Advertisement

Thermodynamic data for minerals: a critical assessment

  • Martin Engi
Part of the The Mineralogical Society Series book series (MIBS, volume 3)

Abstract

Earth scientists in search of thermodynamic data are faced with questions as to the quality and reliability of their finds. Analysis of the currently available thermodynamic data bases for minerals reveals discrepancies of form and of contents, both of which complicate the quality assessment. Formal differences render comparisons of properties among different data bases cumbersome at least. Where differences of content emerge from such a comparison, even the specialist is often unsure which data are better and how good these might be. Worse, even where a comparison between data bases shows substantial agreement, the user of the data cannot be sure of their quality, because many data-base entries are not independent.

Keywords

Data Base Thermodynamic Property Thermodynamic Data Critical Assessment Aqueous Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, G. M. (1977) The accuracy and precision of calculated mineral dehydration equilibria, in Thermodynamics in Geology, (ed. D. G. Fraser), Reidel, Dordrecht, pp. 115–36.Google Scholar
  2. Anderson, G. M. (1977) Uncertainties in calculations involving thermodynamic data, in Application of Thermodynamics to Petrology and Ore Deposits, (ed. H. J. Greenwood), Mineralogical Association of Canada, Ottawa, pp. 199–215.Google Scholar
  3. Ball, F. W., Jenne, E. A., and Cantrell, M. W. (1981) WATEQ3: a Geochemical Model with Uranium Added, US Geol. Survey, Open-File Report, pp. 81–1183.Google Scholar
  4. Ball, F. W., Nordstrom, D. K. and Jenne, E. A. (1980) Additional and Revised Thermochemical Data and Computer Code for WATEQ2-A Computerized Chemical Model for Trace Element Speciation and Mineral Equilibria of Natural Waters, U.S. Geol. Survey, Water Resources Investigation, pp. 78–116.Google Scholar
  5. Berman, R. G. (1988) Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. Journal of Petrology, 29(2), 445–522.Google Scholar
  6. Berman, R. G. and Brown, T. H. (1985) Heat capacity of minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2: representation, estimation, and high temperature extrapolation. Contributions to Mineralogy and Petrology, 89, 168–83.CrossRefGoogle Scholar
  7. Berman, R. G., Engi, M., Greenwood, H.J., et al. (1986) Derivation of internally-consistent thermodynamic properties by the technique of mathematical programming: a review with application to the system MgO-SiO2-H2O. Journal of Petrology, 27(6), 1331–64.Google Scholar
  8. Bottinga, Y. and Richet, P. (1981) High pressure and temperature equation of state and calculation of thermodynamic properties of gaseous carbon dioxide. American Journal of Science, 281, 615–60.CrossRefGoogle Scholar
  9. Brady, J. B. and Stout, J. H. (1980) Normalization of thermodynamic properties and some implications for graphical and analytical problems in petrology. American Journal of Science, 280, 173–89.CrossRefGoogle Scholar
  10. Brousse, C., Newton, R. C., and Kleppa, O. J. (1984) Enthalpy of formation of forsterite, enstatite, akermanite, montecellite and merwinite at 1073 K determined by alkali borate solute ion calorimetry. Geochimica et Cosmochimica Acta, 48, 1081–8.CrossRefGoogle Scholar
  11. Burnham, C. W., Holloway, J. R., and Davis, N. E. (1969) The specific volume of water in the range 10-8900 bar, 20°-900°C. American Journal of Science, 267A, 70–95.Google Scholar
  12. Charlu, T. V., Newton, R. C., and Kleppa, O. J. (1975) Enthalpies of formation at 970 K of compounds in the system MgO-Al2O3-SiO2 from high temperature solution calorimetry. Geochimica et Cosmochimica Acta 39, 1487–97.CrossRefGoogle Scholar
  13. Charlu, T. V., Newton, R. C., and Kleppa, O. J. (1978) Enthalpy of formation of some lime silicates by high-temperature solution calorimetry, with discussion of high pressure phase equilibria. Geochimica et Cosmochimica Acta, 42, 367–75.CrossRefGoogle Scholar
  14. Chermak, J. A. and Rimstidt, J. D. (1989) Estimating the thermodynamic properties (ΔG f and Δ H f°) of silicate minerals at 298 K from the sum of polyhedral contributions. American Mineralogist, 74, 1023–31.Google Scholar
  15. Cohen, R. E. (1986) Statistical mechanics of coupled solid solutions in the dilute limit. Physics and Chemistry of Minerals, 13, 174–82.CrossRefGoogle Scholar
  16. Connolly, J. A. D. (1990) Multivariate phase diagrams: an algorithm based on generalized thermodynamics. American Journal of Science, 290, 666–718.CrossRefGoogle Scholar
  17. CODATA recommended key values for thermodynamics. (1978) Report of the CODATA Task Group on key values for thermodynamics, 1977. Journal of Chemical Thermodynamics, 10, 902–6.Google Scholar
  18. De Capitani, C. and Brown, T. H. (1987) The computation of chemical equilibrium in complex systems containing non-ideal solutions. Geochimica et Cosmochimica Acta, 51, 2639–52.CrossRefGoogle Scholar
  19. Delany, J. M. and Helgeson, H. C. (1978) Calculation of the thermodynamic consequences of dehydration in subducting oceanic crust to 100 kbar and >800°C. American Journal of Science, 278, 638–86.CrossRefGoogle Scholar
  20. Demarest, H. H., Jr. and Haselton, H. T., Jr. (1981) Error analysis for bracketed phase equilibrium data. Geochimica et Cosmochimica Acta, 45, 217–24.CrossRefGoogle Scholar
  21. Douglas, T. B. and King, E. K. (1968) High-temperature drop calorimetry, in Experimental Thermodynamics, (eds J. P. McCulloch and D. W. Scott), vol. 1: Calorimetry of Non-reacting Systems, Plenum Press, New York, pp. 293–331.Google Scholar
  22. Engi, M. and Wersin, P. (1987) Derivation and application of a solution model for calcic garnet. Schweizerische Mineralogische und Petrographische Mitteilungen, 67, 53–73.Google Scholar
  23. Engi, M., Lieberman, J., and Berman, R. G. (1990) Uncertainties in thermodynamic data for mineral systems. Geological/Mineralogical Association of Canada Abstracts 15(Vancouver), A36.Google Scholar
  24. Felmy, A. R., Girvin, D. C., and Jenne, E. A. (1984) MINTEQ: A Computer Program for Calculating Aqueous Geochemical Equilibria, EPA-600/3-84-032, U. S. Environmental Protection Agency, Atlanta, Georgia. (NTIS PB84-157148, National Technical Information Service, Springfield, Virginia).Google Scholar
  25. Ferry, J. M. and Baumgartner, L. (1987) Thermodynamic models of molecular fluids at the elevated pressures and temperatures of crustal metamorphism. In Thermodynamic Modeling of Geological Materials: Minerals, Fluids and Melts, (eds I. S. E. Carmichael and H. P. Eugster), American Mineralogical Society, Reviews in Mineralogy 17, pp. 323–65.Google Scholar
  26. Ghiorso, M. S. (1987) Thermodynamics of minerals and melts. Reviews of Geophysics, 25, 1054–64.Google Scholar
  27. Ghiorso, M. S. (1990a) Application of the Darken equation to mineral solid solutions with variable degrees of order-disorder. American Mineralogist, 75, 539–43.Google Scholar
  28. Ghiorso, M. S. (1990b) A solution model for ilmenite-hematite-geikielite. Contributions to Mineralogy and Petrology.Google Scholar
  29. Gill, P. E., Murray, W., and Wright, M. H. (1981) Practical Optimization, Academic Press, London.Google Scholar
  30. Gordon, T. M. (1973) Determination of internally consistent thermodynamic data from phase equilibrium experiments. Journal of Geology, 81, 199–208.CrossRefGoogle Scholar
  31. Haar, L., Gallagher, J. S., and Kell, G. S. (1984) NBS/NCR Steam Table. Hemisphere Publishing, Washington.Google Scholar
  32. Haas, J. L., Jr., Robinson, G. R., and Hemingway, B. S. (1981) Thermodynamic tabulations for selected phases in the system CaO-Al2O3-SiO2-H2O at 101.325 kPa (1 atm) between 273.15 and 1800K. Journal of Physical and Chemical Reference Data, 10, 575–669.CrossRefGoogle Scholar
  33. Halbach, H. and Chatterjee, N. D. (1982) The use of linear parametric programming for determining internally consistent thermodynamic data. In High-pressure Researches in Geoscience, (ed. W. Schreyer), Schweizerbart, Stuttgart, pp. 475–91.Google Scholar
  34. Helgeson, H. C., Delany, J. M., Nesbitt, H. W., et al. (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. American Journal of Science, 278A, 1–229.Google Scholar
  35. Helgeson, H. C. and Kirkham, D. H. (1974a) Theoretical prediction of the thermodynamic behaviour of aqueous electrolytes at high pressures and temperatures: I. Summary of the thermodynamic/electrostatic properties of the solvent. American Journal of Science, 274, 1089–1198.CrossRefGoogle Scholar
  36. Helgeson, H. C. and Kirkham, D. H. (1974b) Theoretical predication of the thermodynamic behaviour of aqueous electrolytes at high pressures and temperatures: II. Debye-Hiickel parameters for activity coefficients and relative partial molal properties. American Journal of Science, 274, 1199–261.CrossRefGoogle Scholar
  37. Helgeson, H. C., Kirkham, D. H., and Flowers, G. C. (1981) Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600°C and 5 kb. American Journal of Science, 281, 1249–1516.CrossRefGoogle Scholar
  38. Hemingway, B. S., Haas, J. L., Jr. and Robinson, G. R., Jr. (1982) Thermodynamic properties of selected minerals in the system Al 2 O 3-CaO-SiO 2-H 2 O at 298.15 K and lbar(105 pascals) pressure and at higher temperatures, US Geol. Surv. Bull. 1544.Google Scholar
  39. Holdaway, M. J. (1971) Stability of andalusite and the aluminum silicate phase diagram. American Journal of Science, 271, 97–131.CrossRefGoogle Scholar
  40. Holland, T. J. B. (1989) Dependence of entropy on volume for silicate and oxide minerals: a review and a predictive model. American Mineralogist, 74, 5–13.Google Scholar
  41. Holland, T. J. B. and Powell, R. (1985) An internally consistent thermodynamic dataset with uncertainties and correlations: 2. Data and results. Journal of Metamorphic Geology, 3, 343–70.CrossRefGoogle Scholar
  42. Holland, T. J. B. and Powell, R. (1990) An enlarged and updated internally consistent thermodynamic dataset with uncertainties and correlations: The system K2O-Na2O-CaO-MgO-MnO-FeO-Fe2O3-Al2O3-TiO2-SiO2-C-H2-O2. Journal of Metamorphic Geology, 8(1), 89–124.CrossRefGoogle Scholar
  43. Holloway, J. R. (1977) Fugacity and activity of molecular species in supercritical fluids, in Thermodynamics in Geology, (ed. D. G. Fraser), Reidel, Dordrecht, pp. 161–81.Google Scholar
  44. Holloway, J. R. (1987) Igneous fluids, in Thermodynamic Modeling of Geological Materials: Minerals, Fluids and Melts, (ed. I. S. E. Carmichael and H. P. Eugster), American Mineralogical Society, Reviews in Mineralogy 17, pp. 211–33.Google Scholar
  45. Jansson, B. (1984a) A General Method for Calculating Phase Equilibria Under Different Types of Conditions. TRITA-MAC-0233, Materials Center, Royal Institute of Technology, Stockholm.Google Scholar
  46. Jenkins, D. M. (1984) Upper pressure stability of synthetic margarite + quartz. Contributions to Mineralogy and Petrology, 88, 332–9.CrossRefGoogle Scholar
  47. Kerrick, D. M. and Jacobs, G. K. (1981) A modified Redlich-Kwong equation or H2O, CO2, and H2O-mixtures at elevated pressures and temperatures. American Journal of Science, 281, 735–67.CrossRefGoogle Scholar
  48. Kharaka, Y. J., Gunter, W. D., Aggarwal, P. K., et al. (1989) SOLMINEQ.88: A Computer Program for Geochemical Modeling of Water-rock Interactions. US Geol. Survey, Water Resources Investigations Report 88–4227.Google Scholar
  49. Kitihara, S., Takenouchi, S., and Kennedy, G. C. (1966) Phase relations in the system MgO-SiO2H2O at high temperatures and pressures. American Journal of Science, 264, 223–33.CrossRefGoogle Scholar
  50. Kolassa J. E. (1990) Confidence Intervals for Thermodynamic constants, IBM Reseach Report 15769 and Geochimica et Cosmochimica Ada, 55, 3543–52.CrossRefGoogle Scholar
  51. Krupka, K. M. and Jenne, E. A. (1982) WATEQ3 Geochemical Model: Thermodynamic Data for Several Additional Solids. PNL-4276, Pacific Northwest Laboratory, Richland, Washington.Google Scholar
  52. Lichtner, P. C. and Engi, M. (1989) Data bases of thermodynamic properties used to model thermal energy storage in aquifers. International Energy Agency Annex VI, Subtask A, Doc. 26-A.Google Scholar
  53. Lieberman, J. (1991a) GridLoc: Macintosh graphics tools for phase diagrams (in preparation).Google Scholar
  54. Lieberman, J. (1991b) PTAX: Calculation of mineral fluid stability relations and software for Macintosh and Unix computers (in preparation).Google Scholar
  55. Lieberman, J. and Petrakakis, K. (1991) TWEEQU thermobarometry: analysis of analytical uncertainties and applications to granulites from Western Alaska and Austria. Canadian Mineralogist, 29, 857–88.Google Scholar
  56. Mäder, U.K. (1991) H2O-CO2 mixtures: a review of P-V-T-X data and an assessment from a phase equilibrium point of view. Canadian Mineralogist, 29, 767–90.Google Scholar
  57. Mäder, U. K. and Berman, R. G. (1991) An equation of state for carbon dioxide to high pressure and temperature. American Mineralogist, 76, 1547–59.Google Scholar
  58. Mraw, S. C. and Naas, D. F. (1979) The measurement of accurate heat capacities by differential scanning calorimetry. Comparison of d.s.c. results on pyrite (100 to 800 K) with literature values from precision adiabatic calorimetry. Journal of Chemical Thermodynamics, 11, 567–84.CrossRefGoogle Scholar
  59. Navrotsky, A. (1979) Calorimetry: its application to petrology. Annual Reviews of Earth and Planetary Science, 7, 93–115.CrossRefGoogle Scholar
  60. Navrotsky, A. (1987) Models for crystalline solutions, in Thermodynamic Modeling of Geological Materials: Minerals, Fluids and Melts, (ed. I. S. E. Carmichael and H. P. Eugster), American Mineralogical Society, Reviews in Mineralogy 17, pp. 35–69.Google Scholar
  61. Neuvonen, K. J. (1952) Heat of formation of merwinite and monticellite. American Journal of Science, Bowen, 2, 373–80.Google Scholar
  62. Newton, R. C., Navrotsky, A., and Wood, B. J. (eds) (1981) Thermodynamics of Minerals and Melts, Springer, New York.Google Scholar
  63. Newton, R. C., Wood, B. J., and Kleppa, O. J. (1981) Thermochemistry of silicate solid solutions. Bulletin minéralogique, 104, 162–72.Google Scholar
  64. Nordstrom, D. K. and Munoz, J. L. (1985) Geochemical Thermodynamics, Benjamin/Cummings, Menlo Park, California.Google Scholar
  65. Nordstrom, D. K.., Plummer, L. N., Langmuir, D., et al. (1990) Revised chemical equilibrium data for major water-mineral reactions and their limitations; in Chemical Modeling of Aqueous Systems II, (eds D. C. Melchior and R. L. Bassett), 298–413, American Chemical Society, Wasington DC, ACS Symposium Series 416.Google Scholar
  66. Nordstrom, D. K., Valentine, S. D., Ball, J. W., et al. (1984) Partial compilation and revision of basic data in the WATEQ programs. US Geol. Survey Water-Resources Investigation Report 84-4186, 10–4Google Scholar
  67. Oelkers, E. H. and Helgeson, H. C. (1988) Calculation of the thermodynamic and transport properties of aqueous species at temperatures from 400 to 800°C and pressures from 500 to 4000 bars. Journal of Physical Chemistry, 92, 1631–9.CrossRefGoogle Scholar
  68. Oelkers, E. H. and Helgeson H. C. (1990) Triple-anions and polynuclear complexing in supercritical electrolyte solutions. Geochimica et Cosmochimica Acta, 54, 727–38.CrossRefGoogle Scholar
  69. Parkhurst, D. L., Thorsteson, D. C., and Plummer, L. N. (1980) PHREEQE — a computer program for geochemical calculations. US Geol. Survey Water-Resources Investigation Report 80–96.Google Scholar
  70. Pedley, J. B. and Rylance, J. (1977) Computer analysis of thermochemical data, in Proceedings, Fifth Biennial CO DAT A Conference, (ed. B. Dreyfus), Pergamon Press, Oxford, pp. 557–80.Google Scholar
  71. Pitzer, K. S. (1987) A thermodynamic model for aqueous solutions of liquid-like density, in Thermodynamic Modeling of Geological Materials: Minerals, Fluids and Melts, (eds I. S. E. Carmichael and H. P. Eugster), American Mineralogical Society, Reviews in Mineralogy 17, pp. 97–142.Google Scholar
  72. Pitzer, K. S. (1973) Thermodynamics of electrolytes. I. Theoretical basis and general equations. Journal of Physical Chemistry, 77, 268–77.CrossRefGoogle Scholar
  73. Powell, R. and Holland, T. J. B. (1985) An internally consistent thermodynamic dataset with uncertainties and correlations: 1. Methods and a worked example. Journal of Metamorphic Geology, 3, 327–42.CrossRefGoogle Scholar
  74. Powell, R. and Holland, T. J. B. (1988) An internally consistent thermodynamic dataset with uncertainties and correlations: 3. applications to geobarometry, worked examples and a computer program. Journal of Metamorphic Geology, 6, 173–204.CrossRefGoogle Scholar
  75. Putnis, A. and Bish, D. H. (1983) The mechanism and kinetics of Al/Si ordering in Mg-cordierite. American Mineralogist, 68, 60–5.Google Scholar
  76. Richardson, S. W., Gilbert, M. C., and Bell, P. M. (1969) Experimental determination of kyanite-andalusite and andalusite-sillimanite equilibria; the aluminum silicate triple point. American Journal of Science, 267, 259–72.CrossRefGoogle Scholar
  77. Robie, R. A., Hemingway, B. S., and Fisher, J. R. (1979) Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 bar (10 5 Pascals) Pressure and at Higher Temperatures, US Geol. Surv. Bull. 1452.Google Scholar
  78. Robinson, G. R., Haas, J. L., Schafer, C. M., et al. (1983) Thermodynamic and Thermophysical Properties of Selected Phases in the MgO-SiO 2-H 2 O-CO 2, CaO-Al 2 O 3-SiO 2-H 2 O-CO 2, and Fe-FeO-Fe 2 O 3-SiO 2 Chemical Systems, with Special Emphasis on the Properties of Basalts and Their Mineral Components, US Geol. Survey, Open File Report 83-79.Google Scholar
  79. Sack, R. D. and Ghiorso, M. S. (1989) Importance of considerations of mixing properties in establishing an internally consistent thermodynamic data base: Thermochemistry of minerals in the system Mg2SiO4-Fe2SiO4-SiO2. Contributions to Mineralogy and Petrology, 102, 41–68.CrossRefGoogle Scholar
  80. Salje, E. K. H. (ed.) (1988) Physical Properties and Thermodynamic Behaviour of Minerals, NATO ASI Series C, vol. 225. Reidel, Dordrecht.Google Scholar
  81. Saxena, S. K. and Fei, Y. (1987a) Fluids at crustal pressures and temperatures. I. Pure species. Contributions to Mineralogy and Petrology, 95, 370–5.CrossRefGoogle Scholar
  82. Saxena, S. K. and Fei, Y. (1987b) High pressure and high temperature fluid fugacities. Geochimica et Cosmochimica Acta, 51, 783–91.CrossRefGoogle Scholar
  83. Schittkowski, K. (1985a) NLPQL: A Fortran-subroutine solving constrained nonlinear programming problems. Annals of Operations Research, 5, 485–500.Google Scholar
  84. Schittkowski, K. (1985b) Solving Constrained Least Squares Problems by a General Purpose SQP-method, Report, Institut für Informatik, Stuttgart GFR, Universitat Stuttgart.Google Scholar
  85. Shock, E. L. and Helgeson, H. C. (1990) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: standard partial molal properties of organic species. Geochimica et Cosmochimica Acta, 54, 915–45.CrossRefGoogle Scholar
  86. Shock, E. L., Helgeson, H. C., and Sverjensky, D. A. (1990) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: standard partial molal properties of inorganic neutral species. Geochimica et Cosmochimica Acta, 53, 2157–83.CrossRefGoogle Scholar
  87. Sposito, G. and Mattigod, S. V. (1980) GEOCHEM: a computer program for the calculation of chemical equilibria in soil solutions and other water systems, Kearny Foundation, University of California, Riverside, California.Google Scholar
  88. Storre, B. and Nitsch, K.-H. (1974) Zur Stabilität von Margarit im System CaO-Al2O3-SiO2-H2O. Contributions to Mineralogy and Petrology, 43, 1–24.CrossRefGoogle Scholar
  89. Stull, D. R. and Prophet, H. (1971) JANAF Thermochemical Tables, 2nd edn, National Bureau of Standards NSRDS 37. (Supplements in the Journal of Physical and Chemical Reference Data 3, 311–480, 1974; 4, 1–185, 1975; 7, 793–940, 1978.)Google Scholar
  90. Sundman, B., Jansson, B., and Andersson, J.-O. (1985) The Thermo-Calc databank system. CALPHAD, 9, 153–86.CrossRefGoogle Scholar
  91. Sverjensky, D. A., Shock, E. L., and Helgeson, H. C. (1990) Prediction of the thermodynamic properties of inorganic aqueous metal complexes to 1000°C and 5 kbar (in preparation).Google Scholar
  92. Tanger, J. C. and Helgeson, H. C. (1988) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Revised equations of state for the standard partial molal properties of ions and electrolytes. American Journal of Science, 288, 19–98.CrossRefGoogle Scholar
  93. Tanger, J. C. and Pitzer, K. S. (1989) Calculation of the thermodynamic properties of aqueous electrolytes to 1000°C and 5000 bar from a semicontinuum model for ion hydration. Journal of Physical Chemistry, 93, 4941–51.CrossRefGoogle Scholar
  94. Torgeson, D. R. and Sahama, T. G. (1948) A hydrofluoric acid solution calorimeter and the determination of the heats of formation of Mg2SiO4, MgSiO3, and CaSiO3. Journal of the American Chemical Society, 70, 2156–60.CrossRefGoogle Scholar
  95. Truesdell, A. H. and Jones, B. F. (1974) WATEQ — a computer program for calculating chemical equilibria of natural water, US Geol. Survey, Journal of Research 2, 233–48.Google Scholar
  96. Ulbrich, H. H. and Waldbaum, D. R. (1976) Structural and other contributions to the third-law entropy of silicates. Geochimica et Cosmochimica Acta, 40, 1–24.CrossRefGoogle Scholar
  97. Vieillard, P. and Tardy, Y. (1988) Estimation on enthalpies of formation of minerals based on their refined crystal structures. American Journal of Science, 288, 997–1040.CrossRefGoogle Scholar
  98. Weare, J. H. (1987) Models of mineral solubility in concentrated brines with application to field observations, in Thermodynamic Modeling of Geological Materials: Minerals, Fluids and Melts, I. (eds S. E. Carmichael and H. P. Eugster), American Mineralogical Society, Reviews in Mineralogy 17, pp. 143–74.Google Scholar
  99. Westrum, E. F., Jr., Furukawa, G. T., and McCulloch, J. P. (1968) Adiabatic low-temperature calorimetry, in Experimental Thermodynamics, (eds J. P. McCulloch and D. W. Scott), vol. 1, Calorimetry of Non-reacting Systems, Plenum Press, New York, pp. 133–214.Google Scholar
  100. Wolery, T. J. (1979) Calculation of Chemical Equilibrium between Aqueous Solutions and Minerals: the EQ3/EQ6 Software Package, Lawrence Livermore Laboratory, UCRL-52658, Livermore, California.Google Scholar
  101. Wolery, T. J. (1983) EQ3NR. A Computer Program for Geochemical Aqueous Speciation-solubility Calculations: User’s Guide and Documentation, Lawrence Livermore Laboratory, UCRL-53414, Livermore, California.Google Scholar
  102. Wolery, T. J., Sherwood, D. J., Jackson, K. J., et al. (1984) EQ3/6: Status and Applications, Lawrence Livermore Laboratory, UCRL-91884, Livermore, California.Google Scholar
  103. Zen, E-an (1977) The phase-equilibrium calorimeter, the petrogenetic grid, and a tyranny of numbers. American Mineralogist, 62, 189–204.Google Scholar

Copyright information

© Geoffrey D. Price, Nancy L. Ross and the contributors 1992

Authors and Affiliations

  • Martin Engi
    • 1
  1. 1.Institute of Mineralogy and PetrologyUniversity of BernSwitzerland

Personalised recommendations