Skip to main content

Filter Cascades as Analogs of the Cochlea

  • Chapter
Neuromorphic Systems Engineering

Part of the book series: The Springer International Series in Engineering and Computer Science ((SECS,volume 447))

Abstract

Wave propagation in the cochlea can be modeled at various levels and for various purposes. We are interested in making models of cochlear signal processing, in analog or digital VLSI or in software, suitable for supporting improved hearing aids, speech-recognition systems, and other engineered hearing machines. We are also interested in developing models that can contribute to a deeper understanding of how hearing works. Hence, a neuromorphic approach, in which the functionality of the model emerges from a form that is loosely copied from the nervous system, is appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. F. Brugge. An overview of central auditory processing. In A.N. Popper and R.R. Fay, editors, The Mammalian Auditory Pathway: Neurophysiology, pages 1–33. Springer-Verlag, 1992.

    Google Scholar 

  2. E. de Boer and R. MacKay. Reflections on reflections. J. Acoust. Soc. Am., 57:882–890, 1980.

    Article  Google Scholar 

  3. P. Furth and A. B. Andreou. A design framework for low power analog filter banks. IEEE Transactions on Circuits and Systems, Part I: Fundamental Theory and Applications, 42:966–971, 1995.

    Article  Google Scholar 

  4. P. Furth and A. B. Andreou. Linearized differential transconductors in subthreshold CMOS. IEEE Electronics Letters, 31(7):545–547, March 1995.

    Article  Google Scholar 

  5. M. Holmes and J. D. Cole. Pseudo-resonance in the cochlea. In Boer E. de and Viergever M.A., editors, Mechanics of Hearing. Martinus Nijhoff Publishers, the Hague, 1983.

    Google Scholar 

  6. J. M. Kates. A time-domain digital cochlear model. IEEE Trans. Signal Processing, 39:2573–2592, December 1991.

    Article  Google Scholar 

  7. D. O. Kim. Functional roles of the inner-and outer-hair-cell subsystems in the cochlea and brainstem. In Berlin C., editor, Hearing Science, pages 241–261. College-Hill Press, San Diego, 1984.

    Google Scholar 

  8. D. O. Kim, C. E. Molnar, and R. R. Pfeiffer. A system of non-linear diferential equations modeling basilar membrane motion. J. Acoust. Soc. Am., 54:1517–1529, 1983.

    Article  Google Scholar 

  9. J. Lazzaro, J. Wawrzynek, M. Mahowald, M. Sivilotti, and D. Gillespie. Silicon auditory processors as computer peripherals. IEEE Journal of Neural Networks, 4(3):523–528, 1993.

    Article  Google Scholar 

  10. W. Liu, A. Andreou, and M. Goldstein. Voiced-speech representation by an analog silicon model of the auditory periphery. IEEE Transactions of Neural Networks, 3(3):477–487, 1992.

    Article  Google Scholar 

  11. R. F. Lyon. A computational model of filtering, detection and compression in the cochlea. In Proc. IEEE Intl. Conf. on Acoust. Speech and Signal Proc., pages 1282–1285, Paris, 1982.

    Google Scholar 

  12. R. F. Lyon. Computational models of neural auditory processing. In Proc. IEEE Intl. Conf. on Acoust. Speech and Signal Proc., San Diego, 1984.

    Google Scholar 

  13. R. F. Lyon. Automatic gain control in cochlear mechanics. In P. Dallos et al., editor, The Mechanics and Biophysics of Hearing, pages 395–402. Springer-Verlag, 1990.

    Google Scholar 

  14. R. F. Lyon. All-pole auditory filter models. In E. Lewis, editor, Diversity in Auditory Mechanics. World Scientific, In press.

    Google Scholar 

  15. R. F. Lyon and L. Dyer. Experiments with a computational model of the cochlea. In Proc. IEEE Intl. Conf. on Acoust. Speech and Signal Proc., pages 1975–1978, Tokyo, 1986.

    Google Scholar 

  16. R. F. Lyon and N. Lauritzen. Processing speech with the multi-serial signal processor. In Proc. IEEE Intl. Conf. on Acoust. Speech and Signal Proc., Tampa, 1985.

    Google Scholar 

  17. R. F. Lyon and C. Mead. An analog electronic cochlea. IEEE Trans. Acoust., Speech, Signal Processing, 36:1119–1134, July 1988.

    Article  MATH  Google Scholar 

  18. R. F. Lyon and C. Mead. Cochlear hydrodynamics demystified. Caltech Computer Science Technical Report Caltech-CS-TR-88-4, Caltech, 1989.

    Google Scholar 

  19. W. S. Rhode. Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique. J. Acoust. Soc. Am., 49:1218–1231, 1971.

    Article  Google Scholar 

  20. L. Robles, M. A. Ruggero, and N. C. Rich. Basilar membrane mechanics at the base of the chinchilla cochlea. input-output functions, tuning curves and response phases. J. Acoust. Soc. Am., 80:1364–1374, 1986.

    Article  Google Scholar 

  21. R. Sarpeshkar, Lyon R. F., and C. A. Mead. An analog VLSI cochlea with new transconductance amplifiers and nonlinear gain control. In Proc. IEEE Intl. Conf. on Circuits and Systems, volume 3, pages 292–295, Atlanta, May 1996.

    Google Scholar 

  22. R. Sarpeshkar, Lyon R. F., and C. A. Mead. Nonvolatile correction of q-offsets and instabilities in cochlear filters. In Proc. IEEE Intl. Conf. on Circuits and Systems, volume 3, pages 329–332, Atlanta, May 1996.

    Google Scholar 

  23. M. Slaney. Lyon’s cochlear model. Apple Technical Report 13, Apple Computer, Cupertino, CA, 1991.

    Google Scholar 

  24. C. Summerfield and R. F. Lyon. ASIC implementation of the lyon cochlea model. In Proc. IEEE Intl. Conf. on Acoust. Speech and Signal Proc., San Francisco, 1990.

    Google Scholar 

  25. A. van Schaik, E. Fragnière, and E. A. Vittoz. Improved silicon cochlea using compatible lateral bipolar transistors. In David S. Touretzky, Michael C. Mozer, and Michael E. Hasselmo, editors, Advances in Neural Information Processing Systems, volume 8, pages 671–677. The MIT Press, 1996.

    Google Scholar 

  26. L. Watts. Cochlear Mechanics: Analysis and Analog VLSI. Ph.d. dissertation, California Institute of Technology, 1993.

    Google Scholar 

  27. L. Watts, Lyon R. F., and Mead C. A bidirectional analog VLSI cochlear model. In C. Sequin, editor, Advanced Research in VLSI, Proceedings of the 1991 Santa Cruz Conference, pages 153–163, Cambridge, MA, 1991. MIT Press.

    Google Scholar 

  28. L. Watts, D. Kerns, R. F. Lyon, and C. Mead. Improved implementation of the silicon cochlea. IEEE Journal Solid-State Circuits, 27(5):692–700, May 1992.

    Article  Google Scholar 

  29. G. Zweig, R. Lipes, and J. R. Pierce. The cochlear compromise. J. Acoust. Soc. Am., 59:975–982, 1976.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this chapter

Cite this chapter

Lyon, R.F. (1998). Filter Cascades as Analogs of the Cochlea. In: Lande, T.S. (eds) Neuromorphic Systems Engineering. The Springer International Series in Engineering and Computer Science, vol 447. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-28001-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-28001-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8158-7

  • Online ISBN: 978-0-585-28001-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics