Advertisement

The stability of minerals: an introduction

  • Nancy L. Ross
  • Geoffrey D. Price
Part of the The Mineralogical Society Series book series (MIBS, volume 3)

Abstract

Historically, the elucidation of the fundamental factors that determine the stability of crystal structures has been one of the primary objectives of crystallographic and mineralogical research. The fact that this not insubstantial goal has yet to be fully attained was noted recently by the editor of Nature (Maddox, 1988), who went as far as to write:

One of the continuing scandals in the physical sciences is that it remains in general impossible to predict the structure of even the simplest crystalline solids from a knowledge of their chemical composition.

Keywords

Valence Electron Mineral Stability Molar Free Energy Octahedral Interstice Formal Valence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, D. M. (1974) Inorganic Solids; an Introduction to Concepts in Solid-state Structural Chemistry, John Wiley & Sons, London.Google Scholar
  2. Ahrens, L. H. (1952) The use of ionization potentials; Part 1. Ionic radii of the elements. Geochimica et Cosmochimica Ada, 2, 155–69.CrossRefGoogle Scholar
  3. Akaogi, M., Ross, N.L., McMillan, P. et al. (1984) The Mg2SiO4 polymorphs (olivine, modified spinel and spinel)-thermodynamic properties from oxide melt calorimetry, phase relations, and models of lattice vibrations. American Mineralogist, 69, 499–512.Google Scholar
  4. Akporiaye, D. E. and Price, G. D. (1989) Systematic enumeration of zeolite frameworks. Zeolites, 9, 23–32.CrossRefGoogle Scholar
  5. Andreoni, W., Baldereschi, A., Biémont, E. et al. (1979) Hard-core pseudopotential radii and structural maps of solids. Physical Review, B20, 4814–23.Google Scholar
  6. Baur, W. H. (1970) Bond length variation and distorted coordination polyhedra in inorganic crystals. Transactions of the American Crystallographic Association, 6, 129–55.Google Scholar
  7. Bertram, U. C., Heine, V., Jones, I. L. et al (1990) Computer modelling of Al/Si ordering in sillimanite. Physics and Chemistry of Minerals, 17, 326–33.CrossRefGoogle Scholar
  8. Bloch, A. N. and Schatteman, G. C. (1981) Quantum-defect orbital radii and the structural chemistry of simple solids, in Structure and Bonding in Crystals, vol. 1, (eds M. O’Keeffe and A. Navrotsky) Academic Press, New York, pp. 49–72.Google Scholar
  9. Brown, I. D. (1981) The bond-valence method: an empirical approach to chemical structure and bonding, in Structure and Bonding in Crystals, vol. 2, (eds M. O’Keeffe and A. Navrotsky), Academic Press, New York, pp. 1–30.Google Scholar
  10. Brown, I. D. and Shannon, R. D. (1973) Empirical bond-strength-bond-length curves for oxides. Acta Crystallographica, A29, 266–82.Google Scholar
  11. Burdett, J. K. (1980) Molecular shapes, John Wiley & Sons, New York.Google Scholar
  12. Burdett, J. K. (1988) Perspectives in structural chemistry. Chemical Review, 88, 3–30.CrossRefGoogle Scholar
  13. Burdett, J.K., Price, G. D., and Price, S. L. (1981) Factors influencing solid-state structure-an analysis using pseudopotential radii structural maps. Physical Review, B24, 2903–12.Google Scholar
  14. Carpenter, M. A. (1985) Order-disorder transformations in mineral solid solutions, in Reviews in Mineralogy vol. 4: Microscopic to Macroscopic, Atomic Environments to Mineral Thermodynamics, (eds S. W. Kieffer and A. Navrotsky), Mineralogical Society of America, pp. 187–223.Google Scholar
  15. Catlow, C. R. A. and Price, G. D. (1990) Computer modelling of solid-state inorganic materials. Nature, 347, 243–8.CrossRefGoogle Scholar
  16. Chelikowsky, J. R. and Phillips, J. C. (1978) Quantum-defect theory of heats of formation and structural transition energies of liquid and solid simple metal alloys and compounds. Physical Review, B17, 2453–77.Google Scholar
  17. Cheng, C., Heine, V. and Jones, I. L. (1990) SiC polytypes as equilibrium structures. Journal of Physics: Condensed Matter, 2, 5097–113.CrossRefGoogle Scholar
  18. Cohen, M. L. (1989) Novel materials from theory. Nature, 338, 291–2.CrossRefGoogle Scholar
  19. Fumi, F. G. and Tosi, M. P. (1964) Ionic sizes and Born repulsive parameters in the NaCl-type alkali halides; I. The Huggins-Mayer and Pauling forms. Journal of Physics and Chemistry of Solids, 25, 31–43.CrossRefGoogle Scholar
  20. Gibbs, G. V. (1982) Molecules as models for bonding in silicates. American Mineralogist, 67, 421–50.Google Scholar
  21. Gibbs, G. V., Finger, L. W. and Boisen, M. B. (1987) Molecular mimicry of the bond length-bond strength variations in oxide crystals. Physics and Chemistry of Minerals, 14, 327–31.CrossRefGoogle Scholar
  22. Goldschmidt, V. M. (1927) Kristallbau und Chemische Zusammensetzung. Berichte der Deutschen Chemischen Gesellschaft, 60, 1263–96.CrossRefGoogle Scholar
  23. Goldschmidt, V. M. (1929) Crystal structure and chemical constitution. Transactions of the Faraday Society, 25, 253–83.CrossRefGoogle Scholar
  24. Gourary, B. S. and Adrian, F. J. (1960) Wave functions for electron-excess color centers in alkali halide crystals. Solid State Physics, 10, 127–247.CrossRefGoogle Scholar
  25. Haydock, R., Inglesfield, J. E. and Pendry, J. B. (eds) (1991) Bonding and Structure of Solids, The Royal Society, London.Google Scholar
  26. Hawthorne, F. C. (1990) Crystals from first principles. Nature, 345, 297.CrossRefGoogle Scholar
  27. Hazen, R. M. and Finger, L. W. (1979) Bulk modulus-volume relationship for cation-anion polyhedra. Journal of Geophysical Research, 84, 6723–8.Google Scholar
  28. Hume-Rothery, W. (1963) Electrons, Atoms, Metals and Alloys, 3rd edn, Dover, New York.Google Scholar
  29. Hyde, B. G. and Andersson, S. (1989) Inorganic Crystal Structures, John Wiley & Sons, New York.Google Scholar
  30. Jones, I. L., Heine, V., Leslie, M. et al. (1990) A new approach to simulating disorder in crystals. Physics and Chemistry of Minerals, 17, 238–45.CrossRefGoogle Scholar
  31. Kieffer, S. W. and Navrotsky, A. (eds) (1985) Reviews in Mineralogy, vol. 14: Microscopic to Macroscopic, Atomic Environments to Mineral Thermodynamics, Mineralogical Society of America.Google Scholar
  32. Laves, F. (1955) Crystal structure and atomic size, in Theory of Alloy Phases, American Society for Metals, Cleveland, pp. 124–98.Google Scholar
  33. Maddox, J. (1988) Crystals from first principles. Nature, 335, 201.CrossRefGoogle Scholar
  34. Mooser, E. and Pearson, W. B. (1959) On the crystal chemistry of normal valence compounds. Ada Crystallographica, 12, 1015–22.CrossRefGoogle Scholar
  35. O’Keeffe, M. (1981) Some aspects of the ionic model of crystals, in Structure and Bonding in Crystals, Vol. 1 (eds M. O’Keeffe and A. Navrotsky), Academic Press, New York, pp. 299–322.Google Scholar
  36. O’Keeffe, M. and Brese, N. E. (1991) Atom sizes and bond lengths in molecules and crystals. Journal of the American Chemical Society, 113, 3226–9.CrossRefGoogle Scholar
  37. O’Keeffe, M. and Hyde, B. G. (1981a) Why olivine transforms to spinel at high pressure. Nature, 293, 727–8.CrossRefGoogle Scholar
  38. O’Keeffe, M. and Hyde, B. G. (1981b) The role of nonbonded forces in crystals, in Structure and Bonding in Crystals, vol. 1, (eds M. O’Keeffe and A. Navrotsky), Academic Press, New York, pp. 227–54.Google Scholar
  39. O’Keeffe, M. and Hyde, B. G. (1982) Anion coordination and cation packing in oxides. Journal of Solid State Chemistry, 44, 24–31.CrossRefGoogle Scholar
  40. O’Keeffe, M. and Hyde B. G. (1985) An alternative approach to non-molecular crystal structures with emphasis on the arrangements of cations. Structure and Bonding (Berlin), 61, 77–144.Google Scholar
  41. Parthé, E. (1961) Space filling of crystal structures. A contribution to the graphical presentation of geometrical relationships in simple crystal structures. Zeitschrift für Kristallographie, 115, 52–79.CrossRefGoogle Scholar
  42. Pauling, L. (1927) The sizes of ions and the structure of ionic crystals. Journal of the American Chemical Society, 49, 765–90.CrossRefGoogle Scholar
  43. Pauling, L. (1929) The principles determining the structure of complex ionic crystals. Journal of the American Chemical Society, 51, 1010–26.CrossRefGoogle Scholar
  44. Pauling, L. (1960) The Nature of the Chemical Bond, 3rd edn, Cornell University Press, Ithaca.Google Scholar
  45. Phillips, J. C. (1970) Ionicity of the chemical bond in crystals. Reviews of Modern Physics, 42, 317–56.CrossRefGoogle Scholar
  46. Phillips, J. C. and Van Vechten, J. A. (1969) Dielectric classification of crystal structures, ionization potentials, and band structures. Physical Review Letters, 22, 705–8.CrossRefGoogle Scholar
  47. Phillips, J. C. and Van Vechten, J. A. (1970) Spectroscopic analysis of cohesive energies and heats of formation of tetrahedrally coordinated semiconductors. Physical Review, B2, 2147–60.Google Scholar
  48. Prewitt, C. T. (1982) Size and compressibility of ions at high pressure, in High-pressure Research in Geophysics, (eds S. Akimoto and M. H. Manghnani), D. Reidel, Dordrecht, Boston, London, pp. 433–8.Google Scholar
  49. Price, G. D. and Yeomans J. M. (1986) A model for polysomatism. Mineralogical Magazine, 50, 149–56.CrossRefGoogle Scholar
  50. Price, G. D. and Yeomans, J. M. (1987) Competing interactions and the origins of polytypism, in Competing Interactions and Microstructures: Statics and Dynamics, (eds R. LeSar, A. Bishop, and R. Heffner), Springer-Verlag, Berlin, pp. 60–73.Google Scholar
  51. Price, G. D., Parker, S. C. and Leslie, M. (1987) The lattice dynamics and thermodynamics of the Mg2SiO4 polymorphs. Physics and Chemistry of Minerals, 15, 181–90.CrossRefGoogle Scholar
  52. Price, G. D., Price S. L. and Burdett, J. K. (1982) The factors influencing cation site-preferences in spinels, a new Mendeleyvian approach. Physics and Chemistry of Minerals, 8, 69–76.CrossRefGoogle Scholar
  53. Salje, E. (1988) Kinetic rate laws as derived from order parameter theory I: theoretical concepts. Physics and Chemistry of Minerals, 15, 336–48.CrossRefGoogle Scholar
  54. Sasaki, S., Fujino, F. and Takeuchi, Y. (1979) X-ray determination of electron-density distributions in oxides, MgO, MnO, CoO, and NiO, and atomic scattering factors of their constituent atoms. Proceedings of the Japanese Academy, 55, 43–8.Google Scholar
  55. Shannon, R. D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Ada Crystallographka, A32, 751–67.Google Scholar
  56. Shannon, R.D. (1981) Bond distances in sulfides and a preliminary table of sulfide crystal radii, in Structure and Bonding in Crystals, vol. 2, (eds M. O’Keeffe and A. Navrotsky), Academic Press, New York, pp. 53–70.Google Scholar
  57. Shannon, R. D. and Prewitt, C. T. (1969) Effective ionic radii in oxides and fluorides. Acta Crystallographka, B25, 925–46.Google Scholar
  58. Slater, J. C. (1964) Atomic radii in crystals. Journal of Chemical Physics, 41, 3199–204.CrossRefGoogle Scholar
  59. Smith, J. V. (1977) Enumeration of 4-connected 3-dimensional nets and classification of framework silicates, I. Perpendicular linkage from simple hexagonal net. American Mineralogist, 62, 703–9.Google Scholar
  60. Smith, J. V. (1978) Enumeration of 4-connected 3-dimensional nets and classification of frameworks silicates, II. Perpendicular and near-perpendicular linkages from 4.82, 3.122, and 4.6.12 nets. American Mineralogist, 63, 960–9.Google Scholar
  61. Smith, J. V. (1979) Enumeration of 4-connected 3-dimensional nets and classification of framework silicates, III. Combination of helix, and zigzag, crankshaft and saw chains with simple 2D nets. American Mineralogist, 64, 551–62.Google Scholar
  62. Stewart, R. F. and Spackman, M. A. (1981) Charge density distributions, in Structure and Bonding in Crystals, vol. 1, (eds M. O’Keeffe and A. Navrotsky), Academic Press, New York, 279–298.Google Scholar
  63. St. John, J. and Bloch, A. N. (1974) Quantum-defect electronegativity scale for non-transition elements. Physical Review Letters, 33, 1095–8.CrossRefGoogle Scholar
  64. Thompson, A. B. (1967) Thermodynamic properties of simple solutions, in Researches in Geochemistry, vol. 2, (ed P. H. Abelson) John Wiley, New York, pp. 340–61.Google Scholar
  65. Villars, P. (1983) A three dimensional structural stability diagram for 998 binary AB intermetallic compounds. Journal of Less-Common Metals, 92, 215–38.CrossRefGoogle Scholar
  66. Villars, P. (1984a) A three dimensional structural stability diagram for 1011 binary AB2 intermetallic compounds. Journal of Less-Common Metals, 99, 33–43.CrossRefGoogle Scholar
  67. Villars, P. (1984b) Three dimensional structural stability for 648 binary AB3 and 389 A3B5 intermetallic compounds. Journal of Less-Common Metals, 102, 199–211.CrossRefGoogle Scholar
  68. Villars, P. (1985) A semiempirical approach to the prediction of compound formation for 3846 binary alloy systems. Journal of Less-Common Metals, 109, 93–115.CrossRefGoogle Scholar
  69. Wells, A. F. (1984) Structural inorganic chemistry, 5th edn, Oxford University Press, London.Google Scholar
  70. Wood, I. G. and Price, G. D. (1992) A simple, systematic method for the generation of periodic, 2-dimensional, 3-connected nets for the description of zeolite frameworks. Zeolites, 112, 320–327.Google Scholar
  71. Zunger, A. (1980) Systematization of the stable crystal structure of all AB-type binary compounds: a pseudopotential orbital-radii approach. Physical Review, B22, 5839–72.Google Scholar
  72. Zunger, A. (1981) A pseudopotential viewpoint of the electronic and structural properties of crystals, in Structure and Bonding in Crystals, vol. 1, (eds M. O’Keeffe and A. Navrotsky), Academic Press, New York, pp. 49–72.Google Scholar
  73. Zunger, A. and Cohen, M. L. (1979) First-principles non-local pseudopotential approach in the density-functional formalism: II. Application to electronic and structural properties of solids. Physical Review, B20, 4082–108.Google Scholar

Copyright information

© Geoffrey D. Price, Nancy L. Ross and the contributors 1992

Authors and Affiliations

  • Nancy L. Ross
    • 1
  • Geoffrey D. Price
    • 1
    • 2
  1. 1.Department of Geological SciencesUniversity College LondonUK
  2. 2.Department of GeologyBirkbeck CollegeLondonUK

Personalised recommendations