The Stability of Minerals pp 132-171 | Cite as

# Lattice vibration and mineral stability

## Abstract

Prediction of phase stabilities in geological systems represents one of the fundamental problems challenging earth scientists today. Phase equilibria can be studied directly under controlled pressure and temperature conditions in laboratory experiments. In some cases, however, it is not possible to determine phase stabilities from experiments, because, for example, the pressures and temperatures of interest may not be attainable in the laboratory, samples may be non-quenchable, or equilibrium may not be attainable. Under such circumstances, a different approach is needed to study mineral stability. The purpose of this chapter is to describe how mineral stabilities can be studied from direct consideration of the mineral’s lattice vibrations.

## Keywords

Heat Capacity Lattice Vibration Atomistic Simulation Interatomic Potential Debye Model## Preview

Unable to display preview. Download preview PDF.

## References

- Akaogi M., Ross, N. L., McMillan, P.,
*et al.*(1984) The Mg_{2}SiO_{4}polymorphs (olivine, modified spinel and spinel)-thermodynamic properties from oxide melt solution calorimetry, phase relations, and models of lattice vibrations.*American Mineralogist*,**69**, 499–512.Google Scholar - Born, M. and Huang, K. (1954)
*Dynamical Theory of Crystal Lattices*, Oxford University Press, New York.Google Scholar - Born, M. and Von Karman, T. (1912) Über Schwingungen in Raumgittern.
*Physikalische Zeitschrift*,**13**, 297–309.Google Scholar - Born, M. and Von Karman T. (1913) Theory of specific heat.
*Physikalische Zeitschrift*,**14**, 15–71.Google Scholar - Catlow, C. R. A. (1977) Point defect and electronic properties of uranium dioxide.
*Proceedings of the Royal Society of London*,**A353**, 533–61.Google Scholar - Catlow, C. R. A. and Mackrodt, W. C. (1982) Theory of simulation methods for lattice and defect energy calculations in crystals, (eds C. R. A. Catlow and W. C. Mackrodt), in
*Lecture Notes in Physics 166: Computer Simulation of Solids*, Springer-Verlag, Berlin, pp. 3–20.Google Scholar - Chopelas, A. (1990) Thermal properties of forsterite at mantle pressures derived from vibrational spectroscopy.
*Physics and Chemistry of Minerals*,**17**, 149–56.Google Scholar - Cochran, W. (1973)
*The Structures and Properties of Solids 3: The Dynamics of Atoms in Crystals*, Edward Arnold Ltd, London.Google Scholar - Cohen, R. E., Boyer, L. L., and Mehl M. J. (1987) Lattice dynamics of the potential-induced breathing model: phonon dispersion in the alkaline-earth oxides.
*Physical Review B*,**35**, 5749–60.CrossRefGoogle Scholar - Cowley, R. A., Woods, A. D. B., and Dolling G. (1966) Crystal dynamics of potassium. I. Pseudopotential analysis of phonon dispersion curves at 9°K.
*Physical Review*,**150**, 487–94.CrossRefGoogle Scholar - Debye, P. (1912) Zur Theorie der spezifischen Wärmen.
*Annalen der Physik*(Leipzig),**39**, 789–839.CrossRefGoogle Scholar - Dick, B. G. and Overhauser, A. W. (1958) Theory of dielectric constants of alkali halide crystals.
*Physical Review*,**112**, 90–103.CrossRefGoogle Scholar - Dugdale, J. S., Morrison, J. A., and Patterson, D. (1954) The effect of particle size on the heat capacity of titanium dioxide.
*Proceedings of the Royal Society of London*,**A224**, 228–35.Google Scholar - Elcombe, M. M. (1967) Some aspects of the lattice dynamics of quartz.
*Proceedings of the Physical Society*,**91**, 947–58.CrossRefGoogle Scholar - Galeener, F.L., Leadbetter, A. J., and Stringfellow, M. W. (1983) Comparison of neutron, Raman, and infrared vibrational spectra of vitreous SiO
_{2}, GeO_{2}, and BeF_{2}.*Physical Review B*,**27**, 1052–78.CrossRefGoogle Scholar - Ghose, S. (1988) Inelastic neutron scattering, in
*Reviews in Mineralogy*, vol. 18:*Spectroscopic Methods in Mineralogy and Geology*, (ed. F. C. Hawthorne), Mineralogical Society of America, pp. 161–92.Google Scholar - Gibbs, G. V. (1982) Molecules as models for bonding in silicates.
*American Mineralogist*,**67**, 421–50.Google Scholar - Gilat, G. (1972) Analysis of methods for calculating spectral properties in solids.
*Journal of Computational Physics*,**10**, 432–65.CrossRefGoogle Scholar - Hofmeister, A. M. (1987) Single-crystal absorption and reflection infrared spectroscopy of forsterite and fayalite.
*Physics and Chemistry of Minerals*,**14**, 499–513.CrossRefGoogle Scholar - Kieffer, S. W. (1979a) Thermodynamics and lattice vibrations of minerals: 1. Mineral heat capacities and their relationships to simple lattice vibrational models.
*Reviews of Geophysics and Space Physics*,**17**, 1–19.Google Scholar - Kieffer, S. W. (1979b) Thermodynamics and lattice vibrations of minerals: 2. Vibrational characteristics of silicates.
*Reviews of Geophysics and Space Physics*,**17**, 20–34.Google Scholar - Kieffer, S. W. (1979c) Thermodynamics and lattice vibrations of minerals: 3. Lattice dynamics and an approximation for minerals with application to simple substances and framework silicates.
*Reviews of Geophysics and Space Physics*,**17**, 35–59.Google Scholar - Kieffer, S. W. (1980) Thermodynamics and lattice vibrations of minerals: 4. Application to chain and sheet silicates and orthosilicates.
*Reviews of Geophysics and Space Physics*,**18**, 862–86.Google Scholar - Kieffer, S. W. (1982) Thermodynamics and lattice vibrations of minerals: 5. Applications to phase equilibria, isotope fractionation, and high-pressure thermodynamic properties.
*Reviews of Geophysics and Space Physics*,**20**, 827–49.Google Scholar - Ko, J. and Prewitt C. T. (1988) High-pressure phase transition in MnTiO
_{3}from the ilmenite to the LiNbO_{3}structure.*Physics and Chemistry of Minerals*,**15**, 355–62.CrossRefGoogle Scholar - Ko, J., Brown, N. E., Navrotsky, A.,
*el al*. (1989) Phase equilibrium and calorimetric study of the transition of MnTiO_{3}from the ilmenite to the lithium niobate structure and implications for the stability field of perovskite.*Physics and Chemistry of Minerals*,**16**, 727–33.CrossRefGoogle Scholar - Leadbetter, A. J. (1969) Inelastic cold neutron scattering from different forms of silica.
*Journal of Chemical Physics*,**51**, 779–86.CrossRefGoogle Scholar - Leinenweber, K., Utsumi, W., Tsuchida, Y.
*et al.*(1991) Unquenchable high-pressure perovskite polymorphs of MnSnO_{3}and FeTiO_{3}.*Physics and Chemistry of Minerals*,**18**, 244–250.CrossRefGoogle Scholar - Lewis, G. V. and Catlow, C. R. A. (1985) Potential models for ionic oxides.
*Journal of Physics C*,**18**, 1149–61.CrossRefGoogle Scholar - Lord, R. C. and Morrow, J. C. (1957) Calculation of heat capacity of α-quartz and vitreous silica from spectroscopic data.
*Journal of Chemical Physics*,**26**, 230–2.CrossRefGoogle Scholar - Maradudin, A. A., Montroll, E. W., and Weiss, G. H. (1963)
*Lattice Dynamics in the Harmonic Approximation*, Academic Press, New York.Google Scholar - Megaw, H. (1969) A note on the structure of LiNbO
_{3}.*Acta Crystallographica*,**A24**, 583–8.Google Scholar - Montroll, E. W. (1942) Frequency spectrum of crystalline solids.
*Journal of Chemical Physics*,**10**, 218–29.CrossRefGoogle Scholar - Montroll, E. W. (1943) Frequency spectrum of crystalline solids II: general theory and applications to simple cubic lattices.
*Journal of Chemical Physics*,**11**, 481–95.CrossRefGoogle Scholar - Navrotsky, A. (1980) Lower mantle phase transitions may generally have negative pressure-temperature slopes.
*Geophysical Research Letters*,**7**, 709–11.Google Scholar - Parker, S. C. and Price, G. D. (1989) Computer modelling of phase transitions in minerals, in
*Advances in Solid-State Chemistry*, vol. 1, JAI Press Inc., London, pp. 295–327.Google Scholar - Placzek, G. and Van Hove, L. (1954) Crystal dynamics and inelastic scattering of neutrons.
*Physical Review*,**93**, 1207–14.CrossRefGoogle Scholar - Price, G. D., Parker, S. C., and Leslie, M. (1987) The lattice dynamics of forsterite.
*Mineralogical Magazine*,**51**, 157–70.CrossRefGoogle Scholar - Price, G. D., Wall, A., and Parker, S. C. (1989) The properties and behaviour of mantle minerals: a computer simulation approach.
*Philosophical Transactions of the Royal Society of London*,**A328**, 391–407.CrossRefGoogle Scholar - Rao, K. R., Chaplot, S. L., Choudhury, N.,
*et al.*(1988) Lattice dynamics and inelastic neutron scattering from forsterite, Mg_{2}SiO_{4}: phonon dispersion relation, density of states and specific heat.*Physics and Chemistry of Minerals*,**16**, 83–97.CrossRefGoogle Scholar - Robie, R. A., Hemingway, B. S., and Fischer, J. R. (1975) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (10
^{5}pascals) pressure and at higher temperatures.*US Geological Survey Bulletin 1452*, US Government, Washington D.C.Google Scholar - Ross, N. L. and Navrotsky, A. (1987) The Mg
_{2}GeO_{4}olivine-spinel phase transition.*Physics and Chemistry of Minerals*,**14**, 473–81.CrossRefGoogle Scholar - Ross, N. L. and Navrotsky, A. (1988) Study of the MgGeO
_{3}polymorphs (orthopyroxene, clinopyroxene, and ilmenite structures) by calorimetry, spectroscopy, and phase equilibria.*American Mineralogist*,**73**, 1355–65.Google Scholar - Ross, N. L., and Price, G. D. (1989) Factors determining the stability of LiNbO
_{3}and ilmenite structures.*Transactions of the American Geophysical Union*,**70**, 350.Google Scholar - Ross N. L., Ko, J., and Prewitt C. T. (1989) A new phase transition in MnTiO
_{3}:LiNbO_{3}to perovskite structure.*Physics and Chemistry of Minerals*,**16**, 621–9.Google Scholar - Ross, N. L., Akaogi, M., Navrotsky, A.,
*et al.*Phase transitions among the GaGeO_{3}polymorphs (wollastonite, garnet, and perovskite structures): studies by high-pressure synthesis, high-temperature calorimetry, and vibrational spectroscopy and calculation.*Journal of Geophysical Research*,**91**, 4685–96.Google Scholar - Salje, E. and Viswanathan, K. (1976) The phase diagram calcite-aragonite as derived from the crystallographic properties.
*Contributions to Mineralogy and Petrology*,**55**, 55–67.CrossRefGoogle Scholar - Salje, E. and Werneke, C. (1982a) How to determine phase stabilities from lattice vibrations, in
*High-Pressure Researches in Geoscience*, (ed. W. Schreyer), E. Schwiezer. Verlag, Stuttgart, pp. 321–48.Google Scholar - Salje, E. and Werneke, C. (1982b) The phase equilibrium between sillimanite and andalusite as determined from lattice vibrations.
*Contributions to Mineralogy and Petrology*,**79**, 56–67.CrossRefGoogle Scholar - Shomate, C. H. (1947) Heat capacities at low temperatures of titanium dioxide (rutile and anatase).
*Journal of the American Chemical Society*,**69**, 218–19.CrossRefGoogle Scholar - Striefler, M. E. and Barsch, G. R. (1975) Lattice dynamics of a-quartz.
*Physical Review B*,**12**, 4553–66.CrossRefGoogle Scholar - Traylor, J.G., Smith, H. G., Nicklow, R. M.,
*et al*(1971) Lattice dynamics of rutile.*Physical Review B*,**3**, 3457–72.CrossRefGoogle Scholar - Watanabe, H. (1982) Thermochemical properties of synthetic high-pressure compounds relevant to the earth’s mantle, in
*High Pressure Research in Geophysics*, (eds S. Akimoto and M. H. Manghnani), D. Reidel, Boston, pp. 441–64.Google Scholar - Woods, A. D. B., Brockhouse, B. N., Cowley, R. A.,
*et al.*(1963) Lattice dynamics of alkali halide crystals II: experimental studies of KBr and Nal.*Physical Review*.**131**, 1025–39.CrossRefGoogle Scholar