Filter Cascades as Analogs of the Cochlea

  • Richard F. Lyon
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 447)


Wave propagation in the cochlea can be modeled at various levels and for various purposes. We are interested in making models of cochlear signal processing, in analog or digital VLSI or in software, suitable for supporting improved hearing aids, speech-recognition systems, and other engineered hearing machines. We are also interested in developing models that can contribute to a deeper understanding of how hearing works. Hence, a neuromorphic approach, in which the functionality of the model emerges from a form that is loosely copied from the nervous system, is appropriate.


Group Delay Basilar Membrane Filter Design Automatic Gain Control Filter Stage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. F. Brugge. An overview of central auditory processing. In A.N. Popper and R.R. Fay, editors, The Mammalian Auditory Pathway: Neurophysiology, pages 1–33. Springer-Verlag, 1992.Google Scholar
  2. [2]
    E. de Boer and R. MacKay. Reflections on reflections. J. Acoust. Soc. Am., 57:882–890, 1980.CrossRefGoogle Scholar
  3. [3]
    P. Furth and A. B. Andreou. A design framework for low power analog filter banks. IEEE Transactions on Circuits and Systems, Part I: Fundamental Theory and Applications, 42:966–971, 1995.CrossRefGoogle Scholar
  4. [4]
    P. Furth and A. B. Andreou. Linearized differential transconductors in subthreshold CMOS. IEEE Electronics Letters, 31(7):545–547, March 1995.CrossRefGoogle Scholar
  5. [5]
    M. Holmes and J. D. Cole. Pseudo-resonance in the cochlea. In Boer E. de and Viergever M.A., editors, Mechanics of Hearing. Martinus Nijhoff Publishers, the Hague, 1983.Google Scholar
  6. [6]
    J. M. Kates. A time-domain digital cochlear model. IEEE Trans. Signal Processing, 39:2573–2592, December 1991.CrossRefGoogle Scholar
  7. [7]
    D. O. Kim. Functional roles of the inner-and outer-hair-cell subsystems in the cochlea and brainstem. In Berlin C., editor, Hearing Science, pages 241–261. College-Hill Press, San Diego, 1984.Google Scholar
  8. [8]
    D. O. Kim, C. E. Molnar, and R. R. Pfeiffer. A system of non-linear diferential equations modeling basilar membrane motion. J. Acoust. Soc. Am., 54:1517–1529, 1983.CrossRefGoogle Scholar
  9. [9]
    J. Lazzaro, J. Wawrzynek, M. Mahowald, M. Sivilotti, and D. Gillespie. Silicon auditory processors as computer peripherals. IEEE Journal of Neural Networks, 4(3):523–528, 1993.CrossRefGoogle Scholar
  10. [10]
    W. Liu, A. Andreou, and M. Goldstein. Voiced-speech representation by an analog silicon model of the auditory periphery. IEEE Transactions of Neural Networks, 3(3):477–487, 1992.CrossRefGoogle Scholar
  11. [11]
    R. F. Lyon. A computational model of filtering, detection and compression in the cochlea. In Proc. IEEE Intl. Conf. on Acoust. Speech and Signal Proc., pages 1282–1285, Paris, 1982.Google Scholar
  12. [12]
    R. F. Lyon. Computational models of neural auditory processing. In Proc. IEEE Intl. Conf. on Acoust. Speech and Signal Proc., San Diego, 1984.Google Scholar
  13. [13]
    R. F. Lyon. Automatic gain control in cochlear mechanics. In P. Dallos et al., editor, The Mechanics and Biophysics of Hearing, pages 395–402. Springer-Verlag, 1990.Google Scholar
  14. [14]
    R. F. Lyon. All-pole auditory filter models. In E. Lewis, editor, Diversity in Auditory Mechanics. World Scientific, In press.Google Scholar
  15. [15]
    R. F. Lyon and L. Dyer. Experiments with a computational model of the cochlea. In Proc. IEEE Intl. Conf. on Acoust. Speech and Signal Proc., pages 1975–1978, Tokyo, 1986.Google Scholar
  16. [16]
    R. F. Lyon and N. Lauritzen. Processing speech with the multi-serial signal processor. In Proc. IEEE Intl. Conf. on Acoust. Speech and Signal Proc., Tampa, 1985.Google Scholar
  17. [17]
    R. F. Lyon and C. Mead. An analog electronic cochlea. IEEE Trans. Acoust., Speech, Signal Processing, 36:1119–1134, July 1988.MATHCrossRefGoogle Scholar
  18. [18]
    R. F. Lyon and C. Mead. Cochlear hydrodynamics demystified. Caltech Computer Science Technical Report Caltech-CS-TR-88-4, Caltech, 1989.Google Scholar
  19. [19]
    W. S. Rhode. Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique. J. Acoust. Soc. Am., 49:1218–1231, 1971.CrossRefGoogle Scholar
  20. [20]
    L. Robles, M. A. Ruggero, and N. C. Rich. Basilar membrane mechanics at the base of the chinchilla cochlea. input-output functions, tuning curves and response phases. J. Acoust. Soc. Am., 80:1364–1374, 1986.CrossRefGoogle Scholar
  21. [21]
    R. Sarpeshkar, Lyon R. F., and C. A. Mead. An analog VLSI cochlea with new transconductance amplifiers and nonlinear gain control. In Proc. IEEE Intl. Conf. on Circuits and Systems, volume 3, pages 292–295, Atlanta, May 1996.Google Scholar
  22. [22]
    R. Sarpeshkar, Lyon R. F., and C. A. Mead. Nonvolatile correction of q-offsets and instabilities in cochlear filters. In Proc. IEEE Intl. Conf. on Circuits and Systems, volume 3, pages 329–332, Atlanta, May 1996.Google Scholar
  23. [23]
    M. Slaney. Lyon’s cochlear model. Apple Technical Report 13, Apple Computer, Cupertino, CA, 1991.Google Scholar
  24. [24]
    C. Summerfield and R. F. Lyon. ASIC implementation of the lyon cochlea model. In Proc. IEEE Intl. Conf. on Acoust. Speech and Signal Proc., San Francisco, 1990.Google Scholar
  25. [25]
    A. van Schaik, E. Fragnière, and E. A. Vittoz. Improved silicon cochlea using compatible lateral bipolar transistors. In David S. Touretzky, Michael C. Mozer, and Michael E. Hasselmo, editors, Advances in Neural Information Processing Systems, volume 8, pages 671–677. The MIT Press, 1996.Google Scholar
  26. [26]
    L. Watts. Cochlear Mechanics: Analysis and Analog VLSI. Ph.d. dissertation, California Institute of Technology, 1993.Google Scholar
  27. [27]
    L. Watts, Lyon R. F., and Mead C. A bidirectional analog VLSI cochlear model. In C. Sequin, editor, Advanced Research in VLSI, Proceedings of the 1991 Santa Cruz Conference, pages 153–163, Cambridge, MA, 1991. MIT Press.Google Scholar
  28. [28]
    L. Watts, D. Kerns, R. F. Lyon, and C. Mead. Improved implementation of the silicon cochlea. IEEE Journal Solid-State Circuits, 27(5):692–700, May 1992.CrossRefGoogle Scholar
  29. [29]
    G. Zweig, R. Lipes, and J. R. Pierce. The cochlear compromise. J. Acoust. Soc. Am., 59:975–982, 1976.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Richard F. Lyon
    • 1
  1. 1.Foveonics Inc.Cupertino

Personalised recommendations