Advertisement

Hepatic Dysfunction

  • Gerald M. Woerlee
Part of the Developments in Critical Care Medicine and Anesthesiolgy book series (DCCA, volume 26)

Abstract

The liver is the metabolic powerhouse of the body. Hepatic blood flow is 28% of the cardiac output. It produces nearly all the plasma proteins, and is responsible for the metabolism of most drugs. So hepatic disease can produce extensive changes in body physiology, and these may alter the pharmacology of anesthetic drugs.

Keywords

Hepatic Encephalopathy Plasma Protein Binding Hepatic Dysfunction Hepatic Blood Flow Hepatic Cirrhosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hudson RJ, et al: Pharmacokinetics of methohexital and thiopental in surgical patients. Anesthesiology, 1983: 59: 215–219.CrossRefPubMedGoogle Scholar
  2. 2.
    Hudson RJ, et al: A model for studying depth of anesthesia and acute tolerance to thiopental. Anesthesiology, 1983: 59: 301–308.CrossRefPubMedGoogle Scholar
  3. 3.
    Lauven PM, et al: Venous threshold concentrations of methohexitone. Anesthesiology, 1985: 63: A368.CrossRefGoogle Scholar
  4. 4.
    Richter E, et al: Disposition of hexobarbital in intra-and extrahepatic cholestasis in man and the influence of drug metabolism-inducing agents. European Journal of Clinical Pharmacology, 1980: 17: 197–202.CrossRefPubMedGoogle Scholar
  5. 5.
    Wieber J, et al: Pharmacokinetics of ketamine in man. Der Anaesthesist, 1975: 24: 260–263.PubMedGoogle Scholar
  6. 6.
    White PF, et al: Comparative pharmacology of the ketamine isomers. Studies in volunteers. British Journal of Anaesthesia, 1985: 57: 197–203.CrossRefPubMedGoogle Scholar
  7. 7.
    Schüttler J, et al: Pharmakokinetische Untersuchungen uber Etomidat beim Menschen. Der Anaesthesist, 1980: 29: 658–661.PubMedGoogle Scholar
  8. 8.
    Schüttler J, et al: Infusion strategies to investigate the pharmacokinetics and pharmacodynamics of hypnotic drugs: etomidate as an example. European Journal of Anaesthesiology, 1985: 2: 133–142.PubMedGoogle Scholar
  9. 9.
    Adam HK, et al: Pharmacokinetic evaluation of ICI 35868 in man. British Journal of Anaesthesia, 1983: 55: 97–102.CrossRefPubMedGoogle Scholar
  10. 10.
    Shafer A, et al: Pharmacokinetics and pharmacodynamics of propofol infusion. Anesthesiology, 1987: 67: A668.CrossRefGoogle Scholar
  11. 11.
    Greenblatt DJ, et al: Effect of age, gender, and obesity on midazolam kinetics. Anesthesiology, 1984: 61: 27–35.PubMedGoogle Scholar
  12. 13.
    Ramzan MI, et al: Pharmacokinetic studies in man with gallamine triethiodide. I. Single and multiple clinical doses. European Journal of Clinical Pharmacology, 1980: 17: 135–143.CrossRefPubMedGoogle Scholar
  13. 14.
    Shanks CA: Pharmacokinetics of non-depolarizing neuromuscular relaxants applied to calculation of bolus and infusion dosage regimes. Anesthesiology, 1986: 64: 72–86.CrossRefPubMedGoogle Scholar
  14. 15.
    Stanski DR, et al: Pharmacokinetics and pharmacodynamics of d-tubocurarine during nitrous oxide-narcotic and halothane anesthesia in man. Anesthesiology, 1979: 51: 235–241.CrossRefPubMedGoogle Scholar
  15. 16.
    Walker J, et al: Clinical pharmacokinetics of alcuronium in man. European Journal of Clinical Pharmacology, 1908: 17: 449–457.CrossRefGoogle Scholar
  16. 17.
    Duvaldestein P, et al: Pancuronium pharmacokinetics in patients with liver cirrhosis. British Journal of Anaesthesia, 1978: 50: 1131–1135.CrossRefGoogle Scholar
  17. 18.
    Lynam DP, etal: The pharmacodynamics and pharmacokinetics of vecuronium in patients anesthetized with isoflurane with normal renal function or with renal failure. Anesthesiology, 1988: 69: 227–231.CrossRefPubMedGoogle Scholar
  18. 19.
    Ward S, Neill EAM: Pharmacokinetics of atracurium in acute hepatic failure (with acute renal failure). British Journal of Anaesthesia, 1983: 55: 1169–1172.CrossRefPubMedGoogle Scholar
  19. 20.
    Mazoit J-X, et al: Pharmacokionetics of unchanged morphine in normal and cirrhotic subjects. Anesthesiology, 1987: 66: 293–298.CrossRefGoogle Scholar
  20. 21.
    Gourlay GK, et al: A double-blind comparison of the efficacy of methadone and morphine in postoperative pain control. Anesthesiology, 1986: 64: 322–327.CrossRefPubMedGoogle Scholar
  21. 22.
    Gourlay GK, et al: Pharmacokinetics and pharmacodynamics methadone during the perioperative period. Anesthesiology, 1982: 57: 458–467.CrossRefPubMedGoogle Scholar
  22. 23.
    Mather LE, et al: Meperidine kinetics in man. Intravenous injection in surgical patients and volunteers. Clinical Pharmacology & Therapeutics, 1974: 17: 21–30.Google Scholar
  23. 24.
    Austin KL, et al: Relationship between blood meperidine concentrations and analgesic response. Anesthesiology, 1980: 53: 460–466.CrossRefPubMedGoogle Scholar
  24. 25.
    Ehrnebo M, et al: Bioavailability and first-pass metabolism of pentazocine in man. Clinical Pharmacology & Therapeutics, 1977: 22: 888–892.Google Scholar
  25. 26.
    Berkowitz BA, et al: Relationship of pentazocine plasma levels to pharmacological activity in man. Clinical Pharmacology & Therapeutics, 1969: 10: 320–328.Google Scholar
  26. 27.
    Fischler M, et al: Pharmacokinetics of phenoperidine in anaesthetized patients undergoing general surgery. British Journal of Anaesthesia, 1985: 57: 872–876.CrossRefPubMedGoogle Scholar
  27. 28.
    Milne L, et al: Plasma concentration and metabolism of phenoperidine in man. British Journal of Anaesthesia, 1980: 52: 537–539.CrossRefPubMedGoogle Scholar
  28. 29.
    Haberer JP, et al: Fentanyl pharmacokinetics in anaesthetized patients with cirrhosis. British Journal of Anaesthesia, 1982: 54: 1267–1269.CrossRefPubMedGoogle Scholar
  29. 30.
    Gourlay GK, et al: Fentanyl blood concentration-analgesc response relationship in the treatment of postoperative pain. Anesthesia and Analgesia, 1988: 67: 329–337.CrossRefPubMedGoogle Scholar
  30. 31.
    Schüttler J, Stoekel H: Alfentanil (R39209) ein neues kurzwerkendes Opioid. Pharmakokinetik und erste klinische Erfahrungen. Der Anaesthesist, 1982: 31: 10–14.PubMedGoogle Scholar
  31. 32.
    O’Connor M, et al: Ventilatory depression during and after infusion of alfentanil in man. British Journal of Anaesthesia, 1983: 55: 217S–222S.PubMedGoogle Scholar
  32. 33.
    Hug CC, et al: Alfentanil plasma concentration versus effect relationships in cardiac surgical patients. British Journal of Anaesthesia, 1988: 61: 435–440.CrossRefPubMedGoogle Scholar
  33. 34.
    Bovill JG, et al: The pharmacokinetics of sufentanil in surgical patients. Anesthesiology, 1984: 61: 502–506.CrossRefPubMedGoogle Scholar
  34. 35.
    Goldfrank L, et al: A dosing nomogram for continuous infusion of intravenous naloxone. Annals of Emergency Medicine, 1986: 15: 566–570.CrossRefPubMedGoogle Scholar
  35. 36.
    Clements JA, et al: The disposition of intravenous doxapram in man. European Journal of Clinical Pharmacology, 1979: 16: 411–416.CrossRefPubMedGoogle Scholar
  36. 37.
    Robson RH, Prescott LF: A pharmacokinetic study of doxapram in patients and volunteers. European Journal of Clinical Pharmacology, 1978: 7: 81–87.Google Scholar
  37. 38.
    Hartvig P, et al: Pharmacokinetics of physostigmine after intravenous, intramuscular and subcutaneous administration in surgical patients. Acta Anaesthesiologica Scandinavica, 1986: 30: 177–182.CrossRefPubMedGoogle Scholar
  38. 39.
    Klotz U, et al: Pharmacokinetics of the selective benzodiazepine antagonist Ro 15-1788 in man. European Journal of Clinical Pharmacology, 1984: 27: 115–117.PubMedGoogle Scholar
  39. 40.
    Klotz U: Drug interactions and clinical pharmacokinetics of flumazenil. European Journal of Anaesthesiology, 1988: supplement 2: 103–108.Google Scholar
  40. 41.
    Kanto J, Klotz U: (1988), Pharmacokinetic implications for the clinical use of atropine, scopolamine and glycopyrrolate. Acta Anaesthesiologica Scandinavica, 1988: 32: 69–78.CrossRefPubMedGoogle Scholar
  41. 42.
    Calculated on the basis of the kinetic data and the dose-effect relationship in the article: Gravenstein JS, et al: Effects of atropine and scopolamine on the cardiovascular system in man. Anesthesiology, 1964: 25: 123–130.CrossRefPubMedGoogle Scholar
  42. 43.
    Morris RB, et al: Pharmacokinetics of edrophonium and neostigmine when antagonizing d-tubocurarine neuromuscular blockade in man. Anesthesiology, 1981: 54: 399–402.CrossRefPubMedGoogle Scholar
  43. 44.
    Cronnelly R, et al: Pyridostigmine kinetics with and without renal function. Clinical Pharmacology & Therapeutics, 1980: 28: 78–81.CrossRefGoogle Scholar
  44. 45.
    Katz RL: Clinical neuromuscular pharmacology of pancuronium. Anesthesiology, 1971: 34: 550–556.CrossRefPubMedGoogle Scholar
  45. 46.
    Rupp SM, et al: Neostigmine and edrophonium antagonism varying intensity neuromuscular blockade induced by atracurium, pancuronium, or vecuronium. Anesthesiology, 1986: 64: 711–717.CrossRefPubMedGoogle Scholar
  46. 47.
    Hassan HA, Savarese JJ: Monitoring of neuromuscular function. Anesthesiology, 1976: 45: 216–249.CrossRefGoogle Scholar
  47. 48.
    Viby-Mogensen J: Clinical assessment of neuromuscular transmission. British Journal of Anaesthesia, 1982: 54: 209–223.CrossRefPubMedGoogle Scholar
  48. 49.
    O’Connor M, et al: Alfentanil infusions: Relationship between pharmacokinetics and pharmacodynamics in man. European Journal of Anaesthesiology, 1987: 4: 187–196.PubMedGoogle Scholar
  49. 50.
    Stanski DR, et al: Pharmacometrics: Pharmacodynamic modelling of thiopental anesthesia. Journal of Pharmacokinetics and Biopharmaceutics, 1984: 12: 223–240.CrossRefPubMedGoogle Scholar
  50. 51.
    Arden JR, et al: Increased sensitivity to etomidate in the elderly: Initial distribution versus altered brain response. Anesthesiology, 1986: 65: 19–27.CrossRefPubMedGoogle Scholar
  51. 52.
    Schüttler J, et al: Pharmacokinetic-dynamic modelling of diprivan. Anesthesiology, 1986: 65: A549.CrossRefGoogle Scholar
  52. 53.
    Bührer M, et al: Comparative pharmacodynamics of midazolam and diazepam. Anesthesiology, 1988: 69: A642.CrossRefGoogle Scholar
  53. 54.
    Scott JC, et al: EEG quantification of narcotic effect: The comparative pharmacodynamics of fentanyl and alfentanil. Anesthesiology, 1985: 62: 234–241.CrossRefPubMedGoogle Scholar
  54. 55.
    Duvaldestin CJ, et al: Fazadinium and pancuronium: A pharmacodynamic study. British Journal of Anaesthesia, 1980: 52: 1209–1221.CrossRefGoogle Scholar
  55. 56.
    Fisher DM, et al: Vecuronium kinetics and dynamics in anesthetized infants and children. Clinical Pharmacology & Therapeutics, 1985: 37: 402–406.CrossRefGoogle Scholar
  56. 57.
    Cooke JE, Scott JC: Do fentanyl and sufentanil have the same pharmacodynamics? Anesthesiology, 1986: 65: A552.CrossRefGoogle Scholar
  57. 58.
    Ghoneim MM, et al: Diazepam effects and kinetics in caucasians and orientals. Clinical Pharmacology & Therapeutics, 1981: 29: 749–756.CrossRefGoogle Scholar
  58. 59.
    Reidenberg MM, et al: Relationships between diazepam dose, plasma level, age, and central nervous system depression. Clinical Pharmacology & Therapeutics, 1978: 23: 371–374.Google Scholar
  59. 60.
    Christensen JH, et al: Pharmacokinetics and pharmacodynamics of thiopentone. A comparison between young and elderly patients. Anaesthesia, 1982: 37: 399–404.CrossRefGoogle Scholar
  60. 61.
    Bullingham RES, et al: Buprenorphine kinetics. Clinical Pharmacology & Therapeutics, 1980: 28: 667–672.CrossRefGoogle Scholar
  61. 62.
    Parker CJR, Hunter JM: Plasma atracurium concentration-response relationship in patients anaesthetized with isoflurane. British Journal of Anaesthesia, 1988: 61: 105P–106P.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Gerald M. Woerlee
    • 1
  1. 1.Rijnoord HospitalAlphen aan den RijnThe Netherlands

Personalised recommendations