Bond topology, bond valence and structure stability

  • Frank C. Hawthorne
Part of the The Mineralogical Society Series book series (MIBS, volume 3)


There are approximately 3500 known minerals, varying from the simple (native iron) to the complex (mcgovernite has approximately 1200 atoms in its unit cell) and spanning a wide range in bond type, from metallic (native gold) through ‘covalent’ (pyrite), to ‘ionic’ (halite). Most of us unconsciously divide the minerals into two groups: rock-forming and other. The rock-forming minerals are quantitatively dominant but numerically quite minor, whereas the other minerals are the reverse. Although this may seem a rather frivolous basis for such a division, there are actually some fairly important features to it that bear further examination.


Structural Unit Bond Valence Lewis Basicity Other Hand Fundamental Building Block 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akao, M. and Iwai S. (1977) The hydrogen bonding of artinite. Acta Crystallographica B33, 3951–3.Google Scholar
  2. Albright, T. A., Burdett, J. K., and Whangbo, M. H. (1985) Orbital Interactions in Chemistry, Wiley-Interscience, New York.Google Scholar
  3. Allmann, R. (1975) Beziehungen zwischen Bindungslangen und Bindungsstarken in Oxidstrukturen. Monatschefte für Chemie 106, 779–93.CrossRefGoogle Scholar
  4. Baur, W. H. (1970) Bond length variation and distorted coordination polyhedra in inorganic crystals. Transactions of the American Crystallographic Association, 6, 129–55.Google Scholar
  5. Baur, W. H. (1971) The prediction of bond length variations in silicon-oxygen bonds. American Mineralogist, 56, 1573–99.Google Scholar
  6. Baur, W. H. (1987) Effective ionic radii in nitrides. Crystallography Reviews, 1, 59–83.CrossRefGoogle Scholar
  7. Brown, I. D. (1976) On the geometry of O-H …O hydrogen bonds. Acta Crystallographica, A32, 24–31.Google Scholar
  8. Brown, I. D. (1981) The bond-valence method: an empirical approach to chemical structure and bonding, in Structure and Bonding in Crystals II, (eds M. O’Keeffe and A. Navrotsky), Academic Press, New York, pp. 1–30.Google Scholar
  9. Brown, I. D. and Shannon, R. D. (1973) Empirical bond-strength-bond-length curves for oxides. Acta Crystallographica, A29, 266–82.Google Scholar
  10. Burdett, J. K. (1980) Molecular Shapes, John Wiley, New York.Google Scholar
  11. Burdett, J. K. (1986) Structural-electronic relationships in the solid state, in Molecular Structure and Energetics, (eds A. Greenberg and J. F. Liebman), VCH Publishers, Boca Raton, pp. 209–75.Google Scholar
  12. Burdett, J. K. (1987) Some structural problems examined using the method of moments. Structure and Bonding, 65, 29–89.CrossRefGoogle Scholar
  13. Burdett, J. K. and Hawthorne, F. C. (1992) An orbital approach to the theory of bond-valence. American Mineralogist, (submitted).Google Scholar
  14. Burdett, J. K. and McLarnan, T. M. (1984) An orbital interpretation of Pauling’s rules. American Mineralogist, 69, 601–21.Google Scholar
  15. Burdett, J. K., Lee, S., and Sha, W. C. (1984) The method of moments and the energy levels of molecules and solids. Croatia Chemica Acta, 57, 1193–216.Google Scholar
  16. Cerny, P. and Hawthorne, F. C. (1976) Refractive indices versus alkali contents in beryl: general limitations and applications to some pegmatite types. Canadian Mineralogist, 14, 491–7.Google Scholar
  17. Christ, C. L. (1960) Crystal chemistry and systematic classification of hydrated borate minerals. American Mineralogist, 45, 334–40.Google Scholar
  18. Christ, C. L. and Clark, J. R. (1977) A crystal-chemical classification of borate structures with emphasis on hydrated borates. Physics and Chemistry of Minerals, 2, 59–87.CrossRefGoogle Scholar
  19. Cromer, D. T., Kay, M. I., and Larsen, A. C. (1967) Refinement of the alum structures, II. X-ray and neutron diffraction of NaAl(SO4)2·12H2O. Acta Crystallographica, 22, 182–7.CrossRefGoogle Scholar
  20. Ferraris, G. and Franchini-Angela, M. (1972) Survey of the geometry and environment of water molecules in crystalline hydrates studied by neutron diffraction. Acta Crystallographica, B28, 3572–83.Google Scholar
  21. Fisher, D. J. (1958) Pegmatite phosphates and their problems. American Mineralogist, 43, 181–207.Google Scholar
  22. Gibbs, G. V. (1982) Molecules as models for bonding in silicates. American Mineralogist, 67, 421–50.Google Scholar
  23. Gibbs, G. V., Hamil, M. M., and Louisnathan, S. J. et al. (1972) Correlations between Si-O bond length, Si-O-Si angle and bond-overlap populations calculated using extended Huckel molecular orbital theory. American Mineralogist, 57, 1578–613.Google Scholar
  24. Hawthorne, F. C. (1979) The crystal structure of morinite. Canadian Mineralogist, 17, 93–102.Google Scholar
  25. Hawthorne, F. C. (1983) Graphical enumeration of polyhedral clusters. Acta Crystallographica, A39, 724–36.Google Scholar
  26. Hawthorne, F. C. (1984a) The crystal structure of stenonite and the classification of the aluminofluoride minerals. Canadian Mineralogist, 22, 245–51.Google Scholar
  27. Hawthorne, F. C. (1984b) The crystal structure of mandarinoite, Fe23+Se3O9·6H2O. Canadian Mineralogist, 22, 475–80.Google Scholar
  28. Hawthorne, F. C. (1985a) Towards a structural classification of minerals: the viMivT2On minerals. American Mineralogist, 70, 455–73.Google Scholar
  29. Hawthorne, F. C. (1985b) The crystal structure of stringhamite. Tschermaks Mineralogische und Petrographische Mitteilungen, 34, 15–24.CrossRefGoogle Scholar
  30. Hawthorne, F. C. (1986) Structural hierarchy in viMxiiiTyOz minerals. Canadian Mineralogist, 24, 625–42Google Scholar
  31. Hawthorne, F. C. (1990) Structural hierarchy in M[6]T[4]Ox minerals. Zeitschrifte für Kristallographie, 192, 1–52.Google Scholar
  32. Hawthorne, F. C. and Cerny, P. (1977) The alkali-metal positions in Cs-Li beryl. Canadian Mineralogist, 15, 414–21.Google Scholar
  33. Hawthorne, F. C. and Ferguson, R. B. (1975a) Anhydrous sulphates: I. Refinement of the crystal structure of celestite, with an appendix on the structure of thenardite. Canadian Mineralogist, 13, 181–7.Google Scholar
  34. Hawthorne, F. C. and Ferguson, R. B. (1975b) Anhydrous sulphates: II. Refinement of the crystal structure of anhydrite. Canadian Mineralogist, 13, 181–7.Google Scholar
  35. Hoffman, R. (1988) Solids and Surfaces: A Chemist’s view of Bonding in Extended Structures, VCH Publishers, New York.Google Scholar
  36. Liebau, F. (1985) Structural Chemistry of Silicates, Springer-Verlag, Berlin.Google Scholar
  37. Mereiter, K. (1974) Die Kristallstruktur von Rhomboklas, H5O2{Fe[SO4]2·2H2O}-. Tschermaks Mineralogische und Petrographische Mitteilungen, 21, 216–32.CrossRefGoogle Scholar
  38. Moore, P. B. (1970a) Structural hierarchies among minerals containing octahedrally coordinating oxygen: I. Stereoisomerism among corner-sharing octahedral and tetrahedral chains. Neues Jahrbuch fur Mineralogie Monatschefte, pp. 163–73.Google Scholar
  39. Moore, P. B. (1970b) Crystal chemistry of the basic iron phosphates. American Mineralogist, 55, 135–69.Google Scholar
  40. Moore, P. B. (1973) Pegmatite phosphates: mineralogy and crystal chemistry. Mineralogical, Record, 4, 103–30.Google Scholar
  41. Moore, P. B. (1974) Structural hierarchies among minerals containing octahedrally coordinating oxygen: II. Systematic retrieval and classification of octahedral edge-sharing clusters: an epistemological approach. Neues Jahrbuch für Mineralogie Abhandlungen 120, 205–27.Google Scholar
  42. Moore, P. B. (1975) Laueite, pseudolaueite, stewartite and metavauxite: a study in combinatorial polymorphism. Neues Jahrbuch für Mineralogie Abhandlungen 123, 148–59.Google Scholar
  43. Moore, P. B. (1981) Complex crystal structures related to glaserite, K3Na(SO4)2: evidence for very dense packings among oxysalts. Bulletin de la Societe francaise Mineralogie et Cristallographie 104, 536–47.Google Scholar
  44. Moore, P. B. (1982) Pegmatite minerals of P(V) and B(III). Mineralogical Association of Canada Short Course, 8, 267–91.Google Scholar
  45. Moore, P. B. (1984) Crystallochemical aspects of the phosphate minerals, in Phosphate Minerals, (eds J. O. Niagru and P. B. Moore), Springer-Verlag, Berlin, pp. 155–170.Google Scholar
  46. Pabst, A. (1950) A structural classification of fluoaluminates. American Mineralogist, 35, 149–65.Google Scholar
  47. Pauling, L. (1929) The principles determining the structure of complex ionic crystals. Journal of the American Chemical Society, 51, 1010–26.CrossRefGoogle Scholar
  48. Pauling, L. (1960) The Nature of the Chemical Bond, 3rd edn, Cornell University Press, Ithaca, New York.Google Scholar
  49. Ripmeester, J. A., Ratcliffe, C. I., and Dutrizac, J. E. et al. (1986) Hydronium ion in the alunitejarosite group. Canadian Mineralogist, 24, 435–47.Google Scholar
  50. Scordari, F. (1980) Structural considerations of some natural and artificial iron hydrated sulphates. Mineralogical Magazine, 43, 669–73.CrossRefGoogle Scholar
  51. Scordari, F. (1981) Crystal chemical implications on some alkali hydrated sulphates. Tschermaks Mineralogische und Petrographische Mitteilungen, 28, 207–22.CrossRefGoogle Scholar
  52. Shannon, R. D. (1975) Systematic studies of interatomic distances in oxides, in The Physics and Chemistry of Minerals and Rocks, (ed. R. G. J. Sterns), John Wiley & Sons, London, pp. 403–31.Google Scholar
  53. Shannon, R. D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751–67.Google Scholar
  54. Sutor, D. J. (1967) The crystal and molecular structure of newberyite, MgHPC4·3H2O. Acta Crystallographica, 23, 418–22.CrossRefGoogle Scholar
  55. Tossell, J. A. and Gibbs, G. V. (1977) Molecular orbital studies of geometries and spectra of minerals and inorganic compounds. Physics and Chemistry of Minerals, 2, 21–57.CrossRefGoogle Scholar
  56. Trinajstic, N. (1983) Chemical Graph Theory, vol. I, CRC Press, Boca Raton.Google Scholar
  57. Ziman, J. (1965) Principles of the Theory of Solids, Cambridge University Press, Cambridge.Google Scholar
  58. Zoltai, T. (1960) Classification of silicates and other minerals with tetrahedral structures. American Mineralogist, 45, 960–73.Google Scholar

Copyright information

© Geoffrey D. Price, Nancy L. Ross and the contributors 1992

Authors and Affiliations

  • Frank C. Hawthorne
    • 1
  1. 1.Department of Geological SciencesUniversity of ManitobaCanada

Personalised recommendations