A Low-Power Wide-Linear-Range Transconductance Amplifier

  • Rahul Sarpeshkar
  • Richard F. Lyon
  • Carver Mead
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 447)


In the past few years, engineers have improved the linearity of MOS transconductor circuits [2, 5, 10, 11, 19, 20, 26, 28, 29, 32]. These advances have been primarily in the area of above-threshold, high-power, high-frequency, continuous-time filters. Although it is possible to implement auditory filters (20Hz-20khz) with these techniques, it is inefficient to do so. The transconductance and current levels in above-threshold operation are so high that large capacitances or transistors with very low W/L are required to create low-frequency poles, and area and power are wasted. In addition, it is difficult to span 3 orders of magnitude of transconductance with a square law, unless we use transistors with ungainly aspect ratios. However, it is easy to obtain a wide linear range above threshold.


Bias Current Corner Frequency Bipolar Transistor Total Harmonic Distortion Wide Linear Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    X. Arreguit. Compatible Lateral Bipolar Transistors in CMOS Technology: Model and Applications. DSc These no. 817, Ecole Polytechnique Federale de Lausanne, 1989.Google Scholar
  2. [2]
    M. C. H. Cheng and C. Toumazou. Linear composite MOSFETs (COMFETs). Electronics Letters, 27(20):1802–1804, 1991.CrossRefGoogle Scholar
  3. [3]
    W. Chung, K. Kim, and H. Cha. A linear operational transconductance amplifier for instrumentation applications. IEEE Trans. on Instrumentation and Measurement, 41(3):441–443, 1992.CrossRefGoogle Scholar
  4. [4]
    T. Delbrück. Bump circuits for computing similarity and dissimilarity of analog voltages. CNS Memo No 26, May 1993.Google Scholar
  5. [5]
    S. T. Dupuie and M. Ismail. High frequency CMOS transconductors. In C. Toumazou, F.J. Lidgey, and D.G. Haigh, editors, Analogue IC Design: the current mode approach. Peter Peregrinus Ltd. on behalf of IEEE, 1990.Google Scholar
  6. [6]
    P. Furth and A. B. Andreou. Linearized differential transconductors in subthreshold CMOS. IEEE Electronics Letters, 31(7):545–547, March 1995.CrossRefGoogle Scholar
  7. [7]
    P. R. Gray and R. G. Meyer. Analysis and Design of Analog Integrated Circuits, pages 183–186. John Wiley and Sons, New York, 1987.Google Scholar
  8. [8]
    P. Hasler. Personal communication.Google Scholar
  9. [9]
    P. Hasler, B. A. Minch, C. Diorio, and C. Mead. An autozeroing amplifier using pfet hot-electron injection. In Proc. IEEE Intl. Symp. on Circuits and Systems, volume 3, pages 325–328, Atlanta, May 1996.Google Scholar
  10. [10]
    H. Khorramabadi and P. R. Gray. High frequency CMOS continuous time filters. IEEE J. Solid State Circuits, SC-19(6):939–948, 1984.CrossRefGoogle Scholar
  11. [11]
    F. Krummenacher and N. Joehl. A 4 MHz CMOS continuous time filter with on-chip automatic tuning. IEEE J. Solid-State Circuits, SC-23:750–758, 1988.CrossRefGoogle Scholar
  12. [12]
    R. W. Landee, D. C. Davis, and A. P. Albrecht. Electronic Designers Handbook, pages 3–18, 3–34, 3–38. McGraw-Hill Book Co, N.Y., 19957.Google Scholar
  13. [13]
    W. Liu. An Analog Cochlear Model: Signal Representation and VLSI Realization. PhD thesis, John Hopkins University, Baltimore, Maryland, 1992.Google Scholar
  14. [14]
    R. F. Lyon. Analog implementations of auditory models. In ARPA Workshop on Speech and Natural Language. Morgan Kaufmann Publishers, San Mateo CA, 1991.Google Scholar
  15. [15]
    R. F. Lyon, T. Delbrück, and C. A. Mead. Circuits for wide input range analog rectification and correlation. U.S. Patent 5,319,268, June 1994.Google Scholar
  16. [16]
    R. F. Lyon and C. A. Mead. The CMOS grounded-substrate convention. Caltech Computation and Neural Systems Memo, 27, 1993.Google Scholar
  17. [17]
    C. A. Mead. Analog VLSI and Neural Systems, pages 33–36, 67–82. Addison-Wesley, Reading, MA, 1989.MATHGoogle Scholar
  18. [18]
    B. A. Minch, C. Diorio, P. Hasler, and C. A. Mead. Translinear circuits using subthreshold floating-gate MOS transistors. Analog Integrated Circuits and Signal Processing, 9(2):1–13, 1996.CrossRefGoogle Scholar
  19. [19]
    B. Nauta and E. Seevinck. Linear CMOS transconductance element for vhf filters. Electronics Letters, 25:448–450, 1989.CrossRefGoogle Scholar
  20. [20]
    A. Nedungadi and T. R. Viswanathan. Design of linear CMOS transconductance elements. IEEE Trans., CAS-31(10):891–894, 1984.Google Scholar
  21. [21]
    I. E. Opris and G. T. A. Kovacs. Large-signal subthreshold CMOS transconductance amplifier. Electronics Letters, 31(9):718–720, April 1995.CrossRefGoogle Scholar
  22. [22]
    J. Ramirez-Angulo and E. Sánchez-Sinecio. Programmable BiCMOS transconductor for capacitor-transconductor filters. Electronics Letters, 28(13):1185–1187, 1992.CrossRefGoogle Scholar
  23. [23]
    R. Sarpeshkar, T. Delbrück, and C. Mead. White noise in MOS transistors and resistors. IEEE Circuits and Devices, 9(6):23–29, November 1993.CrossRefGoogle Scholar
  24. [24]
    R. Sarpeshkar, Lyon R. F., and C. A. Mead. An analog VLSI cochlea with new transconductance amplifiers and nonlinear gain control. In Proc. IEEE Intl. Conf. on Circuits and Systems, volume 3, pages 292–295, Atlanta, May 1996.Google Scholar
  25. [25]
    R. Sarpeshkar, Lyon R. F., and C. A. Mead. Nonvolatile correction of q-offsets and instabilities in cochlear filters. In Proc. IEEE Intl. Conf. on Circuits and Systems, volume 3, pages 329–332, Atlanta, May 1996.Google Scholar
  26. [26]
    S. Szczepanski, J. Jakusz, and A. Czarniak. Differential pair transconductor linearisation via electronically controlled current-mode cells. Electronics Letters, 28(12):1093–1095, 1992.CrossRefGoogle Scholar
  27. [27]
    Y. Tsividis. Operation and Modeling of the MOS Transistor, pages 136–140. McGraw-Hill Book Company, New York, 1987.Google Scholar
  28. [28]
    Y. Tsividis, Z. Czarnul, and S. C. Fang. MOS transconductors and integrators with high linearity. Electronics Letters, 22(5):245–246, 1986.CrossRefGoogle Scholar
  29. [29]
    Z. Wang and W. Guggenbuhl. A voltage-controllable linear MOS transconductor using bias offset technique. IEEE J. Solid State Circuits, SC-22(3):357–365, 1987.Google Scholar
  30. [30]
    L. Watts, D. Kerns, R. F. Lyon, and C. Mead. Improved implementation of the silicon cochlea. IEEE Journal Solid-State Circuits, 27(5):692–700, May 1992.CrossRefGoogle Scholar
  31. [31]
    G. Wilson. Linearised bipolar transconductor. ectronics Letters, 28(4):390–391, 1992.CrossRefGoogle Scholar
  32. [32]
    P. Wu and R. Schaumann. Tunable operational transconductance amplifier with extremely high linearity over very large input range. Electronics Letters, 27(14):1254–1255, 1991.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Rahul Sarpeshkar
    • 1
  • Richard F. Lyon
    • 2
  • Carver Mead
    • 3
  1. 1.Department of Biological ComputationBell LaboratoriesMurray Hill
  2. 2.Foveonics Inc.Cupertino
  3. 3.Physics of Computation LaboratoryCalifornia Institute of TechnologyUSA

Personalised recommendations