Advertisement

Pathophysiology of Contractile Dysfunction in Heart Failure

  • Naranjan S. Dhalla
  • Jingwei Wang
  • Xiaobing Guo
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 225)

Abstract

Heart failure is a clinical syndrome in which the cardiac output is inadequate to meet the metabolic needs of the body.1 Essentially, it is a pathological state in which impaired cardiac pump activity decreases ejection of the blood and impedes venous return. The pathologic stimuli for the occurrence of heart failure can be categorized as follows: (a) conditions which lead to the development of pressure or volume overload (b) conditions which produce abnormal cardiac muscle contraction and relaxation and (c) conditions which limit ventricular filling.2 A wide variety of diseases (Table I) including valvular heart disease, ischemic heart disease, cardiomyopathy, septal defects, hypertension and pericardial disease can result in heart failure. 3-6

Keywords

Heart Failure Congestive Heart Failure Sarcoplasmic Reticulum Dilate Cardiomyopathy Human Heart 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Katz AM. Evolving concepts of heart failure: cooling furnace, malfunctioning pump, enlarging muscle. Part II: Hypertrophy and dilatation of the failing heart. J Card Fail 1998;4:67–81PubMedCrossRefGoogle Scholar
  2. 2.
    Piano MR, Bondmass M, Schwertz DW. The molecular and cellular pathophysiology of heart failure. Heart Lung 1998;27:3–19.PubMedCrossRefGoogle Scholar
  3. 3.
    Calkins ME. Pathophysiology of congestive heart failure in ESRD. Am Nephrol Nurs Assoc J 1996;23:457–63.Google Scholar
  4. 4.
    Patterson JH and Adams KF, Jr. Pathophysiology of heart failure: changing perceptions. Pharmacotherapy 1996;16:27S–36S.PubMedGoogle Scholar
  5. 5.
    Dhalla NS, Afzal N, Beamish RE, Naimark B, Takeda N, Nagano M. Pathophysiology of cardiac dysfunction in congestive heart failure. Can J Cardiol 1993;9:873–87.PubMedGoogle Scholar
  6. 6.
    Rich MW. Epidemiology, pathophysiology, and etiology of congestive heart failure in older adults. J Am Geriatr Soc 1997;45:968–74.PubMedGoogle Scholar
  7. 7.
    Nicholls MG. Hypertension, hypertrophy, heart failure. Heart 1996;76:92–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Schocken DD, Arrieta MI, Leaverton PE, Ross EA. Prevalence and mortality rate of congestive heart failure in the United States. J Am Coll Cardiol 1992;20:301–6.PubMedGoogle Scholar
  9. 9.
    Birks EJ and Yacoub MH. The role of nitric oxide and cytokines in heart failure. Coron Artery Dis 1997;8:389–402.PubMedCrossRefGoogle Scholar
  10. 10.
    Parmley WW. Pathophysiology of congestive heart failure. Am J Cardiol 1985;55:9A–14A.PubMedCrossRefGoogle Scholar
  11. 11.
    Anversa P, Kajstura J, Olivetti G. Myocyte death in heart failure. Curr Opin Cardiol 1996;11:245–51.PubMedCrossRefGoogle Scholar
  12. 12.
    Olivetti G, Abbi R, Quaini F, et al. Apoptosis in the failing human heart. N Engl J Med 1997;336;1131–41.PubMedCrossRefGoogle Scholar
  13. 13.
    Dhalla NS, Wang X, Sethi R, Das PK, Beamish RE. Beta-adrenergic linked signal transduction mechanisms in failing hearts. Heart Failure Reviews 1997;2:55–65.CrossRefGoogle Scholar
  14. 14.
    Moser DK. Pathophysiology of heart failure update: the role of neurohumoral activation in the progression of heart failure. Am Assoc Clin Nurs Clin Issues 1998;9:157–71.Google Scholar
  15. 15.
    Bristow MR, Ginsburg R, Minobe W, et al. Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med 1982;307:205–11.PubMedCrossRefGoogle Scholar
  16. 16.
    Denniss AR, Colucci WS, Allen PD, Marsh JD. Distribution and function of human ventricular beta adrenergic receptors in congestive heart failure. J Mol Cell Cardiol 1989;21:651–60PubMedCrossRefGoogle Scholar
  17. 17.
    Bristow MR. Pathophysiologic and pharmacologic rationales for clinical management of chronic heart failure with beta-blocking agents. Am J Cardiol 1993;71:12C–22C.PubMedCrossRefGoogle Scholar
  18. 18.
    Karliner JS, Barnes P, Brown M, Dollery C. Chronic heart failure in the guinea pig increases cardiac alpha 1-and beta-adrenoceptors. Eur J Pharmacol 1980;67:115–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Karliner JS, Alabaster C, Stephens H, Barnes P, Dollery C. Enhanced noradrenaline response in cardiomyopathic hamsters: possible relation to changes in adrenoceptors studied by radioligand binding. Cardiovasc Res 1981;15:296–304.PubMedGoogle Scholar
  20. 20.
    Kagiya T, Hori M, Iwakura K, et al. Role of increased alpha 1-adrenergic activity in cardiomyopathic Syrian hamster. Am J Physiol 1991;260:H80–8.PubMedGoogle Scholar
  21. 21.
    Sen L, Liang BT, Colucci WS, Smith TW. Enhanced alpha 1-adrenergic responsiveness in cardiomyopathic hamster cardiac myocytes. Relation to the expression of pertussis toxin-sensitive G protein and alpha 1-adrenergic receptors. Circ Res 1990;67:1182–92.PubMedGoogle Scholar
  22. 22.
    Bristow MR, Minobe W, Rasmussen R, Hershberger RE, Hoffman BB. Alpha-1 adrenergic receptors in the nonfailing and failing human heart. J Pharmacol Exp Ther 1988;247:1039–45.PubMedGoogle Scholar
  23. 23.
    Vago T, Bevilacqua M, Norbiato G, et al. Identification of alpha 1-adrenergic receptors on sarcolemma from normal subjects and patients with idiopathic dilated cardiomyopathy: characteristics and linkage to GTP-binding protein. Circ Res 1989;64:474–81.PubMedGoogle Scholar
  24. 24.
    Middlekauff HR. Mechanisms and implications of autonomic nervous system dysfunction in heart failure. Curr Opin Cardiol 1997;12:265–75.PubMedCrossRefGoogle Scholar
  25. 25.
    Esler M, Kaye D, Lambert G, Esler D, Jennings G, Adrenergic nervous system in heart failure. Am J Cardiol 1997;80:7L–14L.PubMedCrossRefGoogle Scholar
  26. 26.
    Sigurdsson A and Swedberg K. The role of neurohormonal activation in chronic heart failure and postmyocardial infarction. Am Heart J 1996;132:229–34.PubMedGoogle Scholar
  27. 27.
    Sakai S, Miyauchi T, Kobayashi M, Yamaguchi I, Goto K, Sugishita Y. Inhibition of myocardial endothelin pathway improves long-term survival in heart failure. Nature 1996;384:353–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Spinale FG, Walker JD, Mukherjee R, Iannini JP, Keever AT, Gallagher KP. Concomitant endothelin receptor subtype-A blockade during the progression of pacing-induced congestive heart failure in rabbits. Beneficial effects on left ventricular and myocyte function. Circulation 1997;95:1918–29.PubMedGoogle Scholar
  29. 29.
    Buck CA and Horwitz AF. Cell surface receptors for extracellular matrix molecules. Annu Rev Cell Biol 1987;3:179–205.PubMedCrossRefGoogle Scholar
  30. 30.
    Schaper J and Speiser B. The extracellular matrix in the failing human heart. Basic Res Cardiol 1992;87:303–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Beltrami CA, Finato N, Rocco M, et al. Structural basis of end-stage failure in ischemic cardiomyopathy in humans. Circulation 1994;89:151–63.PubMedGoogle Scholar
  32. 32.
    McCormick RJ, Musch TI, Bergman BC, Thomas DP. Regional differences in LV collagen accumulation and mature cross-linking after myocardial infarction in rats. Am J Physiol 1994;266:11354–9Google Scholar
  33. 33.
    Weber KT. Extracellular matrix remodeling in heart failure: a role for de novo angiotensin II generation. Circulation 1997;96:4065–82.PubMedGoogle Scholar
  34. 34.
    Dixon IM, Ju H, Jassal DS, Peterson DJ. Effect of ramipril and losartan on collagen expression in right and left heart after myocardial infarction. Mol Cell Biochem 1996;165;31–45.PubMedCrossRefGoogle Scholar
  35. 35.
    Cannon RO, Butany JW, McManus BM, et al. Early degradation of collagen after acute myocardial infarction in the rat. Am J Cardiol 1983;52;390–5.PubMedCrossRefGoogle Scholar
  36. 36.
    Tyagi SC, Kumar SG, Haas SJ, et al. Post-transcriptional regulation of extracellular matrix metalloproteinase in human heart end-stage failure secondary to ischemic cardiomyopathy. J Mol Cell Cardiol 1996;28:1415–28.PubMedCrossRefGoogle Scholar
  37. 37.
    Tyagi SC. Extracellular matrix dynamics in heart failure: a prospect for gene therapy. J Cell Biochem 1998:68:403–10.PubMedCrossRefGoogle Scholar
  38. 38.
    Zellner JL, Spinale FG, Eble DM, Hewett KW, Crawford FA, Jr. Alterations in myocyte shape and basement membrane attachment with tachycardia-induced heart failure. Circ Res 1991;69:590–600.PubMedGoogle Scholar
  39. 39.
    Weber KT and Brilla CG. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angioteasin-aldosterone system. Circulation 1991;83:1849–65.PubMedGoogle Scholar
  40. 40.
    Baig MK, Mahon N, McKenna WJ, et al. The pathophysiology of advanced heart failure. Am Heart J 1998;135:S216–30.CrossRefGoogle Scholar
  41. 41.
    Pouleur H G, Koastam M A, Udelson J E, Rousseau M F. Changes in ventricular volume, wall thickness and wall stress during progression of left ventricular dysfunction. The SOLVD Investigators. J Am Coll Cardiol 1993;22:43A–8A.PubMedGoogle Scholar
  42. 42.
    Francis GS and Chu C. Post-infarction myocardial remodelling: why does it happen? Eur Heart J 1995;16:31–6.PubMedGoogle Scholar
  43. 43.
    Caulfield JB and Borg TK. The collagen network of the heart. Lab Invest 1979;40:364–72.PubMedGoogle Scholar
  44. 44.
    Schwartz K, Chassagne C, Boheler KR. The molecular biology of heart failure. J Am Coll Cardiol 1993;22:30A–33A.PubMedGoogle Scholar
  45. 45.
    Beltrami CA, Finato N, Rocco M, et al. The cellular basis of dilated cardiomyopathy in humans. J Mol Cell Cardiol 1995:27:291–305.PubMedGoogle Scholar
  46. 46.
    Batista RJ, Santos JL, Takeshita N, Bocchino L, Lima PN, Cunha MA. Partial left ventriculectomy to improve left ventricular function in end-stage heart disease. J Card Surg 1996;11:96–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Levin HR and Weisfeldt ML. Deep thoughts on tin men. Fact, fallacy, and future of mechanical circulatory support. Circulation 1997;95:2340–3.PubMedGoogle Scholar
  48. 48.
    Kass DA. Surgical approaches to arresting or reversing chronic remodeling of the failing heart. J Card Fail 1998;4:57–66.PubMedCrossRefGoogle Scholar
  49. 49.
    Bing OH. Hypothesis: apoptosis may be a mechanism for the transition to heart failure with chronic pressure overload. J Mol Cell Cardiol 1994;26:943–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Kajstura J, Cheng W, Reiss K. et al. Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest 1996;74:86–107.PubMedGoogle Scholar
  51. 51.
    Davies C H, Harding S F, Poole-Wilson P A. Cellular mechanisms of contractile dysfunction in human heart failure. Eur Heart J 1996;17:189–198.PubMedGoogle Scholar
  52. 52.
    Kerr J F, Wyllie A H, Currie A R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972;26:239–57.PubMedGoogle Scholar
  53. 53.
    Sabbah H N and Sharov V G. Apoptosis in heart failure. Prog Cardiovasc Dis 1998;40:549–62.PubMedCrossRefGoogle Scholar
  54. 54.
    Lindenmayer GE, Sordahl LA, Harigaya S, Allen JC, Besch HR, Jr., Schwartz A. Some biochemical studies on subcellular systems isolated from fresh recipient human cardiac tissue obtained during transplantation. Am J Cardiol 1971;27:277–83.PubMedCrossRefGoogle Scholar
  55. 55.
    Afzal N and Dhalla NS. Differential changes in left and right ventricular SR calcium transport in congestive heart failure. Am J Physiol 1992;262:H868–74.PubMedGoogle Scholar
  56. 56.
    Kimura S, Bassett AL, Saida K, Shimizu M, Myerburg RJ. Sarcoplasmic reticulum function in skinned fibers of hypertrophied rat ventricle. Am J Physiol 1989;256:H1006–11.PubMedGoogle Scholar
  57. 57.
    Whitmer JT, Kumar P, Solaro RJ. Calcium transport properties of cardiac sarcoplasmic reticulum from cardiomyopathic Syrian hamsters (BIO 53.58 and 14.6): evidence for a quantitative defect in dilated myopathic hearts not evident in hypertrophic hearts. Circ Res 1988;62:81–5.PubMedGoogle Scholar
  58. 58.
    Gwathmey JK, Copelas L, MacKinnon R, et al. Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure. Circ Res 1987;61:70–6.PubMedGoogle Scholar
  59. 59.
    Movsesian MA, Colyer J, Wang JH, Krall J. Phospholamban-mediated stimulation of Ca2+ uptake in sarcoplasmic reticulum from normal and failing hearts. J Clin Invest 1990;85:1698–702.PubMedGoogle Scholar
  60. 60.
    Kuramochi T, Honda M, Tanaka K, et al. Contrasting effects of an angiotensin converting enzyme inhibitor and a calcium antagonist on calcium transients in isolated rat cardiac myocytes. Cardiovasc Res 1994;28:1407–13.PubMedGoogle Scholar
  61. 61.
    Musat S and Dhalla NS. Alteration in cardiac sarcolemmal ATP receptors by oxyradicals. Ann N Y Acad Sci 1996;793:1–12.PubMedCrossRefGoogle Scholar
  62. 62.
    Rupp H, Elimban V, Dhalla NS. Diabetes-like action of intermittent fasting on sarcoplasmic reticulum Ca2+-pump ATPase and myosin isoenzymes can be prevented by sucrose. Biochem Biophys Res Commun 1989;164:319–25.PubMedCrossRefGoogle Scholar
  63. 63.
    Afzal N, Pierce GN, Elimban V, Beamish RE, Dhalla NS. Influence of verapamil on some subcellular defects in diabetic cardiomyopathy. Am J Physiol 1989;256:E453–8.PubMedGoogle Scholar
  64. 64.
    Mercadier JJ, Lompre AM, Wisnewsky C, et al. Myosin isoenzyme changes in several models of rat cardiac hypertrophy. Circ Res 1981;49:525–32.PubMedGoogle Scholar
  65. 65.
    Chevalier B, Callens F, Charlemagne D, et al. Signal and adaptational changes in gene expression during cardiac overload. J Mol Cell Cardiol 1989;21:71–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Simpson PC, Long CS, Waspe LE, Henrich CJ, Ordahl CP. Transcription of early developmental isogenes in cardiac myocyte hypertrophy. J Mol Cell Cardiol 1989;21:79–89.PubMedCrossRefGoogle Scholar
  67. 67.
    Swynghedauw B. Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles. Physiol Rev 1986;66:710–71.PubMedGoogle Scholar
  68. 68.
    Mercadier JJ, Bouveret P, Gorza L, et al. Myosin isoenzymes in normal and hypertrophied human ventricular myocardium. Circ Res 1983;53:52–62.PubMedGoogle Scholar
  69. 69.
    Alpert NR and Mulieri LA. Increased myothermal economy of isometric force generation in compensated cardiac hypertrophy induced by pulmonary artery constriction in the rabbit. A characterization of heat liberation in normal and hypertrophied right ventricular papillary muscles. Circ Res 1982;50:491–500.PubMedGoogle Scholar
  70. 70.
    Hirzel HO, Tuchschmid CR, Schneider J, Krayenbuehl HP, Schaub MC. Relationship between myosin isoenzyme composition, hemodynamics, and myocardial structure in various forms of human cardiac hypertrophy. Circ Res 1985;57:729–40.PubMedGoogle Scholar
  71. 71.
    Margossian SS, White HD, Caulfield JB, Norton P, Taylor S, Slayter HS. Light chain 2 profile and activity of human ventricular myosin during dilated cardiomyopathy. Identification of a causal agent for impaired myocardial function. Circulation 1992;85:1720–33.PubMedGoogle Scholar
  72. 72.
    Sutsch G, Brunner UT, von Schulthess C, et al. Hemodynamic performance and myosin light chain-1 expression of the hypertrophied left ventricle in aortic valve disease before and after valve replacement. Circ Res 1992;70:1035–43.PubMedGoogle Scholar
  73. 73.
    Morano I, Ritter O, Bonz A, Timek T, Vahl CF, Michel G. Myosin light chain-actin interaction regulates cardiac contractility. Circ Res 1995;76:720–5.PubMedGoogle Scholar
  74. 74.
    De Tombe PP. Altered contractile function in heart failure. Cardiovasc Res 1998;37:367–80.PubMedCrossRefGoogle Scholar
  75. 75.
    Anderson PA, Malouf NN, Oakeley AE, Pagani ED, Allen PD. Troponin T isoform expression in humans. A comparison among normal and failing adult heart, fetal heart, and adult and fetal skeletal muscle. Circ Res 1991;69:1226–33.PubMedGoogle Scholar
  76. 76.
    Hammond EH, Menlove RL, Anderson JL. Predictive value of immunofluorescence and electron microscopic evaluation of endomyocardial biopsies in the diagnosis and prognosis of myocarditis and idiopathic dilated cardiomyopathy. Am Heart J 1987;114:1055–65.PubMedCrossRefGoogle Scholar
  77. 77.
    Wagner JA, Reynolds IJ, Weisman HF, Dudeck P, Weisfeldt ML, Snyder SH. Calcium antagonist receptors in cardiomyopathic hamster: selective increases in heart, muscle, brain. Science 1986;232:515–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Finkel MS, Marks ES, Patterson RE, Speir EH, Steadman KA, Keiser HR. Correlation of changes in cardiac calcium channels with hemodynamics in Syrian hamster cardiomyopathy and heart failure. Life Sci 1987;41:153–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Kobayashi A, Yamashita T, Kaneko M, Nishiyama T, Hayashi H, Yamazaki N. Effects of verapamil on experimental cardiomyopathy in the BIO 14.6 Syrian hamster. J Am Coll Cardiol 1987;10:1128–38.PubMedCrossRefGoogle Scholar
  80. 80.
    Matucci R, Bennardini F, Sciammarella ML, et al. [3H]-nitrendipine binding in membranes obtained from hypoxic and reoxygenated heart. Biochem Pharmacol 1987;36:1059–62.PubMedCrossRefGoogle Scholar
  81. 81.
    Nayler WG, Dillon JS, Elz JS, McKelvie M. An effect of ischemia on myocardial dihydropyridine binding sites. Eur J Pharmacol 1985;115:81–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Dixon IM, Lee SL, Dhalla NS. Nitrendipine binding in congestive heart failure due to myocardial infarction Circ Res 1990;66:782–8.PubMedGoogle Scholar
  83. 83.
    Gopalakrishnan M, Triggle DJ, Rutledge A, Kwon YW, Bauer JA, Fung HL. Regulation of K+ and Ca2+ channels in experimental cardiac failure. Am J Physiol 1991;261:H1979–87.PubMedGoogle Scholar
  84. 84.
    Gengo PJ, Sabbah HN, Steffen RP, et al. Myocardial beta adrenoceptor and voltage sensitive calcium channel changes in a canine model of chronic heart failure. J Mol Cell Cardiol 1992;24:1361–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Takahashi T, Allen PD, Lacro RV, et al. Expression of dihydropyridine receptor (Ca2+ channel) and calsequestrin genes in the myocardium of patients with end-stage heart failure. J Clin Invest 1992;90:927–35.PubMedGoogle Scholar
  86. 86.
    Barry WH and Bridge JH. Intracellular calcium homeostasis in cardiac myocytes. Circulation 1993;87:1806–15.PubMedGoogle Scholar
  87. 87.
    Fabiato A. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol 1983;245:C1–14.PubMedGoogle Scholar
  88. 88.
    Wagner JA, Weisman HF, Snowman AM, Reynolds IJ, Weisfeldt ML, Snyder SH. Alterations in calcium antagonist receptors and sodium-calcium exchange in cardiomyopathic hamster tissues. Circ Res 1989;65:205–14.PubMedGoogle Scholar
  89. 89.
    Makino N, Jasmin G, Beamish RE, Dhalla NS. Sarcolemmal Na+-Ca2+ exchange during the development of genetically determined cardiomyopathy. Biochem Biophys Res Commun 1985;133:491–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Panagia V, Singh JN, Anand-Srivastava MB, Pierce GN, Jasmin G, Dhalla NS. Sarcolemmal alterations during the development of genetically determined cardiomyopathy. Cardiovasc Res 1984;18:567–72.PubMedGoogle Scholar
  91. 91.
    Yazaki Y and Fujii J. Depressed Na-K-ATPase activity in the failing rabbit heart. Jpn Heart J 1972:13:73–83.PubMedGoogle Scholar
  92. 92.
    Balasubramanian V, McNamara DB, Singh JN, Dhalla NS. Biochemical basis of heart function. X Reduction in the Na+-K+-stimulated ATPase activity in failing rat heart due to hypoxia. Can J Physiol Pharmacol 1973;51:504–10.PubMedGoogle Scholar
  93. 93.
    Dixon IM, Hata T, Dhalla NS. Sarcolemmal calcium traasport in congestive heart failure due to myocardial infarction in rats. Am J Physiol 1992;262:II1387–94.Google Scholar
  94. 94.
    Bundgaard H and Kjeldsen K. Human myocardial Na,K-ATPase concentration in heart failure. Mol Cell Biochem 1996;163–164:277–83.PubMedCrossRefGoogle Scholar
  95. 95.
    Sulakhe PV and Dhalla NS. Alterations in the activity of cardiac Na+-K+-stimulated ATPase in congestive heart failure. Exp Mol Pathol 1973;18:100–11.PubMedCrossRefGoogle Scholar
  96. 96.
    Khatter JC and Prasad K. Myocardial sarcolemmal ATPase in dogs with induced mitral insufficiency. Cardiovasc Res 1976;10:637–41.PubMedCrossRefGoogle Scholar
  97. 97.
    Prasad K, Khatter JC, Bharadwaj B. Intra-and extracellular electrolytes and sarcolemmal ATPase in the failing heart due to pressure overload in dogs. Cardiovasc Res 1979;13:95–104.PubMedGoogle Scholar
  98. 98.
    Zarain-Herzberg A, Afzal N, Elimban V, Dhalla NS. Decreased expression of cardiac sarcoplasmic reticulum CV2+-pump ATPase in congestive heart failure due to myocardial infarction. Mol Cell Biochem 1996;163–164:285–90.PubMedCrossRefGoogle Scholar
  99. 99.
    Qi M, Shannon TR, Euler DE, Bers D M, Samarel AM. Downregulation of sarcoplasmic reticulum Ca2+-ATPase during progression of left ventricular hypertrophy. Am J Physiol 1997;272:H2416–24.PubMedGoogle Scholar
  100. 100.
    Zarain-Herzberg A, Rupp H, Elimban V, Dhalla NS. Modification of sarcoplasmic reticulum gene expression in pressure overload cardiac hypertrophy by etomoxir. FASEB J 1996;10:1303–9.PubMedGoogle Scholar
  101. 101.
    O’Brien PJ, Ianuzzo CD, Moe GW, Stopps TP, Armstrong PW. Rapid ventricular pacing of dogs to heart failure: biochemical and physiological studies. Can J Physiol Pharmacol 1990;68:34–9.PubMedGoogle Scholar
  102. 102.
    Panagia V, Lee SL, Singh A, Pierce GN, Jasmin G, Dhalla NS. Impairment of mitochondrial and sarcoplasmic reticular functions during the development of heart failure in cardiomyopathic (UM-X71) hamsters. Can J Cardiol 1986;2:236–47.PubMedGoogle Scholar
  103. 103.
    Tahiliani AG and McNeill JH. Diabetes-induced abnormalities in the myocardium. Life Sci 1986;38:959–74.PubMedCrossRefGoogle Scholar
  104. 104.
    Tomlinson CW, Godin DV, Rabkin SW. Adriamycin cardiomyopathy implications of cellular changes in a canine model with mild impairment of left ventricular function. Biochem Pharmacol 1985;34:4033–41.PubMedCrossRefGoogle Scholar
  105. 105.
    Movsesian MA and Schwinger RH. Calcium sequestration by the sarcoplasmic reticulum in heart failure. Cardiovasc Res 1998;37:352–9.PubMedCrossRefGoogle Scholar
  106. 106.
    Kiss E, Ball NA, Kranias EG, Walsh RA. Differential changes in cardiac phospholamban and sarcoplasmic reticular Ca2+-ATPase protein levels. Effects on Ca2+ transport and mechanics in compensated pressure-overload hypertrophy and congestive heart failure. Circ Res 1995,77:759–64.PubMedGoogle Scholar
  107. 107.
    Kuo TH, Tsang W, Wang KK, Carlock L. Simultaneous reduction of the sarcolemmal and SR calcium ATPase activities and gene expression in cardiomyopathic hamster. Biochim Biophys Acta 1992;1138:343–9.PubMedGoogle Scholar
  108. 108.
    Feldman AM, Weinberg EO, Ray PE, Lorell BH. Selective changes in cardiac gene expression during compensated hypertrophy and the transition to cardiac decompensation in rats with chronic aortic banding. Circ Res 1993;73:184–92.PubMedGoogle Scholar
  109. 109.
    Hasenfuss G, Reinecke H, Studer R, et al. Relation between myocardial function and expression of sarcoplasmic reticulum Ca2+-ATPase in failing and nonfailing human myocardium. Circ Res 1994;75:434–42.PubMedGoogle Scholar
  110. 110.
    Limas CJ, Olivari MT, Goldenberg IF, Levine TB, Benditt DG, Simon A. Calcium uptake by cardiac sarcoplasmic reticulum in human dilated cardiomyopathy. Cardiovasc Res 1987;21:601–5.PubMedGoogle Scholar
  111. 111.
    Williams RE, Kass DA, Kawagoe Y, et al. Endomyocardial gene expression during development of pacing tachycardia-induced heart failure in the dog. Circ Res 1994;75:615–23.PubMedGoogle Scholar
  112. 112.
    Naudin V, Oliviero P, Rannou F, Sainte Beuve C, Charlemagne D. The density of ryanodine receptors decreases with pressure overload-induced rat cardiac hypertrophy. FEBS Lett 1991;285:135–8.PubMedCrossRefGoogle Scholar
  113. 113.
    Schillinger W, Meyer M, Kuwajima G, Mikoshiba K, Just H, Hasenfuss G. Unaltered ryanodine receptor protein levels in ischemic cardiomyopathy. Mol Cell Biochem 1996;160–161:297–302.PubMedCrossRefGoogle Scholar
  114. 114.
    Go LO, Moschella MC, Watras J, Handa KK, Fyfe BS, Marks AR. Differential regulation of two types of intracellular calcium release channels during end-stage heart failure. J Clin Invest 1995;95:888–94.PubMedGoogle Scholar
  115. 115.
    Brillantes AM, Allen P, Takahashi T, Izumo S, Marks AR. Differences in cardiac calcium release channel (ryanodine receptor) expression in myocardium from patients with end-stage heart failure caused by ischemic versus dilated cardiomyopathy. Circ Res 1992;71:18–26.PubMedGoogle Scholar
  116. 116.
    Linck B, Boknik P, Eschenhagen T, et al. Messenger RNA expression and immunological quantification of phospholamban and SR-Ca2+-ATPase in failing and nonfailing human hearts. Cardiovasc Res 1996;31:625–32.PubMedCrossRefGoogle Scholar
  117. 117.
    Flesch M, Schwinger RH, Schnabel P, et al. Sarcoplasmic reticulum Ca2+-ATPase and phospholamban mRNA and protein levels in end-stage heart failure due to ischemic or dilated cardiomyopathy. J Mol Med 1996;74:321–32.PubMedCrossRefGoogle Scholar
  118. 118.
    Meyer M, Schillinger W, Pieske B, et al. Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy. Circulation 1995;92:778–84.PubMedGoogle Scholar
  119. 119.
    Hasenfuss G. Alterations of calcium-regulatory proteins in heart failure. Cardiovasc Res 1998;37:279–89.PubMedCrossRefGoogle Scholar
  120. 120.
    de la Bastie D, Levitsky D, Rappaport L, et al. Function of the sarcoplasmic reticulum and expression of its Ca2+-ATPase gene in pressure overload-induced cardiac hypertrophy in the rat. Circ Res 1990;66:554–64.PubMedGoogle Scholar
  121. 121.
    Movsesian MA. Calcium uptake by sarcoplasmic reticulum and its modulation by cAMP-dependent phosphorylation in normal and failing human myocardium. Basic Res Cardiol 1992;87:277–84.PubMedGoogle Scholar
  122. 122.
    Phillips RM, Narayan P, Gomez AM, et al. Sarcoplasmic reticulum in heart failure: central player or bystander? Cardiovase Res 1998;37:346–51.CrossRefGoogle Scholar
  123. 123.
    Lompre AM, Lambert F, Lakatta EG, Schwartz K. Expression of sarcoplasmic reticulum Ca2+-ATPase and calsequestrin genes in rat heart during ontogenic development and aging. Circ Res 1991;69:1380–8.PubMedGoogle Scholar
  124. 124.
    Arai M, Otsu K, MacLennan DH, Alpert NR, Periasamy M. Effect of thyroid hormone on the expression of mRNA encoding sarcoplasmic reticulum proteins. Circ Res 1991;69:266–76.PubMedGoogle Scholar
  125. 125.
    Arai M, Alpert NR, MacLennan DH, Barton P, Periasamy M. Alterations in sarcoplasmic reticulum gene expression in human heart failure. A possible mechanism for alterations in systolic and diastolic properties of the failing myocardium. Circ Res 1993;72:463–9.PubMedGoogle Scholar
  126. 126.
    Movsesian MA, Karimi M, Green K, Jones LR. Ca2+-transporting ATPase phospholamban and calsequestrin levels in nonfailing and failing human myocardium. Circulation 1994;90:653–7.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Naranjan S. Dhalla
  • Jingwei Wang
  • Xiaobing Guo

There are no affiliations available

Personalised recommendations