Thermochemistry of tetrahedrite-tennantite fahlores

  • Richard O. Sack
Part of the The Mineralogical Society Series book series (MIBS, volume 3)


In this chapter some of the methods used in constructing models for the thermodynamic mixing properties of multicomponent solid solutions will be illustrated using the mineral tetrahedrite-tennantite as an example. In the case of this complex sulphosalt, or the more common oxide and silicate solid solutions (e.g. spinels, rhombohedral oxides, and pyroxenes), accurate models for activity-composition relations are required to construct internally consistent thermodynamic databases for the common rock-forming minerals (cf Berman, 1988; Sack and Ghiorso, 1989; Sack and Ghiorso, 1991a; Sack and Ghiorso, 1991b; Ghiorso, 1990a. It is usually not possible to construct such a database from considerations of end-member properties alone, because there are insufficient, and often conflicting constraints on the standard state properties of all of the end-member components that govern exchange reactions involving solid solutions. Moreover, practical considerations require that constraints on mixing and standardstate properties be evaluated in concert, if consistent interpretations of natural phenomena are to be achieved.


Gibbs Energy Hydrothermal Fluid American Mineralogist Composition Path Reciprocal Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barton, P. B., Jr., and Skinner, B. J. (1979) Solubilities of ore minerals, in Geochemistry of Hydrothermal Ore Deposits, (ed. H. L. Barnes), John Wiley and Sons, pp. 404–60.Google Scholar
  2. Barton, P. B., Jr., and Toulmin P., III (1966) Phase relations involving sphalerite in the Fe-Zn-S system. Economic Geology, 61, 815–49.Google Scholar
  3. Berman, R. G. (1988) Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-A12O3-SiO2-TiO2-H2O-CO2: representation, estimation, and high temperature extrapolation. Journal of Petrology, 29, 445–522.Google Scholar
  4. Bishop, A. C., Criddle, A. J., and Clark, A. M. (1977) Plumbian tennantite from Sark, Channel Islands. Mineralogical Magazine, 41, 59–63.CrossRefGoogle Scholar
  5. Charnock, J. M., Garner, C. D., Pattrick, R. A. D., et al., (1988) Investigation into the nature of copper and silver sites in argentian tetrahedrites using EXAFS spectroscopy. Physics and Chemistry of Minerals, 15, 296–9.CrossRefGoogle Scholar
  6. Charnock, J. M., Garner, C. D., Pattrick, R. A. D., et al., (1989) Coordination sites of metals in tetrahedrite minerals determined by EXAFS. Journal of Solid State Chemistry, 82, 279–89.CrossRefGoogle Scholar
  7. Charlat, M., and Levy, C. (1974) Substitutions multiples dans la serie tennantite-tetrahedrite. Bulletin de la Societe francaise de Mineralogie et de Cristallographie, 97, 241–50.Google Scholar
  8. Ebel, D. S. and Sack, R. O. (1989) Ag-Cu and As-Sb exchange energies in tetrahedrite-tennantite fahlores. Geochimica et Cosmochimica Acta, 53, 2301–9.CrossRefGoogle Scholar
  9. Ebel, D. S., and Sack, R. O. (1991) Arsenic-silver incompatibility in fahlore. Mineralogical Magazine, 55, 521–8.CrossRefGoogle Scholar
  10. Evans, B. W. and Frost, B. R. (1975) Chrome-spinels in progressive metamorphism-a preliminary analysis. Geochimica et Cosmochimica Acta, 39, 959–72.CrossRefGoogle Scholar
  11. Francombe, M. H. (1957) Lattice changes in spinel-type iron chromites. Journal of Physics and Chemistry of Solids, 3, 37–43.CrossRefGoogle Scholar
  12. Fryklund, V. C., Jr. (1964) Ore deposits of the Coeur d’Alene district, Shoshone country, Idaho. United States Geological Survey Professional Paper 445.Google Scholar
  13. Ghiorso, M. S. (1990a) Thermodynamic properties of hematite-ilmenite-geikielite solid solutions. Contributions to Mineralogy and Petrology, 104, 645–67.CrossRefGoogle Scholar
  14. Ghiorso, M. S. (1990b) The application of the Darken equation to mineral solid solutions with variable degrees of order-disorder. American Mineralogist, 75, 539–43.Google Scholar
  15. Goodell, P. C. and Petersen, U. (1974) Julcani mining district, Peru: a study of metal ratios. Economic Geology, 69, 347–61.CrossRefGoogle Scholar
  16. Hackbarth, C. J. and Petersen, U. (1984) Systematic compositional variations in argentian tetrahedrite. Economic Geology, 79, 448–60.Google Scholar
  17. Hultgren, R., Orr, R. L., Anderson, P. D., et al. (1963) Selected Values of Thermodynamic Properties of Metals and Alloys. John Wiley and Sons.Google Scholar
  18. Imai, N. and Lee, H. K. (1980) Complex sulfide-sulfosalt ores from Janggun mine, ROK, in Complex Sulfide Ores, Institute of Mining and Metallurgy, pp. 248–9.Google Scholar
  19. Indolev, L. N., Nevoysa, I. A., and Bryzgalov, I. A. (1971) New data on the composition of stibnite and the isomorphism of copper and silver. Doklady Akademii Nauk SSSR, 199, 115–18.Google Scholar
  20. Ixer, R. A. and Stanley, C. J. (1983) Silver mineralization at Sark’s Hope mine, Channel Islands. Mineralogical Magazine, 47, 539–45.CrossRefGoogle Scholar
  21. Johnson, M. L. and Burnham, C. W. (1985) Crystal structure refinement of an arsenic-bearing argentian tetrahedrite. American Mineralogist, 70, 165–70.Google Scholar
  22. Johnson, M. L. and Jeanloz, R. (1983) A Brillouin-zone model for compositional variation in tetrahedrite. American Mineralogist, 68, 220–6.Google Scholar
  23. Johnson, N. E., Craig, J. R., and Rimstidt, J. D. (1986) Compositional trends in tetrahedrite. Canadian Mineralogist, 24, 385–97.Google Scholar
  24. Kalbskopf, R. (1972) Strukturverfeinerung des freibergits. Tschermaks Mineralogisch und Petrographische Mitteilungen, 18, 147–55.CrossRefGoogle Scholar
  25. Kvacek, M., Novak, F., and Drabek, M. (1975) Canfieldite and silver-rich tetrahedrite from the Kutna Hora district. Neues Jahrbuch für Mineralogie Monatschefte, 4, 171–9.Google Scholar
  26. Lawson, A. W. (1947) On simple binary solutions. Journal of Chemical Physics, 15, 831–42.CrossRefGoogle Scholar
  27. Makovicky, E. and Skinner, B. J. (1978) Studies of the sulfosalts of copper. VI. Low-temperature exsolution in synthetic tetrahedrite solid solution; Cu12.3Sb4+yS13. Canadian Mineralogist, 16, 611–23.Google Scholar
  28. Makovicky, E. and Skinner, B. J. (1979) Studies of the sulfosalts of copper VII. Crystal structures of the exsolution products Cu12.3Sb4S13 and Cu13 8Sb4S13 of unsubstituted synthetic tetrahedrite. Canadian Mineralogist, 17, 619–34.Google Scholar
  29. Mishra, B. and Mookherjee, A. (1986) Analytical formulation of phase equilibrium in two observed sulfide-sulfosalt assemblages in the Rajpura-Dariba polymetallic deposit. Economic Geology, 81, 627–39.Google Scholar
  30. O’Leary, M. J. and Sack, R. O. (1987) Fe-Zn exchange reaction between tetrahedrite and sphalerite in natural environments. Contributions to Mineralogy and Petrology, 96, 415–25.CrossRefGoogle Scholar
  31. Paar, Von W. H., Chen, T. T., and Cunther, W. (1978) Extrem silberreicher Freibergit in Pb-Zn-Cu-Erzen des Bergbaues ‘Knappenstube’, Hochtor, Salzburg. Carinthia II, 168, 35–42.Google Scholar
  32. Pattrick, R. A. D. (1978) Microprobe analyses of cadmium-rich tetrahedrites from Tyndrum, Perthshire, Scotland. Mineralogical Magazine, 42, 286–8.CrossRefGoogle Scholar
  33. Pattrick, R. A. D. and Hall, A. J. (1983) Silver substitution into synthetic zinc, cadmium, and iron tetrahedrites. Mineralogical Magazine, 47, 441–51.CrossRefGoogle Scholar
  34. Pauling, L. and Neuman, E. W. (1934) The crystal structure of binnite, (Cu,Fe)12As4S13, and the chemical composition and structure of minerals of the tetrahedrite group. Zeitschift fur Kristallographie, 88, 54–62.Google Scholar
  35. Peterson, R. C. and Miller, I. (1986) Crystal structure refinement and cation distribution in freibergite and tetrahedrite. Mineralogical Magazine, 47, 441–51.Google Scholar
  36. Raabe, K. C. and Sack, R. O. (1984) Growth zoning in tetrahedrite-tennantite from the Hock Hocking mine, Alma, Colorado. Canadian Mineralogist, 22, 577–82.Google Scholar
  37. Riley, J. F. (1974) The tetrahedrite-freibergite series, with reference to the Mount Isa Pb-Zn-Ag ore body. Miner ahum Deposita, 9, 117–24.Google Scholar
  38. Robbins, M., Wertheim, G. K., Sherwood, R. C. et al. (1971) Magnetic properties and site distributions in the system FeCr2O4-Fe3O4(Fe2 +Cr2−xFex3+O4). Journal of Physics and Chemistry of Solids, 32, 717–29.CrossRefGoogle Scholar
  39. Sack, R. O. (1982) Spinels as petrogenetic indicators: activity-composition relations at low pressures. Contributions to Mineralogy and Petrology, 79, 169–82.CrossRefGoogle Scholar
  40. Sack, R. O. and Ghiorso, M. S. (1989) Importance of considerations of mixing properties in establishing an internally consistent thermodynamic database: thermochemistry of minerals in the system Mg2SiO4-Fe2SiO4-SiO2. Contributions to Mineralogy of Petrology, 102, 41–68.CrossRefGoogle Scholar
  41. Sack, R. O., and Ghiorso, M. S. (1991a) An internally consistent model for the thermodynamic properties of Fe-Mg-titanomagnetite-aluminate spinels. Contributions to Mineralogy and Petrology, 106, 474–505.CrossRefGoogle Scholar
  42. Sack, R. O. and Ghiorso, M. S. (1991b) Chromian spinels as petrogenetic indicators: thermodynamics and petrological applications. American Mineralogist, 76, 827–847.Google Scholar
  43. Sack, R. O. and Loucks, R. R. (1985) Thermodynamic properties of tetrahedrite-tennantites: Constraints on the interdependence of the Ag↔Cu, Fe↔Zn, Cu↔Fe, and As↔Sb exchange reactions. American Mineralogist, 70, 1270–89.Google Scholar
  44. Sack, R. O., Ebel, D. S., and O’Leary, M. J. (1987) Tennahedrite thermochemistry and metal zoning, in Chemical Transport in Metasomatic Processes, (ed. H. C. Helgeson), D. Reidel, Dordrecht, pp. 701–31.Google Scholar
  45. Spiridonov, E. M. (1984) Species and varieties of fahlore (tetrahedrite-tennantite) minerals and their rational nomenclature. Doklady Akademii Nauk SSSR, 279, 166–72.Google Scholar
  46. Springer, G. (1969) Electron probe analyses of tetrahedrite. Neues Jahrbuch für Mineralogie, Monatschefte, 24-32.Google Scholar
  47. Tatsuka, K. and Morimoto, N. (1977) Tetrahedrite stability relations in the Cu-Fe-Sb-S system. American Mineralogist, 62, 1101–9.Google Scholar
  48. Thompson, J. B., Jr. (1967) Thermodynamics properties of simple solutions, in Researches in Geochemistry, ed. P. H. Abelson, vol. 2, New York, John Wiley, pp. 340–61.Google Scholar
  49. Thompson, J. B., Jr. (1969) Chemical reactions in crystals. American Mineralogist, 54, 341–75.Google Scholar
  50. Wu, I. and Petersen, U. (1977) Geochemistry of tetrahedrite-tennantite at Casapalca, Peru. Economic Geology, 72, 993–1016.Google Scholar
  51. Wuensch, B. J. (1964) The crystal structure of tetrahedrite, Cu12Sb4S13. Zeitschrift für Kristallographie, 119, 437–53.CrossRefGoogle Scholar
  52. Wuensch, B. J., Takeuchi, Y., and Nowacki, W. (1966) Refinement of the crystal structure of binnite. Zeitschrift für Kristallographie, 123, 1–20.Google Scholar
  53. Yui, S. (1971) Heterogeneity within a single grain of minerals of the tetrahedrite-tennantite series. Society of Mining Geologists of Japan Special Issue, 2, Proceedings of IMA-IAGOD Meeting 70, Joint Symposium Volume, 22–9.Google Scholar

Copyright information

© Geoffrey D. Price, Nancy L. Ross and the contributors 1992

Authors and Affiliations

  • Richard O. Sack
    • 1
  1. 1.Department of Earth and Atmospheric SciencesPurdue UniversityUSA

Personalised recommendations