Skip to main content

Winner-Takes-All Associative Memory: A Hamming Distance Vector Quantizer

  • Chapter
Neuromorphic Systems Engineering

Abstract

Associative processing and associative memories [10, 13, 14] are neuromorphic computational paradigms, inspired by the high level brain functions of associative memory and recall. Several experimental VLSI systems with digital storage but analog processing have been reported in the literature since the seminal work by Sivilotti, Emerling and Mead [8]; (see for example [3, 11, 21] and Chapters 16 and 18 of [10]). Systems that incorporate analog storage capabilities have also been reported [7, 12, 24].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Andreou and K. Boahen. Translinear circuits in subthreshold MOS. J. Analog Integrated Circ. Sig. Proc., 9:141–166, 1996.

    Article  Google Scholar 

  2. A. G. Andreou and K. A. Boahen. Analog VLSI signal and information processing. In M. Ismail and T. Fiez, editors, Neural information processing II, pages 358–413. McGraw-Hill, New York, 1994.

    Google Scholar 

  3. K. A. Boahen and A. G. Andreou. 17. In M. Hassoun, editor, Associative Neural Memories: Theory and Implementation. Oxford University Press, New York, 1993.

    Google Scholar 

  4. K. A. Boahen, A. G. Andreou, and P. O. Pouliquen. Architectures for associative memories using current-mode analog MOS circuits. In C. L. Seitz, editor, Advanced Research in VLSI: Proc. Dec. Caltech Conference on VLSI, Cambridge, MA, 1989. MIT.

    Google Scholar 

  5. K. A. Boahen, P. O. Pouliquen, A. G. Andreou, and R. E. Jenkins. A heteroassociative memory using current-mode MOS analog VLSI circuits. IEEE T. Circ. Syst, 36(5):747–755, 1989.

    Article  Google Scholar 

  6. G. A. Carpenter and S. Grossberg. A massively parallel architecture for a self-Organizing neural pattern recognition machine. Computer Vision, Graphics, and Image Processing, 37:54–115, 1987.

    Article  Google Scholar 

  7. G. Cauwenberghs, C. F. Neugebauer, and A. Yariv. Analysis and verification of an analog VLSI outer-product incremental learning system. IEEE Transactions on Neural Networks, 3(3):488–497, 1992.

    Article  Google Scholar 

  8. M. R. Emerling, M. A. Sivilotti, and C. A. Mead. VLSI architectures for implementation of neural networks. In J. J. Denker, editor, Neural Networks for Computing. AIP, Snowbird UT, 1986.

    Google Scholar 

  9. B. Gilbert. Translinear circuits: A proposed classification. Electronics Letters, 11(1):14–16, January 1975.

    Article  Google Scholar 

  10. M. H. Hassoun, editor. Associative Neural Memories: Theory and Implementation. Oxford University Press, New York, 1993.

    MATH  Google Scholar 

  11. Y. He, U. Cilingiroglu, and E. Sánchez-Sinencio. A high density and low-power charge-based hamming network. IEEE Trans. VLSI Systems, 1(1):55–62, March 1993.

    Google Scholar 

  12. Y. Horio and S. Nakamura. Analog memories for VLSI neurocomputing. In E. Sánchez-Sinencio and C. Lau, editors, Artificial Neural Networks: Paradigms, Applications, and Hardware Implementations, pages 344–363. IEEE Press, 1992.

    Google Scholar 

  13. T. Kohonen. Content-Addressable Memories. Springer Verlag, Berlin, 2 edition, 1987.

    MATH  Google Scholar 

  14. T. Kohonen. Self-Organisation and Associative Memory. Springer-Verlag, Berlin, 2 edition, 1988.

    Google Scholar 

  15. N. Kumar, P. O. Pouliquen, and A. G. Andreou. Device mismatch limitations on the performance of an associative memory system. In Proceedings of the 36 th Midwest Symposium on Circuits and Systems, volume 1, pages 570–573, 1993.

    Article  Google Scholar 

  16. J. Lazzaro, S. Ryckebusch, M. A. Mahowald, and C. A. Mead. Winner-take-all networks of O(n) complexity. In D.S. Touretzky, editor, Advances in neural information processing systems, volume 2, pages 703–711, San Mateo — CA, 1989. Morgan Kaufmann.

    Google Scholar 

  17. R. F. Lyon and R. R. Schediwy. CMOS static memory with a new four-transistor memory cell. In P. Losleben, editor, Advanced Research in VLSI, pages 110–132. MIT Press, Cambridge, MA, 1987.

    Google Scholar 

  18. C. A. Mead. Analog VLSI and Neural Systems. Addison-Wesley, Reading, MA, 1989.

    MATH  Google Scholar 

  19. H. Miwa, N. Kumar, P. O. Pouliquen, and A. G. Andreou. Memory enhancement techniques for mixed digital memory-analog computational engines. In Proc. IEEE Int. Symp. on Circuits and Systems, volume 5, pages 45–48, June 1994.

    Google Scholar 

  20. A. Pavasović, A. G. Andreou, and C. R. Westgate. Characterization of subthreshold MOS mismatch in transistors for VLSI systems. Journal of Analog Integrated Circuits and Signal Processing, 6:75–85, July 1994.

    Google Scholar 

  21. P. O. Pouliquen, A. G. Andreou, K. Strohbehn, and R. E. Jenkins. An associative memory integrated system for character recognition. In Proc. 36th Midwest Symp. on Circuits and Systems, pages 762–765, Detroit, MI, August 1993.

    Google Scholar 

  22. K. Sasaki, K. Ueda, K. Takasugi, H. Toyoshima, K. Ishibashi, T. Yamanaka, N. Hashimoto, and N. Ohki. A 16-mb CMOS SRAM with a 2.3-µm2 single bit line memory cell. IEEE J. Solid-State Circuits, 28(11):1125–1130, November 1993.

    Article  Google Scholar 

  23. K. Seno, K. Knorpp, L.-L. Shu, N. Teshima, H. Kihari, H. Sato, F. Miyaji, M. Takeda, M. Sasaki, Y. Tomo, P. T. Chuang, and K. Kobayashi. A 9-ns 16-mb CMOS SRAM with offset-Compensated current sense amplifier. IEEE J. Solid-State Circuits, 28(11):1119–1124, November 1993.

    Article  Google Scholar 

  24. H. Yang and B. J. Sheu and J.-C. Lee. A nonvolatile analog neural memory using floating-gate MOS transistors. In Analog Integrated Circuits and Signal Processing, volume 2-1, February 1992.

    Google Scholar 

  25. E. Vittoz and J. Fellrath. CMOS analog integrated circuits based on weak inversion operation. IEEE Journal on Solid-State Circuits, 12(3):224–231, 1977.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this chapter

Cite this chapter

Pouliquen, P.O., Andreou, A.G., Strohbehn, K. (1998). Winner-Takes-All Associative Memory: A Hamming Distance Vector Quantizer. In: Lande, T.S. (eds) Neuromorphic Systems Engineering. The Springer International Series in Engineering and Computer Science, vol 447. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-28001-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-28001-1_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8158-7

  • Online ISBN: 978-0-585-28001-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics