Skip to main content

The stability of minerals: an introduction

  • Chapter
The Stability of Minerals

Part of the book series: The Mineralogical Society Series ((MIBS,volume 3))

  • 308 Accesses

Abstract

Historically, the elucidation of the fundamental factors that determine the stability of crystal structures has been one of the primary objectives of crystallographic and mineralogical research. The fact that this not insubstantial goal has yet to be fully attained was noted recently by the editor of Nature (Maddox, 1988), who went as far as to write:

One of the continuing scandals in the physical sciences is that it remains in general impossible to predict the structure of even the simplest crystalline solids from a knowledge of their chemical composition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, D. M. (1974) Inorganic Solids; an Introduction to Concepts in Solid-state Structural Chemistry, John Wiley & Sons, London.

    Google Scholar 

  • Ahrens, L. H. (1952) The use of ionization potentials; Part 1. Ionic radii of the elements. Geochimica et Cosmochimica Ada, 2, 155–69.

    Article  Google Scholar 

  • Akaogi, M., Ross, N.L., McMillan, P. et al. (1984) The Mg2SiO4 polymorphs (olivine, modified spinel and spinel)-thermodynamic properties from oxide melt calorimetry, phase relations, and models of lattice vibrations. American Mineralogist, 69, 499–512.

    Google Scholar 

  • Akporiaye, D. E. and Price, G. D. (1989) Systematic enumeration of zeolite frameworks. Zeolites, 9, 23–32.

    Article  Google Scholar 

  • Andreoni, W., Baldereschi, A., Biémont, E. et al. (1979) Hard-core pseudopotential radii and structural maps of solids. Physical Review, B20, 4814–23.

    Google Scholar 

  • Baur, W. H. (1970) Bond length variation and distorted coordination polyhedra in inorganic crystals. Transactions of the American Crystallographic Association, 6, 129–55.

    Google Scholar 

  • Bertram, U. C., Heine, V., Jones, I. L. et al (1990) Computer modelling of Al/Si ordering in sillimanite. Physics and Chemistry of Minerals, 17, 326–33.

    Article  Google Scholar 

  • Bloch, A. N. and Schatteman, G. C. (1981) Quantum-defect orbital radii and the structural chemistry of simple solids, in Structure and Bonding in Crystals, vol. 1, (eds M. O’Keeffe and A. Navrotsky) Academic Press, New York, pp. 49–72.

    Google Scholar 

  • Brown, I. D. (1981) The bond-valence method: an empirical approach to chemical structure and bonding, in Structure and Bonding in Crystals, vol. 2, (eds M. O’Keeffe and A. Navrotsky), Academic Press, New York, pp. 1–30.

    Google Scholar 

  • Brown, I. D. and Shannon, R. D. (1973) Empirical bond-strength-bond-length curves for oxides. Acta Crystallographica, A29, 266–82.

    Google Scholar 

  • Burdett, J. K. (1980) Molecular shapes, John Wiley & Sons, New York.

    Google Scholar 

  • Burdett, J. K. (1988) Perspectives in structural chemistry. Chemical Review, 88, 3–30.

    Article  Google Scholar 

  • Burdett, J.K., Price, G. D., and Price, S. L. (1981) Factors influencing solid-state structure-an analysis using pseudopotential radii structural maps. Physical Review, B24, 2903–12.

    Google Scholar 

  • Carpenter, M. A. (1985) Order-disorder transformations in mineral solid solutions, in Reviews in Mineralogy vol. 4: Microscopic to Macroscopic, Atomic Environments to Mineral Thermodynamics, (eds S. W. Kieffer and A. Navrotsky), Mineralogical Society of America, pp. 187–223.

    Google Scholar 

  • Catlow, C. R. A. and Price, G. D. (1990) Computer modelling of solid-state inorganic materials. Nature, 347, 243–8.

    Article  Google Scholar 

  • Chelikowsky, J. R. and Phillips, J. C. (1978) Quantum-defect theory of heats of formation and structural transition energies of liquid and solid simple metal alloys and compounds. Physical Review, B17, 2453–77.

    Google Scholar 

  • Cheng, C., Heine, V. and Jones, I. L. (1990) SiC polytypes as equilibrium structures. Journal of Physics: Condensed Matter, 2, 5097–113.

    Article  Google Scholar 

  • Cohen, M. L. (1989) Novel materials from theory. Nature, 338, 291–2.

    Article  Google Scholar 

  • Fumi, F. G. and Tosi, M. P. (1964) Ionic sizes and Born repulsive parameters in the NaCl-type alkali halides; I. The Huggins-Mayer and Pauling forms. Journal of Physics and Chemistry of Solids, 25, 31–43.

    Article  Google Scholar 

  • Gibbs, G. V. (1982) Molecules as models for bonding in silicates. American Mineralogist, 67, 421–50.

    Google Scholar 

  • Gibbs, G. V., Finger, L. W. and Boisen, M. B. (1987) Molecular mimicry of the bond length-bond strength variations in oxide crystals. Physics and Chemistry of Minerals, 14, 327–31.

    Article  Google Scholar 

  • Goldschmidt, V. M. (1927) Kristallbau und Chemische Zusammensetzung. Berichte der Deutschen Chemischen Gesellschaft, 60, 1263–96.

    Article  Google Scholar 

  • Goldschmidt, V. M. (1929) Crystal structure and chemical constitution. Transactions of the Faraday Society, 25, 253–83.

    Article  Google Scholar 

  • Gourary, B. S. and Adrian, F. J. (1960) Wave functions for electron-excess color centers in alkali halide crystals. Solid State Physics, 10, 127–247.

    Article  Google Scholar 

  • Haydock, R., Inglesfield, J. E. and Pendry, J. B. (eds) (1991) Bonding and Structure of Solids, The Royal Society, London.

    Google Scholar 

  • Hawthorne, F. C. (1990) Crystals from first principles. Nature, 345, 297.

    Article  Google Scholar 

  • Hazen, R. M. and Finger, L. W. (1979) Bulk modulus-volume relationship for cation-anion polyhedra. Journal of Geophysical Research, 84, 6723–8.

    Google Scholar 

  • Hume-Rothery, W. (1963) Electrons, Atoms, Metals and Alloys, 3rd edn, Dover, New York.

    Google Scholar 

  • Hyde, B. G. and Andersson, S. (1989) Inorganic Crystal Structures, John Wiley & Sons, New York.

    Google Scholar 

  • Jones, I. L., Heine, V., Leslie, M. et al. (1990) A new approach to simulating disorder in crystals. Physics and Chemistry of Minerals, 17, 238–45.

    Article  Google Scholar 

  • Kieffer, S. W. and Navrotsky, A. (eds) (1985) Reviews in Mineralogy, vol. 14: Microscopic to Macroscopic, Atomic Environments to Mineral Thermodynamics, Mineralogical Society of America.

    Google Scholar 

  • Laves, F. (1955) Crystal structure and atomic size, in Theory of Alloy Phases, American Society for Metals, Cleveland, pp. 124–98.

    Google Scholar 

  • Maddox, J. (1988) Crystals from first principles. Nature, 335, 201.

    Article  Google Scholar 

  • Mooser, E. and Pearson, W. B. (1959) On the crystal chemistry of normal valence compounds. Ada Crystallographica, 12, 1015–22.

    Article  Google Scholar 

  • O’Keeffe, M. (1981) Some aspects of the ionic model of crystals, in Structure and Bonding in Crystals, Vol. 1 (eds M. O’Keeffe and A. Navrotsky), Academic Press, New York, pp. 299–322.

    Google Scholar 

  • O’Keeffe, M. and Brese, N. E. (1991) Atom sizes and bond lengths in molecules and crystals. Journal of the American Chemical Society, 113, 3226–9.

    Article  Google Scholar 

  • O’Keeffe, M. and Hyde, B. G. (1981a) Why olivine transforms to spinel at high pressure. Nature, 293, 727–8.

    Article  Google Scholar 

  • O’Keeffe, M. and Hyde, B. G. (1981b) The role of nonbonded forces in crystals, in Structure and Bonding in Crystals, vol. 1, (eds M. O’Keeffe and A. Navrotsky), Academic Press, New York, pp. 227–54.

    Google Scholar 

  • O’Keeffe, M. and Hyde, B. G. (1982) Anion coordination and cation packing in oxides. Journal of Solid State Chemistry, 44, 24–31.

    Article  Google Scholar 

  • O’Keeffe, M. and Hyde B. G. (1985) An alternative approach to non-molecular crystal structures with emphasis on the arrangements of cations. Structure and Bonding (Berlin), 61, 77–144.

    Google Scholar 

  • Parthé, E. (1961) Space filling of crystal structures. A contribution to the graphical presentation of geometrical relationships in simple crystal structures. Zeitschrift für Kristallographie, 115, 52–79.

    Article  Google Scholar 

  • Pauling, L. (1927) The sizes of ions and the structure of ionic crystals. Journal of the American Chemical Society, 49, 765–90.

    Article  Google Scholar 

  • Pauling, L. (1929) The principles determining the structure of complex ionic crystals. Journal of the American Chemical Society, 51, 1010–26.

    Article  Google Scholar 

  • Pauling, L. (1960) The Nature of the Chemical Bond, 3rd edn, Cornell University Press, Ithaca.

    Google Scholar 

  • Phillips, J. C. (1970) Ionicity of the chemical bond in crystals. Reviews of Modern Physics, 42, 317–56.

    Article  Google Scholar 

  • Phillips, J. C. and Van Vechten, J. A. (1969) Dielectric classification of crystal structures, ionization potentials, and band structures. Physical Review Letters, 22, 705–8.

    Article  Google Scholar 

  • Phillips, J. C. and Van Vechten, J. A. (1970) Spectroscopic analysis of cohesive energies and heats of formation of tetrahedrally coordinated semiconductors. Physical Review, B2, 2147–60.

    Google Scholar 

  • Prewitt, C. T. (1982) Size and compressibility of ions at high pressure, in High-pressure Research in Geophysics, (eds S. Akimoto and M. H. Manghnani), D. Reidel, Dordrecht, Boston, London, pp. 433–8.

    Google Scholar 

  • Price, G. D. and Yeomans J. M. (1986) A model for polysomatism. Mineralogical Magazine, 50, 149–56.

    Article  Google Scholar 

  • Price, G. D. and Yeomans, J. M. (1987) Competing interactions and the origins of polytypism, in Competing Interactions and Microstructures: Statics and Dynamics, (eds R. LeSar, A. Bishop, and R. Heffner), Springer-Verlag, Berlin, pp. 60–73.

    Google Scholar 

  • Price, G. D., Parker, S. C. and Leslie, M. (1987) The lattice dynamics and thermodynamics of the Mg2SiO4 polymorphs. Physics and Chemistry of Minerals, 15, 181–90.

    Article  Google Scholar 

  • Price, G. D., Price S. L. and Burdett, J. K. (1982) The factors influencing cation site-preferences in spinels, a new Mendeleyvian approach. Physics and Chemistry of Minerals, 8, 69–76.

    Article  Google Scholar 

  • Salje, E. (1988) Kinetic rate laws as derived from order parameter theory I: theoretical concepts. Physics and Chemistry of Minerals, 15, 336–48.

    Article  Google Scholar 

  • Sasaki, S., Fujino, F. and Takeuchi, Y. (1979) X-ray determination of electron-density distributions in oxides, MgO, MnO, CoO, and NiO, and atomic scattering factors of their constituent atoms. Proceedings of the Japanese Academy, 55, 43–8.

    Google Scholar 

  • Shannon, R. D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Ada Crystallographka, A32, 751–67.

    Google Scholar 

  • Shannon, R.D. (1981) Bond distances in sulfides and a preliminary table of sulfide crystal radii, in Structure and Bonding in Crystals, vol. 2, (eds M. O’Keeffe and A. Navrotsky), Academic Press, New York, pp. 53–70.

    Google Scholar 

  • Shannon, R. D. and Prewitt, C. T. (1969) Effective ionic radii in oxides and fluorides. Acta Crystallographka, B25, 925–46.

    Google Scholar 

  • Slater, J. C. (1964) Atomic radii in crystals. Journal of Chemical Physics, 41, 3199–204.

    Article  Google Scholar 

  • Smith, J. V. (1977) Enumeration of 4-connected 3-dimensional nets and classification of framework silicates, I. Perpendicular linkage from simple hexagonal net. American Mineralogist, 62, 703–9.

    Google Scholar 

  • Smith, J. V. (1978) Enumeration of 4-connected 3-dimensional nets and classification of frameworks silicates, II. Perpendicular and near-perpendicular linkages from 4.82, 3.122, and 4.6.12 nets. American Mineralogist, 63, 960–9.

    Google Scholar 

  • Smith, J. V. (1979) Enumeration of 4-connected 3-dimensional nets and classification of framework silicates, III. Combination of helix, and zigzag, crankshaft and saw chains with simple 2D nets. American Mineralogist, 64, 551–62.

    Google Scholar 

  • Stewart, R. F. and Spackman, M. A. (1981) Charge density distributions, in Structure and Bonding in Crystals, vol. 1, (eds M. O’Keeffe and A. Navrotsky), Academic Press, New York, 279–298.

    Google Scholar 

  • St. John, J. and Bloch, A. N. (1974) Quantum-defect electronegativity scale for non-transition elements. Physical Review Letters, 33, 1095–8.

    Article  Google Scholar 

  • Thompson, A. B. (1967) Thermodynamic properties of simple solutions, in Researches in Geochemistry, vol. 2, (ed P. H. Abelson) John Wiley, New York, pp. 340–61.

    Google Scholar 

  • Villars, P. (1983) A three dimensional structural stability diagram for 998 binary AB intermetallic compounds. Journal of Less-Common Metals, 92, 215–38.

    Article  Google Scholar 

  • Villars, P. (1984a) A three dimensional structural stability diagram for 1011 binary AB2 intermetallic compounds. Journal of Less-Common Metals, 99, 33–43.

    Article  Google Scholar 

  • Villars, P. (1984b) Three dimensional structural stability for 648 binary AB3 and 389 A3B5 intermetallic compounds. Journal of Less-Common Metals, 102, 199–211.

    Article  Google Scholar 

  • Villars, P. (1985) A semiempirical approach to the prediction of compound formation for 3846 binary alloy systems. Journal of Less-Common Metals, 109, 93–115.

    Article  Google Scholar 

  • Wells, A. F. (1984) Structural inorganic chemistry, 5th edn, Oxford University Press, London.

    Google Scholar 

  • Wood, I. G. and Price, G. D. (1992) A simple, systematic method for the generation of periodic, 2-dimensional, 3-connected nets for the description of zeolite frameworks. Zeolites, 112, 320–327.

    Google Scholar 

  • Zunger, A. (1980) Systematization of the stable crystal structure of all AB-type binary compounds: a pseudopotential orbital-radii approach. Physical Review, B22, 5839–72.

    Google Scholar 

  • Zunger, A. (1981) A pseudopotential viewpoint of the electronic and structural properties of crystals, in Structure and Bonding in Crystals, vol. 1, (eds M. O’Keeffe and A. Navrotsky), Academic Press, New York, pp. 49–72.

    Google Scholar 

  • Zunger, A. and Cohen, M. L. (1979) First-principles non-local pseudopotential approach in the density-functional formalism: II. Application to electronic and structural properties of solids. Physical Review, B20, 4082–108.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Geoffrey D. Price, Nancy L. Ross and the contributors

About this chapter

Cite this chapter

Ross, N.L., Price, G.D. (1992). The stability of minerals: an introduction. In: Price, G.D., Ross, N.L. (eds) The Stability of Minerals. The Mineralogical Society Series, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-0-585-27578-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-27578-9_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-412-44150-9

  • Online ISBN: 978-0-585-27578-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics