The Impact of Sterilization Methods on the Quality of Peritoneal Dialysis Solutions

  • Leo Martis
Part of the Developments in Nephrology book series (DINE, volume 39)


Regulatory agencies around the world granting approvals to market medical products place a great deal of emphasis on assuring that products purporting to be sterile are indeed sterile. In its strictest definition, the term sterile refers to complete absence of viable microorganisms. Therefore, sterility is an abstract concept of negative state, and as such, is not capable of practical demonstration. In practice, however, sterility is defined in a probabilistic term as Sterility Assurance Level (SAL). Because sterility failures are recognized as being among the most critical and dangerous of product defects, the regulatory agencies generally recommend a sterilization process that ensures minimum risk of surviving organisms. In this chapter we will review the primary methods of sterilization, the impact of these methods on the quality of current peritoneal dialysis (PD) solutions, and potential approaches for improving the quality of these fluids.


Peritoneal Dialysis Peritoneal Macrophage Mesothelial Cell Peritoneal Dialysis Patient Dialysis Solution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 2.
    Barr DB. FDA’s aseptic processing: proposed regulation. J Parenter Sci Technol 1993; 47:57–9.PubMedGoogle Scholar
  2. 3.
    Ganter G. Ueber die Beseitigung giftiger Stoffe aus dem Blute durch Dialyse. Munch med Wschr 1923; 70:1478–80.Google Scholar
  3. 4.
    Balazs J and Rosenak S. Zur Behandlung der Sublimatanurie durch peritoneale dialyse. Wien klin Wschr 1934; 47:851–4.Google Scholar
  4. 5.
    Heusser H and Werder H. Untersuchungen über. Peritoneal dialyse. Beitr klin Chir 1927; 141:38–49.Google Scholar
  5. 6.
    Abbott WE and Shea P. The treatment of temporary renal insufficiency (uremia) by peritoneal lavage. Am J Med Sci 1946; 211:312–19.Google Scholar
  6. 7.
    Odel HM, Ferris DO and Power MH. Peritoneal lavage as an effective means of external excretion. Am J Med 1950; 9:63 77.PubMedCrossRefGoogle Scholar
  7. 8.
    Boen S. The evolution of peritoneal dialysis. In Atkins RC, Thompson NM and Farrell PC, editors. Peritoneal dialysis. Edinburgh, Churchill Livingston, 1981; 3–11.Google Scholar
  8. 9.
    Martis L and Henderson LW. Impact of terminal heat sterilization on the quality of peritoneal dialysis solutions. Blood Purif 1997; 15:54–60.PubMedGoogle Scholar
  9. 10.
    Henderson IS, Couper IA and Lumsden A. Potentially irritant glucose metabolites in unused CAPD fluid. In Maher J, editor. Frontiers in peritoneal dialysis. New York, Field, Rich, 1985; 261 4.Google Scholar
  10. 11.
    Nilsson-Thorell CB, Muscalu N, Andrén AHG et al. Heat sterilization of fluids for peritoneal dialysis gives rise to aldehydes. Perit Dial Int 1993; 13:208–13.PubMedGoogle Scholar
  11. 12.
    Wieslander AP, Nordin MK, Kjellstrand PTT and Boberg UC. Toxicity of peritoneal dialysis fluids on cultured fibroblasts, L-929. Kidney Int 1991; 40:77–9.PubMedCrossRefGoogle Scholar
  12. 13.
    Wieslander AP, Nordin MK, Martinson E, Kjellstrand PTT and Boberg UC. Heat-sterilized PD fluids impair growth and inflammatory responses of cultured cell lines and human leukocytes. Clin Nephrol 1993; 39:343–8.PubMedGoogle Scholar
  13. 14.
    Rogamgnoni M, Beecari M, Faiolo S, Granello E, Scalia P and Paleardi F. Abdominal pain with infusion of peritoneal dialysis solutions relieved by alkalization. Perit Dial Bull 1984; 4:188–9.Google Scholar
  14. 15.
    Bunchman TE and Ballal SH. Treatment of inflow pain by pH adjustment of dialysate in peritoneal dialysis. Perit Dial Int 1991; 11:179–80.PubMedGoogle Scholar
  15. 16.
    Yamamoto T, Sakakura T, Yamakawa M et al. Clinical effects of long-term use of neutralized dialysate for continuous ambulatory peritoneal dialysis. Nephron 1992; 60:324–9.PubMedGoogle Scholar
  16. 17.
    Duwe Ak, Vas SI and Weatherhead JW. Effects of the composition of peritoneal dialysis fluid on chemiluminescence, phagocytosis and bacterial activity in vitro. Infect Immunol 1981; 33:130–5.Google Scholar
  17. 18.
    Topley N, Alobaidi HMM, Davies M, Coles GA, Williams JD and Lloyd D. The effect of dialysate on peritoneal phagocyte oxidative metabolism. Kidney Int 1988; 34:404–11.PubMedCrossRefGoogle Scholar
  18. 19.
    Yu AW, Zhou XJ, Nawab ZM, Gandhi VC, Ing TS and Vaziri ND. Neutrophilic peritoneal dialysis solutions. Int J Artif Organs 1992; 15:661 5.PubMedGoogle Scholar
  19. 20.
    Chaimovitz C, Rapoport J, Konforti A and Douvdevani A. Commercial dialysis fluid causes intracellular acidosis in peritoneal macrophages. J Am Soc Nephrol 1992; 3:407.Google Scholar
  20. 21.
    Rotstein OD, Nasmith PE and Grinslein S. The bacteroids by-product succinic acid inhibits neutrophil respiratory burst by reducing intracellular pH. Infect Immun 1987; 55:864–70.PubMedGoogle Scholar
  21. 22.
    Alobaidi HM, Coles CA, Davies M and Lloyd D. Host defense in continuous ambulatory peritoneal dialysis: the effect of the dialysate on phagocytic function. Nephrol Dial Transplant 1986; 1:16–21.PubMedGoogle Scholar
  22. 23.
    Van Bronswijk M, Verbrugh HA, Heezius HCJM, Van der Meulen J and Oe LP. Dialysis fluids and local host resistance in patients on continous ambulatory peritoneal dialysis. Eur J Clin Microbial Infect Dis 1988; 7:368–73.CrossRefGoogle Scholar
  23. 24.
    Bos HJ, Vlaanderen K, van der Meulen J, de Veld JC, Oe LP and Beelen RHJ. Peritoneal macrophages in short dwell time effluent show diminished phagocytosis. Perit Dial Int 1988; 8:199–202.Google Scholar
  24. 25.
    Ing BL, Gupta DK, Nawab ZM, Zhou F, Rahaman MA and Daugirdas JT. Suppression of neutrophil Superoxide production by conventional peritoneal dialysis solutions. Int J Artif Organs 1988; 1:351–4.Google Scholar
  25. 26.
    Moughal NA, McGregor SJ, Brock JH, Briggs JD and Junor BJR. Expression of transferrin receptors by monocytes and peritoneal macrophages from renal failure patients treated by continuous ambulatory peritoneal dialysis. Eur J Clin Invest 1991; 21:592–6.PubMedGoogle Scholar
  26. 27.
    Davies SJ, Suassuna J, Ogg CS and Cameron JS. Activation of immuno-competent cells in the peritoneum of patients treated with CAPD. Kidney Int 1989; 36:661 8.PubMedCrossRefGoogle Scholar
  27. 28.
    Lewis SL, Norris PJ and Holmes CJ. Phenotypic characterization of monocytes and macrophages from CAPD patients. Trans Am Soc Artif Intern Organs 1990: 36:M575–7.Google Scholar
  28. 29.
    Krane SM and Golding MD. Potential role for interleukin A-l in fibrosis associated with chronic ambulatory peritoneal dialysis. Blood Purif 1988; 6:173–7.PubMedGoogle Scholar
  29. 30.
    Breborowicz A. Free radicals in peritoneal dialysis: agents of damage? Perit Dial Int 1992; 12:194–8.PubMedGoogle Scholar
  30. 31.
    Bos HJ, Meyer F, de Veld JC and Beelen RHJ. Peritoneal dialysis fluid induces change of mononuclear phagocyte proportions. Kidney Int 1989; 36:20–6.PubMedCrossRefGoogle Scholar
  31. 32.
    Vachula M, Aono F, Kubey W and Holmes C. Effect of peritoneal dialysis fluid on mononuclear cell surface receptor expression. J Am Soc Nephrol 1991; 2:368.Google Scholar
  32. 33.
    Jörres A, Richter D, Hain H et al: Cytokine release from peripheral and peritoneal phagocytes: effect of CAPD dialysate. Kidney Int 1990; 37:329.Google Scholar
  33. 34.
    Jörres A, Jörres D, Gahl GM et al. Leukotriene B4 and tumor necrosis factor from leukocytes: effect of peritoneal dialysate. Nephron 1991;58:276–82.PubMedCrossRefGoogle Scholar
  34. 35.
    Douvdevani A, Rapoport J, Konforti A, Zlotnik M and Chaimovitz C. The effect of peritoneal dialysis fluid on cytokine release: factors involved and time course. Perit Dial Int 1993; 13:112–17.PubMedGoogle Scholar
  35. 36.
    De Fijiter CWH, Verbrugh HA, Peters EDJ et al. In vivo exposure to the currently available peritoneal dialysis fluids decreases function of peritoneal macrophages in CAPD. Clin Nephrol 1993; 39:75–80.Google Scholar
  36. 37.
    Chaimovitz C. Peritoneal dialysis. Kidney Int 1994; 45:1226–40.PubMedCrossRefGoogle Scholar
  37. 38.
    Topley N, Mackenzie R, Petersen MM et al. In vitro testing of a potentially biocompatible continuous ambulatory peritoneal dialysis fluid. Nephrol Dial Transplant 1991; 6:574–81.PubMedGoogle Scholar
  38. 39.
    Van Bronswijk H, Verbrugh HA, Bos HJ, Heezius HCJM, Van der Meulen J, Oe LP et al. Cytotoxic effects of commercial continuous ambultory peritoneal dialysis fluids and of bacterial exoproducts on human mesothelial cells in vitro. Perit Dial Int 1989; 9:197–202.PubMedGoogle Scholar
  39. 40.
    Holmes CJ. Biocompatibility of peritoneal dialysis solutions. Perit Dial Int 1993; 13:88–94.PubMedGoogle Scholar
  40. 41.
    Dobbie JW. Pathogenesis of peritoneal fibrosing syndromes (sclerosing peritonitis) in peritoneal dialysis. Perit Dial Int 1992; 12:14–27.PubMedGoogle Scholar
  41. 42.
    Singh B, Dean GR and Cantor SM. The role of 5-(hydroxymethyl)-furfural in the discoloration of sugar solutions. J Am Chem Soc 1948; 70:517–22.CrossRefGoogle Scholar
  42. 43.
    Griffin JC and Marie SC. Glucose degradation in the presence of sodium lactate during autoclaving at 121c. Am J Hosp Pharm 1958; 15:893–5.Google Scholar
  43. 44.
    Cooker LA, Luneburg P, Faict D et al. Reduced glucose degradation products in bicarbonate lactate buffered peritoneal dialysis solutions produced in two-chambered bags. Perit Dial Int 1997; 17:373–8.PubMedGoogle Scholar
  44. 45.
    Mannermaa JP, Muttonen E, Yliruusi J et al. The use of different time temperature combinations in the optimization of sterilization of Ringers glucose infusion solution. J Parenter Sci Technol 1992; 46:184–91.PubMedGoogle Scholar
  45. 46.
    Cook AP, MacLeod TM, Appleton JD et al. HPLC studies on the degradation profiles of glucose 5% solutions subjected to heat sterilization in a mecroprocessor-controlled autoclave. J Clin Pharm Ther 1989; 14:189–95.PubMedCrossRefGoogle Scholar
  46. 47.
    Wieslander AP, Kjellstrand PTT and Rippe B. Heat sterilization of glucose-containing fluids for peritoneal dialysis: biological consequences of chemical alterations. Perit Dial Int 1995; 15:S52–S60.PubMedGoogle Scholar
  47. 48.
    Webb NE, Sperandio GJ and Martin AN. A study of the composition of glucose solutions. J Am Pharm Assoc 1958; 47:101–3.Google Scholar
  48. 49.
    Wing WT. An examination of the decomposition dextrose solution during sterilization. J Pharm Pharmacol 1960; 12:T191–6.Google Scholar
  49. 50.
    Feriani M, Biasioli S, Borin D et al. Bicarbonate buffer for CAPD solutions. ASAIO Trans 1985; 31:668–72.Google Scholar
  50. 51.
    Feriani M, Carobi C, LaGreca G et al. Clinical experience with a 39 mmol/L bicarbonate buffered peritoneal dialysis solution. Perit Dial Int 1997; 17:17–21.PubMedGoogle Scholar
  51. 52.
    Coles GA, Gokal R, Ogg C et al. A randomized controlled trial of a bicarbonate-and a bicarbonate/lactate-containing dialysis solution in CAPD. Perit Dial Int 1997; 17:48 51.PubMedGoogle Scholar
  52. 53.
    Rippe B, Simonsen O, Wieslander A et al. Clinical and physiological effects of a new, less toxic and less acidic fluid for peritoneal dialysis. Perit Dial Int 1997; 17:27 34.PubMedGoogle Scholar
  53. 54.
    Ing TS, Yu AW, Thomson AU et al. Peritoneal dialysis using conventional lactate containing solution sterilized by ultrafiltration. Int JArtif Organs 1992; 15:658–60.Google Scholar
  54. 55.
    Yu AW, Manahan FJ, Filkins JP et al. Peritoneal dialysis using bicarbonate-containing solution sterilized by ultrafiltration. Artif Kidney Dial 1991; 14:463 5.Google Scholar
  55. 56.
    Yatzidis H. A new stable bicarbonate dialysis solution for peritoneal dialysis: preliminary report. Perit Dial Int 1991; 11:224–7.PubMedGoogle Scholar
  56. 57.
    Slingeneyer A, Faller B, Michel C et al. Increased ultrafiltration capacity using a new bicarbonate CAPD solution (abstract). Perit Dial Int 1993; 13:57.Google Scholar
  57. 58.
    Akers JE and Agalloco JP. Aseptic processing — a current perspective. In Morissey RF and Phillips GB, editors. Sterilization technology a practical guide for manufacturers and users of health care products. New York, Van Nostrand Reinhold, 1993; 283–308.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Leo Martis

There are no affiliations available

Personalised recommendations