Softky, W. (1995) Simple codes versus efficient codes. Current Opinion in Neurobiology 5: 239–247.PubMedCrossRefGoogle Scholar
  46. Softky, W., & Koch, C. (1993) The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J. Neurosci. 13(1): 334–350.PubMedGoogle Scholar
  47. Sompolinsky, H., & Kanter, I. (1986) Temporal Association in Asymmetric Neural Networks. Physical Review Letters 57: 2861–2864.PubMedCrossRefGoogle Scholar
  48. Stemmler, M., Usher, M., & Niebur, E. (1995) Lateral Interactions in Primary Visual Cortex: A Model Bridging Physiology and Psychophysics. Science 269: 1877–1880.PubMedCrossRefGoogle Scholar
  49. Suppes, P. (1970) A probabilitic theory of causality. Amsterdam: North Holland.Google Scholar
  50. Usher, M., & Donnelly, N. (1998) Visual synchrony affects binding and segmentation in perception. Nature 394: 179–182.PubMedCrossRefGoogle Scholar
  51. Usher, M., & Niebur, E. (1995) Stimulus dependent synchronization in a model of orientation-tuned spiking neurons. In: Bower, J. M. (ed.) Computation and Neural Systems, Vol.3. MA: Kluwer, Norwell, pp. 341–346.Google Scholar
  52. Usher, M., & Niebur, E. (1999) Firing Patterns And Neural Codes: Models, data and implications. In preparation.Google Scholar
  53. Usher, M., Stemmler, M., Koch, C., & Olami, Z. (1994) Network Amplification of Local Fluctuations Causes High Spike Rate Variability, Fractal Firing Patterns and Oscillatory Local Field Potentials. Neural Computation 6(5): 795–836.CrossRefGoogle Scholar
  54. Usher, M., Stemmler, M., & Niebur, E. (1996) The role of lateral connections in visual cortex: dynamics and information processing. In: Sirosh, J., Mikkulainen, R., & Choe, Y. (eds.) Lateral Interactions in the Cortex. The UTCS Neural Networks Research Group, Austin, Texas. Electronic book, Scholar
  55. Usher, M., Stemmler, M., & Olami, Z. (1995) Dynamic pattern formation leads to 1/f noise in neural populations. Physical Review Letters 74(2): 326–329.PubMedCrossRefGoogle Scholar
  56. von der Malsburg, C. (1981) The correlation theory of brain function. Tech. report 81-2, MaxPlanck-Institute for Biophysical Chemistry, Göttingen, Germany.Google Scholar
  57. von der Malsburg, C. (1996) Binding in models of perception and brain function. Current Biology 5: 520–526.Google Scholar
  58. Wittgenstein, L. (1958) Philosophical Investigations (Second edition). Oxford: Blackwell.Google Scholar
  59. Wyttenbach, R. A., May, M. L., & Hoy, R. R. (1996) Categorical perception of sound frequency by crickets. Science 273:1542–1544.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • Marius Usher
    • 1
  • Ernst Niebur
    • 2
  1. 1.Dept. of PsychologyUniv. of Kent at CanterburyKentUK
  2. 2.Krieger Mind/Brain Institute and Dept. of NeuroscienceThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations