Winner-Takes-All Associative Memory: A Hamming Distance Vector Quantizer

  • Philippe O. Pouliquen
  • Andreas G. Andreou
  • Kim Strohbehn
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 447)


Associative processing and associative memories [10, 13, 14] are neuromorphic computational paradigms, inspired by the high level brain functions of associative memory and recall. Several experimental VLSI systems with digital storage but analog processing have been reported in the literature since the seminal work by Sivilotti, Emerling and Mead [8]; (see for example [3, 11, 21] and Chapters 16 and 18 of [10]). Systems that incorporate analog storage capabilities have also been reported [7, 12, 24].


Boolean Function Memory Cell Associative Memory Bidirectional Associative Memory Current Conveyor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Andreou and K. Boahen. Translinear circuits in subthreshold MOS. J. Analog Integrated Circ. Sig. Proc., 9:141–166, 1996.CrossRefGoogle Scholar
  2. [2]
    A. G. Andreou and K. A. Boahen. Analog VLSI signal and information processing. In M. Ismail and T. Fiez, editors, Neural information processing II, pages 358–413. McGraw-Hill, New York, 1994.Google Scholar
  3. [3]
    K. A. Boahen and A. G. Andreou. 17. In M. Hassoun, editor, Associative Neural Memories: Theory and Implementation. Oxford University Press, New York, 1993.Google Scholar
  4. [4]
    K. A. Boahen, A. G. Andreou, and P. O. Pouliquen. Architectures for associative memories using current-mode analog MOS circuits. In C. L. Seitz, editor, Advanced Research in VLSI: Proc. Dec. Caltech Conference on VLSI, Cambridge, MA, 1989. MIT.Google Scholar
  5. [5]
    K. A. Boahen, P. O. Pouliquen, A. G. Andreou, and R. E. Jenkins. A heteroassociative memory using current-mode MOS analog VLSI circuits. IEEE T. Circ. Syst, 36(5):747–755, 1989.CrossRefGoogle Scholar
  6. [6]
    G. A. Carpenter and S. Grossberg. A massively parallel architecture for a self-Organizing neural pattern recognition machine. Computer Vision, Graphics, and Image Processing, 37:54–115, 1987.CrossRefGoogle Scholar
  7. [7]
    G. Cauwenberghs, C. F. Neugebauer, and A. Yariv. Analysis and verification of an analog VLSI outer-product incremental learning system. IEEE Transactions on Neural Networks, 3(3):488–497, 1992.CrossRefGoogle Scholar
  8. [8]
    M. R. Emerling, M. A. Sivilotti, and C. A. Mead. VLSI architectures for implementation of neural networks. In J. J. Denker, editor, Neural Networks for Computing. AIP, Snowbird UT, 1986.Google Scholar
  9. [9]
    B. Gilbert. Translinear circuits: A proposed classification. Electronics Letters, 11(1):14–16, January 1975.CrossRefGoogle Scholar
  10. [10]
    M. H. Hassoun, editor. Associative Neural Memories: Theory and Implementation. Oxford University Press, New York, 1993.MATHGoogle Scholar
  11. [11]
    Y. He, U. Cilingiroglu, and E. Sánchez-Sinencio. A high density and low-power charge-based hamming network. IEEE Trans. VLSI Systems, 1(1):55–62, March 1993.Google Scholar
  12. [12]
    Y. Horio and S. Nakamura. Analog memories for VLSI neurocomputing. In E. Sánchez-Sinencio and C. Lau, editors, Artificial Neural Networks: Paradigms, Applications, and Hardware Implementations, pages 344–363. IEEE Press, 1992.Google Scholar
  13. [13]
    T. Kohonen. Content-Addressable Memories. Springer Verlag, Berlin, 2 edition, 1987.MATHGoogle Scholar
  14. [14]
    T. Kohonen. Self-Organisation and Associative Memory. Springer-Verlag, Berlin, 2 edition, 1988.Google Scholar
  15. [15]
    N. Kumar, P. O. Pouliquen, and A. G. Andreou. Device mismatch limitations on the performance of an associative memory system. In Proceedings of the 36 th Midwest Symposium on Circuits and Systems, volume 1, pages 570–573, 1993.CrossRefGoogle Scholar
  16. [16]
    J. Lazzaro, S. Ryckebusch, M. A. Mahowald, and C. A. Mead. Winner-take-all networks of O(n) complexity. In D.S. Touretzky, editor, Advances in neural information processing systems, volume 2, pages 703–711, San Mateo — CA, 1989. Morgan Kaufmann.Google Scholar
  17. [17]
    R. F. Lyon and R. R. Schediwy. CMOS static memory with a new four-transistor memory cell. In P. Losleben, editor, Advanced Research in VLSI, pages 110–132. MIT Press, Cambridge, MA, 1987.Google Scholar
  18. [18]
    C. A. Mead. Analog VLSI and Neural Systems. Addison-Wesley, Reading, MA, 1989.MATHGoogle Scholar
  19. [19]
    H. Miwa, N. Kumar, P. O. Pouliquen, and A. G. Andreou. Memory enhancement techniques for mixed digital memory-analog computational engines. In Proc. IEEE Int. Symp. on Circuits and Systems, volume 5, pages 45–48, June 1994.Google Scholar
  20. [20]
    A. Pavasović, A. G. Andreou, and C. R. Westgate. Characterization of subthreshold MOS mismatch in transistors for VLSI systems. Journal of Analog Integrated Circuits and Signal Processing, 6:75–85, July 1994.Google Scholar
  21. [21]
    P. O. Pouliquen, A. G. Andreou, K. Strohbehn, and R. E. Jenkins. An associative memory integrated system for character recognition. In Proc. 36th Midwest Symp. on Circuits and Systems, pages 762–765, Detroit, MI, August 1993.Google Scholar
  22. [22]
    K. Sasaki, K. Ueda, K. Takasugi, H. Toyoshima, K. Ishibashi, T. Yamanaka, N. Hashimoto, and N. Ohki. A 16-mb CMOS SRAM with a 2.3-µm2 single bit line memory cell. IEEE J. Solid-State Circuits, 28(11):1125–1130, November 1993.CrossRefGoogle Scholar
  23. [23]
    K. Seno, K. Knorpp, L.-L. Shu, N. Teshima, H. Kihari, H. Sato, F. Miyaji, M. Takeda, M. Sasaki, Y. Tomo, P. T. Chuang, and K. Kobayashi. A 9-ns 16-mb CMOS SRAM with offset-Compensated current sense amplifier. IEEE J. Solid-State Circuits, 28(11):1119–1124, November 1993.CrossRefGoogle Scholar
  24. [24]
    H. Yang and B. J. Sheu and J.-C. Lee. A nonvolatile analog neural memory using floating-gate MOS transistors. In Analog Integrated Circuits and Signal Processing, volume 2-1, February 1992.Google Scholar
  25. [25]
    E. Vittoz and J. Fellrath. CMOS analog integrated circuits based on weak inversion operation. IEEE Journal on Solid-State Circuits, 12(3):224–231, 1977.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Philippe O. Pouliquen
  • Andreas G. Andreou
  • Kim Strohbehn

There are no affiliations available

Personalised recommendations