Skip to main content

Bond topology, bond valence and structure stability

  • Chapter
The Stability of Minerals

Part of the book series: The Mineralogical Society Series ((MIBS,volume 3))

  • 311 Accesses

Abstract

There are approximately 3500 known minerals, varying from the simple (native iron) to the complex (mcgovernite has approximately 1200 atoms in its unit cell) and spanning a wide range in bond type, from metallic (native gold) through ‘covalent’ (pyrite), to ‘ionic’ (halite). Most of us unconsciously divide the minerals into two groups: rock-forming and other. The rock-forming minerals are quantitatively dominant but numerically quite minor, whereas the other minerals are the reverse. Although this may seem a rather frivolous basis for such a division, there are actually some fairly important features to it that bear further examination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akao, M. and Iwai S. (1977) The hydrogen bonding of artinite. Acta Crystallographica B33, 3951–3.

    Google Scholar 

  • Albright, T. A., Burdett, J. K., and Whangbo, M. H. (1985) Orbital Interactions in Chemistry, Wiley-Interscience, New York.

    Google Scholar 

  • Allmann, R. (1975) Beziehungen zwischen Bindungslangen und Bindungsstarken in Oxidstrukturen. Monatschefte für Chemie 106, 779–93.

    Article  Google Scholar 

  • Baur, W. H. (1970) Bond length variation and distorted coordination polyhedra in inorganic crystals. Transactions of the American Crystallographic Association, 6, 129–55.

    Google Scholar 

  • Baur, W. H. (1971) The prediction of bond length variations in silicon-oxygen bonds. American Mineralogist, 56, 1573–99.

    Google Scholar 

  • Baur, W. H. (1987) Effective ionic radii in nitrides. Crystallography Reviews, 1, 59–83.

    Article  Google Scholar 

  • Brown, I. D. (1976) On the geometry of O-H …O hydrogen bonds. Acta Crystallographica, A32, 24–31.

    Google Scholar 

  • Brown, I. D. (1981) The bond-valence method: an empirical approach to chemical structure and bonding, in Structure and Bonding in Crystals II, (eds M. O’Keeffe and A. Navrotsky), Academic Press, New York, pp. 1–30.

    Google Scholar 

  • Brown, I. D. and Shannon, R. D. (1973) Empirical bond-strength-bond-length curves for oxides. Acta Crystallographica, A29, 266–82.

    Google Scholar 

  • Burdett, J. K. (1980) Molecular Shapes, John Wiley, New York.

    Google Scholar 

  • Burdett, J. K. (1986) Structural-electronic relationships in the solid state, in Molecular Structure and Energetics, (eds A. Greenberg and J. F. Liebman), VCH Publishers, Boca Raton, pp. 209–75.

    Google Scholar 

  • Burdett, J. K. (1987) Some structural problems examined using the method of moments. Structure and Bonding, 65, 29–89.

    Article  Google Scholar 

  • Burdett, J. K. and Hawthorne, F. C. (1992) An orbital approach to the theory of bond-valence. American Mineralogist, (submitted).

    Google Scholar 

  • Burdett, J. K. and McLarnan, T. M. (1984) An orbital interpretation of Pauling’s rules. American Mineralogist, 69, 601–21.

    Google Scholar 

  • Burdett, J. K., Lee, S., and Sha, W. C. (1984) The method of moments and the energy levels of molecules and solids. Croatia Chemica Acta, 57, 1193–216.

    Google Scholar 

  • Cerny, P. and Hawthorne, F. C. (1976) Refractive indices versus alkali contents in beryl: general limitations and applications to some pegmatite types. Canadian Mineralogist, 14, 491–7.

    Google Scholar 

  • Christ, C. L. (1960) Crystal chemistry and systematic classification of hydrated borate minerals. American Mineralogist, 45, 334–40.

    Google Scholar 

  • Christ, C. L. and Clark, J. R. (1977) A crystal-chemical classification of borate structures with emphasis on hydrated borates. Physics and Chemistry of Minerals, 2, 59–87.

    Article  Google Scholar 

  • Cromer, D. T., Kay, M. I., and Larsen, A. C. (1967) Refinement of the alum structures, II. X-ray and neutron diffraction of NaAl(SO4)2·12H2O. Acta Crystallographica, 22, 182–7.

    Article  Google Scholar 

  • Ferraris, G. and Franchini-Angela, M. (1972) Survey of the geometry and environment of water molecules in crystalline hydrates studied by neutron diffraction. Acta Crystallographica, B28, 3572–83.

    Google Scholar 

  • Fisher, D. J. (1958) Pegmatite phosphates and their problems. American Mineralogist, 43, 181–207.

    Google Scholar 

  • Gibbs, G. V. (1982) Molecules as models for bonding in silicates. American Mineralogist, 67, 421–50.

    Google Scholar 

  • Gibbs, G. V., Hamil, M. M., and Louisnathan, S. J. et al. (1972) Correlations between Si-O bond length, Si-O-Si angle and bond-overlap populations calculated using extended Huckel molecular orbital theory. American Mineralogist, 57, 1578–613.

    Google Scholar 

  • Hawthorne, F. C. (1979) The crystal structure of morinite. Canadian Mineralogist, 17, 93–102.

    Google Scholar 

  • Hawthorne, F. C. (1983) Graphical enumeration of polyhedral clusters. Acta Crystallographica, A39, 724–36.

    Google Scholar 

  • Hawthorne, F. C. (1984a) The crystal structure of stenonite and the classification of the aluminofluoride minerals. Canadian Mineralogist, 22, 245–51.

    Google Scholar 

  • Hawthorne, F. C. (1984b) The crystal structure of mandarinoite, Fe 3+2 Se3O9·6H2O. Canadian Mineralogist, 22, 475–80.

    Google Scholar 

  • Hawthorne, F. C. (1985a) Towards a structural classification of minerals: the viMivT2On minerals. American Mineralogist, 70, 455–73.

    Google Scholar 

  • Hawthorne, F. C. (1985b) The crystal structure of stringhamite. Tschermaks Mineralogische und Petrographische Mitteilungen, 34, 15–24.

    Article  Google Scholar 

  • Hawthorne, F. C. (1986) Structural hierarchy in viM iiix TyOz minerals. Canadian Mineralogist, 24, 625–42

    Google Scholar 

  • Hawthorne, F. C. (1990) Structural hierarchy in M[6]T[4]Ox minerals. Zeitschrifte für Kristallographie, 192, 1–52.

    Google Scholar 

  • Hawthorne, F. C. and Cerny, P. (1977) The alkali-metal positions in Cs-Li beryl. Canadian Mineralogist, 15, 414–21.

    Google Scholar 

  • Hawthorne, F. C. and Ferguson, R. B. (1975a) Anhydrous sulphates: I. Refinement of the crystal structure of celestite, with an appendix on the structure of thenardite. Canadian Mineralogist, 13, 181–7.

    Google Scholar 

  • Hawthorne, F. C. and Ferguson, R. B. (1975b) Anhydrous sulphates: II. Refinement of the crystal structure of anhydrite. Canadian Mineralogist, 13, 181–7.

    Google Scholar 

  • Hoffman, R. (1988) Solids and Surfaces: A Chemist’s view of Bonding in Extended Structures, VCH Publishers, New York.

    Google Scholar 

  • Liebau, F. (1985) Structural Chemistry of Silicates, Springer-Verlag, Berlin.

    Google Scholar 

  • Mereiter, K. (1974) Die Kristallstruktur von Rhomboklas, H5O2{Fe[SO4]2·2H2O}-. Tschermaks Mineralogische und Petrographische Mitteilungen, 21, 216–32.

    Article  Google Scholar 

  • Moore, P. B. (1970a) Structural hierarchies among minerals containing octahedrally coordinating oxygen: I. Stereoisomerism among corner-sharing octahedral and tetrahedral chains. Neues Jahrbuch fur Mineralogie Monatschefte, pp. 163–73.

    Google Scholar 

  • Moore, P. B. (1970b) Crystal chemistry of the basic iron phosphates. American Mineralogist, 55, 135–69.

    Google Scholar 

  • Moore, P. B. (1973) Pegmatite phosphates: mineralogy and crystal chemistry. Mineralogical, Record, 4, 103–30.

    Google Scholar 

  • Moore, P. B. (1974) Structural hierarchies among minerals containing octahedrally coordinating oxygen: II. Systematic retrieval and classification of octahedral edge-sharing clusters: an epistemological approach. Neues Jahrbuch für Mineralogie Abhandlungen 120, 205–27.

    Google Scholar 

  • Moore, P. B. (1975) Laueite, pseudolaueite, stewartite and metavauxite: a study in combinatorial polymorphism. Neues Jahrbuch für Mineralogie Abhandlungen 123, 148–59.

    Google Scholar 

  • Moore, P. B. (1981) Complex crystal structures related to glaserite, K3Na(SO4)2: evidence for very dense packings among oxysalts. Bulletin de la Societe francaise Mineralogie et Cristallographie 104, 536–47.

    Google Scholar 

  • Moore, P. B. (1982) Pegmatite minerals of P(V) and B(III). Mineralogical Association of Canada Short Course, 8, 267–91.

    Google Scholar 

  • Moore, P. B. (1984) Crystallochemical aspects of the phosphate minerals, in Phosphate Minerals, (eds J. O. Niagru and P. B. Moore), Springer-Verlag, Berlin, pp. 155–170.

    Google Scholar 

  • Pabst, A. (1950) A structural classification of fluoaluminates. American Mineralogist, 35, 149–65.

    Google Scholar 

  • Pauling, L. (1929) The principles determining the structure of complex ionic crystals. Journal of the American Chemical Society, 51, 1010–26.

    Article  Google Scholar 

  • Pauling, L. (1960) The Nature of the Chemical Bond, 3rd edn, Cornell University Press, Ithaca, New York.

    Google Scholar 

  • Ripmeester, J. A., Ratcliffe, C. I., and Dutrizac, J. E. et al. (1986) Hydronium ion in the alunitejarosite group. Canadian Mineralogist, 24, 435–47.

    Google Scholar 

  • Scordari, F. (1980) Structural considerations of some natural and artificial iron hydrated sulphates. Mineralogical Magazine, 43, 669–73.

    Article  Google Scholar 

  • Scordari, F. (1981) Crystal chemical implications on some alkali hydrated sulphates. Tschermaks Mineralogische und Petrographische Mitteilungen, 28, 207–22.

    Article  Google Scholar 

  • Shannon, R. D. (1975) Systematic studies of interatomic distances in oxides, in The Physics and Chemistry of Minerals and Rocks, (ed. R. G. J. Sterns), John Wiley & Sons, London, pp. 403–31.

    Google Scholar 

  • Shannon, R. D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751–67.

    Google Scholar 

  • Sutor, D. J. (1967) The crystal and molecular structure of newberyite, MgHPC4·3H2O. Acta Crystallographica, 23, 418–22.

    Article  Google Scholar 

  • Tossell, J. A. and Gibbs, G. V. (1977) Molecular orbital studies of geometries and spectra of minerals and inorganic compounds. Physics and Chemistry of Minerals, 2, 21–57.

    Article  Google Scholar 

  • Trinajstic, N. (1983) Chemical Graph Theory, vol. I, CRC Press, Boca Raton.

    Google Scholar 

  • Ziman, J. (1965) Principles of the Theory of Solids, Cambridge University Press, Cambridge.

    Google Scholar 

  • Zoltai, T. (1960) Classification of silicates and other minerals with tetrahedral structures. American Mineralogist, 45, 960–73.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Geoffrey D. Price, Nancy L. Ross and the contributors

About this chapter

Cite this chapter

Hawthorne, F.C. (1992). Bond topology, bond valence and structure stability. In: Price, G.D., Ross, N.L. (eds) The Stability of Minerals. The Mineralogical Society Series, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-0-585-27578-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-27578-9_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-412-44150-9

  • Online ISBN: 978-0-585-27578-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics