Advertisement

Abstract

The transport of solutes into and out of the cytoplasm across the plasma and assorted endomembranes of fungal cells is essential for their survival. These fluxes predominantly occur by means of transport proteins and are required for such processes as the uptake of nutrients, maintenance of turgor, cell expansion, development, the compartmentation of potentially cytotoxic ions and signal transduction.

Keywords

Saccharomyces Cerevisiae Amino Acid Transport Biological Chemistry Neurospora Crassa Vacuolar Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Addison, R. (1986) Primary structure of the Neurospora plasma membrane H+-ATPase deduced from the gene sequence. Homology to Na+/K+, Ca2+ and K+-ATPases. Journal of Biological Chemistry, 261, 14896–901.PubMedGoogle Scholar
  2. Addison, R. and Scarborough, G.A. (1981) Solubilisation and purification of the Neurospora plasma membrane H+-ATPase. Journal of Biological Chemistry, 256, 13165–71.PubMedGoogle Scholar
  3. Addison, R. and Scarborough, G.A. (1982) Conformarjonal changes of the Neurospora plasma membrane H+-ATPase during its catalytic cycle. Journal of Biological Chemistry, 257, 10421–7.PubMedGoogle Scholar
  4. Ahlers, J., Ahr, E. and Seyfarth, A. (1978) Kinetic characterisation of the plasma membrane ATPase from Saccharomyces cerevisiae. Molecular and Cellular Biochemistry, 22, 39–49.PubMedCrossRefGoogle Scholar
  5. Amoury, A., Foury, F. and Goffeau, A. (1980) The purified plasma membrane ATPase of the yeast Schizosaccharomyces pombe forms a phosphorylated intermediate. Journal of Biological Chemistry, 255, 9353–7.Google Scholar
  6. Amoury, A. and Goffeau, A. (1982) Characterisation of the β-aspartyl phosphate intermediate formed by the H+-translocating ATPase from the yeast Schizosaccharomyces pombe. Journal of Biological Chemistry, 257, 4723–30.Google Scholar
  7. Amoury, A., Goffeau, A., McIntosh, D.B. and Boyer, P.D. (1982) Exchange of oxygen between phosphate and water catalysed by the plasma membrane ATPase from the yeast Schizosaccharomyces pombe. Journal of Biological Chemistry, 257, 12509–16.Google Scholar
  8. Amoury, A., Goffeau, A., McIntosh, D.B. and Boyer, P.D. (1984) Contribution of 18O technology to the mechanism of the H+-ATPase from yeast plasma membrane. Current Topics in Cellular Regulation, 24, 471–83.Google Scholar
  9. Anderson, J.A., Huprikar, S.S., Kochian, L.V. et al. (1992) Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the USA, 89, 3736–40.PubMedCrossRefGoogle Scholar
  10. Anraku, Y., Hirata, R., Wada, Y. and Ohya, Y. (1992) Molecular genetics of the yeast vacuolar H+-ATPase. Journal of Experimental Biology, 172, 67–81.PubMedGoogle Scholar
  11. Arai, H., Terres, G. Pink, S. and Forgac, M. (1988) Topography and subunit stoichiometry of the coated vesicle proton pump. Journal of Biological Chemistry, 263, 8796–802PubMedGoogle Scholar
  12. Belsky, M.M., Goldstein, S. and Menna, M. (1970) Factors affecting phosphate uptake in the marine fungus Dermocystidium spp. Journal of General Microbiology, 62, 399–402.CrossRefGoogle Scholar
  13. Bertl, A. and Slayman, C.L. (1990) Cation selective channels in the vacuolar membrane of Saccharomyces: dependence on Ca2+-redox state and voltage. Proceedings of the National Academy of Sciences of the USA, 89, 3736–40.Google Scholar
  14. Bertl, A. and Slayman, C.L. (1992) Complex modulation of cation channels in the tonoplast and plasma membrane of Saccharomyces cerevisiae: single channel studies. Journal of Experimental Biology, 172, 271–87.PubMedGoogle Scholar
  15. Bertl, A., Gradmann, D. and Slayman, C.L. (1992) Calcium-and voltage-dependent ion channels in Saccharomyces cerevisiae. Philosophical Transactions of the Royal Society of London, Series B, 338, 63–72.CrossRefGoogle Scholar
  16. Bisson, L.F., Coons, D.M., Kruckeberg, A.L. and Lewis, D.A. (1993) Yeast sugar transporters. Critical Reviews in Biochemistry and Molecular Biology, 28, 259–308.PubMedCrossRefGoogle Scholar
  17. Blanpain, J.-P., Ronjat, M., Supply, P. et al. (1992) The yeast plasma membrane H+-ATPase. An essential change of conformation triggered by H+. Journal of Biological Chemistry, 267, 3735–40.Google Scholar
  18. Blasco, F., Chapius, J.-P. and Giordani, R. (1981) Characterisation of the plasma membrane ATPase of Candida tropicalis. Biochimie, 63, 507–14.PubMedCrossRefGoogle Scholar
  19. Borst-Pauwels, G.W.F.H. (1981) Ion transport in yeast. Biochimica et Biophysica Acta, 650, 88–127.PubMedCrossRefGoogle Scholar
  20. Bowman, B.J. and Bowman, E.J. (1986) H+-ATPases from mitochondria, plasma membrane and vacuoles of fungal cells. Journal of Membrane Biology, 94, 83–97.PubMedCrossRefGoogle Scholar
  21. Bowman, B.J. and Slayman, C.W. (1977) Characterisation of plasma membrane ATPase of Neurospora crassa. Journal of Biological Chemistry, 254, 2928–34.Google Scholar
  22. Bowman, B.J., Allen, K.E. and Slayman, C.W. (1983) Vanadate-resistant mutants of Neurospora crassa are deficient in a high affinity phosphate transport system. Journal of Bacteriology, 153, 292–6.PubMedGoogle Scholar
  23. Bowman, B.J., Allen, R., Wechser, M.A. and Bowman, E.J. (1988) Isolation of genes encoding the Neurospora vacuolar ATPase. Analysis of vma-2 encoding the 57-kDa polypeptide and comparison to vma-1. Journal of Biological Chemistry, 264, 14002–7.Google Scholar
  24. Bowman, B.J., Dschida, W.J. and Bowman, E.J. (1989) The vacuolar ATPase of Neurospora crassa contains an F1-like structure, Journal of Biological Chemistry, 264, 15606–12.PubMedGoogle Scholar
  25. Bowman, B.J., Dschida, W.J. and Bowman, E.J. (1992) Vacuolar ATPase of Neurospora crassa: electron microscopy, gene characterisation and gene inactivation/mutation. Journal of Experimental Biology, 172, 57–66.PubMedGoogle Scholar
  26. Bowman, E.J. and Bowman, B.J. (1982). Identification and properties of an ATPase in vacuolar membranes of Neurospora crassa. Journal of Bacteriology, 151, 1326–37.PubMedGoogle Scholar
  27. Bowman, E.J. and Bowman, B.J. (1985) The H+-translocating ATPase in vacuolar membranes of Neurospora crassa, in Biochemistry and Function of Vacuolar Adenosine-triphosphatase in Fungi and Plants, (ed. B.P. Marin), Springer-Verlag, Berlin, pp. 132–41.Google Scholar
  28. Bowman, E.J. and Knock, T.E. (1992) Structures of the genes encoding the α and β subunits of the Neurospora crassa mitochondrial ATP synthase. Gene, 114, 157–63.PubMedCrossRefGoogle Scholar
  29. Bowman, E.J., Bowman, B.J. and Slayman, C.W. (1981) Isolation and characterisation of plasma membranes from wild type Neurospora crassa. Journal of Biological Chemistry, 256, 12336–42.PubMedGoogle Scholar
  30. Bowman, E.J., Siebers, A. and Altendorf, K. (1988a) Bafilomycins: a new class of inhibitors of membrane ATPases from microorganisms, animal cells and plant cells. Proceedings of the National Academy of Sciences of the USA, 85, 7972–6.PubMedCrossRefGoogle Scholar
  31. Bowman, E.J., Tenney, K. and Bowman, B.J. (1988b) Isolation of genes encoding the Neurospora vacuolar ATPase. Analysis of vma-1 encoding the 67 kDa subunit reveals homology to other ATPases. Journal of Biological Chemistry, 263, 13994–4001.PubMedGoogle Scholar
  32. Boxman, A.W., Dobbelmann, J. and Borst-Pauwels, G.W.F.H. (1984) Possible energisation of K+ accumulation into metabolising yeast by the proton-motive force. Binding correction to be applied in the calculation of the yeast membrane potential from tetramethylphosphonium distribution. Biochimica et Biophysica Acta, 772, 51–7.PubMedCrossRefGoogle Scholar
  33. Breton, A. and Surdin-Kerjan, Y. (1977) Sulfur uptake in Saccharomyces cerevisiae: biochemical and genetic study. Journal of Bacteriology, 132, 224–32.PubMedGoogle Scholar
  34. Brooker, R.J. and Slayman, C.W. (1982) Inhibition of the plasma membrane [H+]-ATPase of Neurospora crassa by N-ethylmaleimide. Protection by nudeotides. Journal of Biological Chemistry, 257, 12051–5.PubMedGoogle Scholar
  35. Brooker, R.J. and Slayman, C.W. (1983a) [14C]N-ethylmaleimide labelling of the plasma membrane [H+]-ATPase of Neurospora crassa. Journal of Biological Chemistry, 258, 222–6.PubMedGoogle Scholar
  36. Brooker, R.J. and Slayman, C.W. (1983b) Effects of Mg2+ ions on the plasma membrane [H+]-ATPase of Neurospora crassa. I. Inhibition by N-ethylmaleimide and trypsin. Journal of Biological Chemistry, 258, 8827–32.PubMedGoogle Scholar
  37. Brooker, R.J. and Slayman, C.W. (1983c) Effects of Mg2+ ions on the plasma membrane [H+]-ATPase of Neurospora crassa. II. Kinetic studies. Journal of Biological Chemistry, 258, 8833–8.PubMedGoogle Scholar
  38. Burns, D.J.W. and Beever, R.E. (1977) Kinetic characterisation of the two phosphate uptake systems in the fungus Neurospora crassa. Journal of Bacteriology, 132, 511–19.PubMedGoogle Scholar
  39. Caldwell, J.H., van Brunt, J. and Harold, F.M. (1986) Calcium-dependent anion channel in the water mold Blastocladiella emersonii. Journal of Membrane Biology, 89, 85–97.PubMedCrossRefGoogle Scholar
  40. Calvert, C.M. (1992) Ion transport at the vacuolar membrane of Candida albiams. DPhil Thesis, University of York, York, UK.Google Scholar
  41. Chang, A. and Slayman, C.W. (1991) Maturation of the yeast plasma membrane [H+]ATPase involves phosphorylation during intracellular transport. Journal of Cell Biology, 115, 289–95.PubMedCrossRefGoogle Scholar
  42. Chasan, R. and Schroeder, J.I. (1992) Meeting report: excitation in plant membrane biology. The Plant Cell, 4, 1180–8.Google Scholar
  43. Cockburn, M., Earnshaw, P. and Eddy, A.A. (1975) The stoichiometry of the adsorption of protons with phosphate and L-glutamate by yeasts of the genus Saccharomyces. Biochemical Journal, 146, 705–12.PubMedGoogle Scholar
  44. Dame, J.R. and Scarborough, G.A. (1980) Identification of the hydrolytic moiety of the Neurospora plasma membrane H+-ATPase and demonstration of a phosphoryl-enzyme intermediate in its catalytic mechanism. Biochemistry, 19, 2931–7.PubMedCrossRefGoogle Scholar
  45. Davenport, J.W. and Slayman, C.W. (1988) The plasma membrane H+-ATPase of Neurospora crassa. Properties of two reactive sulfhydryl groups. Journal of Biological Chemistry, 263, 16007–13.PubMedGoogle Scholar
  46. Davies, J.M., Poole, R.M., Rea, P.A. and Sanders, D. (1992) Potassium transport into plant vacuoles energized directly by a proton-pumping inorganic pyrophosphatase. Proceedings of the National Academy of Sciences of the USA, 89, 11701–5.PubMedCrossRefGoogle Scholar
  47. DeBusk, R.M. and DeBusk, A.G. (1980) Physiological and regulatory properties of the general amino acid transport system of Neurospora crassa. Journal of Bacteriology, 143, 188–97.Google Scholar
  48. Delhez, J., Dufour, J.-P., Thines, D. and Goffeau, A. (1977) Comparison of the plasmamembrane bound and mitochondria bound ATPase in the yeast Schizosaccharomyces pombe. European Journal of Biochemistry, 79, 319–28.PubMedCrossRefGoogle Scholar
  49. Dubois, E. and Grenson, M. (1979) Methylamine/ammonia uptake systems in Saccharomyces cerevisiae: multiplicity and regulation. Molecular and General Genetics, 175, 67–76.PubMedCrossRefGoogle Scholar
  50. Dufour, J.-P. and Goffeau, A. (1978) Solubilisation by lysolecithin and purification of the plasma membrane ATPase of the yeast Schizosaccharomyces pombe. Journal of Biological Chemistry, 253, 7026–32.PubMedGoogle Scholar
  51. Eddy, A.A. (1980) Slip and leak models of gradient-coupled solute transport. Biochemical Society Transactions, 8, 271–3.PubMedGoogle Scholar
  52. Eddy, A.A. (1982) Mechanisms of solute transport in selected eukaryotic micro-organisms. Advances in Microbial Physiology, 23, 1–78.PubMedCrossRefGoogle Scholar
  53. Eddy, A.A. and Hopkins, P.G. (1985) The putative electrogenic nitrate-proton symport of the yeast Candida utilis. Comparison with the systems absorbing glucose or lactate. Biochemical Journal, 231, 291–7.PubMedGoogle Scholar
  54. Eddy, A.A., Seaston, A., Gardner, D. and Hacking, C. (1980) The thermodynamic efficiency of cotransport mechanisms with special reference to proton and anion transport in yeast. Annals of the New York Academy of Sciences, USA, 341, 494–508.CrossRefGoogle Scholar
  55. Eraso, P. and Gancedo, C. (1987) Activation of yeast plasma membrane H+-ATPase by acid pH during growth. FEES Utters, 224, 187–92.CrossRefGoogle Scholar
  56. Fuhrmann, R. and Rothstein, A. (1968) The transport of Zn2+, Co2+ and Ni2+ into yeast cells. Biochimica et Biophysica Acta, 163, 325–30.PubMedCrossRefGoogle Scholar
  57. Gaber, R.F., Styles, C.A. and Fink, G.R. (1988) TRK1 encodes a plasma membrane protein required for high-affinity potassium transport in Saccharomyces cerevisiae. Molecular and Cellular Biology, 8, 2848–59.PubMedGoogle Scholar
  58. Gadd, G.M. (1993) Interactions of fungi with toxic metals. New Phytologist, 124, 25–60.CrossRefGoogle Scholar
  59. Garrill, A. and Davies, J.M. (1994) Patch clamping fungal membranes: a new perspective on ion transport. Mycological Research, 98, 257–63.CrossRefGoogle Scholar
  60. Garrill, A. and Jennings, D.H. (1991) Isolation of a plasma membrane ATPase with H+-ATPase-like properties from the marine fungus Dendryphiella salina. Experimental Mycology, 15, 351–5.CrossRefGoogle Scholar
  61. Garrill, A., Lew, R.R. and Heath, I.B. (1992) Stretchactivated Ca2+ and Ca2+-activated channels in the hyphal tip plasma membrane of the oomycete Saprolegnia ferax. Journal of Cell Science, 101, 721–30.Google Scholar
  62. Garrill, A., Jackson, S.L., Lew, R.R. and Heath, I.B. (1993) Ion channel activity and tip growth: tip localised stretch-activated channels generate an essential Ca2+ gradient in the oomycete Saprolegnia ferax. European Journal of Cell Biology, 60, 358–65.PubMedGoogle Scholar
  63. Garrill, A., Findlay, G.P. and Tyerman, S.D. (1994) Mechanosensitive ion channels, in Membranes: Specialised Functions in Plant Cells, (eds. M. Smallwood, J.P. Knox and D.J. Bowles), JAI Press, Greenwich, USA (in press).Google Scholar
  64. Ghislain, M., Schlesser, A. and Goffeau, A. (1987) Mutation of a conserved glycine residue modifies the vanadate sensitivity of the plasma membrane H+ATPase from Schizosaccharomyces pombe. Journal of Biological Chemistry, 262, 17549–55.PubMedGoogle Scholar
  65. Goffeau, A. and Slayman, C.W. (1981) The proton-translocating ATPase of the fungal plasma membrane. Biochimica et Biophysica Acta, 639, 197–223.PubMedCrossRefGoogle Scholar
  66. Gradmann, D., Hansen, U.-P., Long, W.S. et al. (1978) Current-voltage relationships for the plasma membrane and its principal electrogenic pump in Neurospora crassa. I. Steady-state conditions. Journal of Membrane Biology, 39, 333–67.PubMedCrossRefGoogle Scholar
  67. Gustin, M.C., Martinac, B., Saimi, Y. et al. (1986) Ion channels in yeast. Science, 233, 1195–7.PubMedCrossRefGoogle Scholar
  68. Gustin, M.C., Zhou, X.-L., Martinac, B. and Kung, C. (1988) A mechanosensitive ion channel in the yeast plasma membrane. Science, 242, 762–5.PubMedCrossRefGoogle Scholar
  69. Hager, K.M., Mandala, S.M., Davenport, J.W. et al. (1986) Amino acid sequence of the plasma membrane H+-ATPase of Neurospora crassa: deduction from genomic and cDNA sequences. Proceedings of the National Academy of Sciences of the USA, 83, 7693–7.PubMedCrossRefGoogle Scholar
  70. Horak, J. (1986) Amino acid transport in eucaryotic microorganisms. Biochimica et Biophysica Acta, 864, 223–56.PubMedCrossRefGoogle Scholar
  71. Hubbard, M.J., Surarif, R., Sullivan, P.A. and Shepherd, M.G. (1986) The isolation of plasmamembrane and characterisation of plasmamembrane ATPase from the yeast Candida albicans. European Journal of Biochemistry, 154, 375–81.PubMedCrossRefGoogle Scholar
  72. Ikemoto, N. (1982) Structure and function of the calcium pump protein of sarcoplasmic reticulum. Annual Review of Physiology, 44, 297–317.PubMedCrossRefGoogle Scholar
  73. Jackson, S.L. and Heath, I.B. (1993) Roles of calcium ions in hyphal tip growth. Microbiological Reviews, 57, 367–82.PubMedGoogle Scholar
  74. Jarai, G. and Marzluf, G.A. (1991) Sulfate transport in Neurospora crassa: regulation, turnover, and cellular localization of the CYS-14 protein. Biochemistry, 30, 4768–73.PubMedCrossRefGoogle Scholar
  75. Jorgensen, P.L. (1982) Mechanism of the Na+, K+ pump. Protein structure and conformations of the pure (Na+, K+)-ATPase. Biochimka et Biophysica Ada, 694, 27–68.CrossRefGoogle Scholar
  76. Kakinuma, Y., Ohsumi, Y. and Anraku, Y. (1981) Properties of H+-translocating adenosine triphosphatase in vacuolar membranes of Saccharomyces cerevisiae. Journal of Biological Chemistry, 256, 10859–63.PubMedGoogle Scholar
  77. Kane, P.M., Yamashiro, C.T., Wolczyk, D.F. et al. (1990) Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H+-adenosine triphosphatase. Science, 250, 651–7.PubMedCrossRefGoogle Scholar
  78. Klionsky, D.J., Herman, P.K. and Emr, S.D. (1990) The fungal vacuole: composition, function and biogenesis. Microbiological Reviews, 54, 266–92.PubMedGoogle Scholar
  79. Ko, C.H. and Gaber, R.F. (1991) TRK1 and TRK2 encode structurally related K+ transporters in Saccharomyces cerevisiae. Molecular and Cellular Biology, 11, 4266–73.PubMedGoogle Scholar
  80. Ko, C.H., Buckley, A.M. and Gaber, R.F. (1990) TRK2 is required for low affinity K+ transport in Saccharomyces cerevisiae. Genetics, 125, 305–12.PubMedGoogle Scholar
  81. Ko, C.H., Liang, H. and Gaber, R.F. (1993) Roles of multiple glucose transporters in Saccharomyces cerevisiae. Molecular and Cellular Biology, 13, 638–48.PubMedGoogle Scholar
  82. Kochian, L.V. and Lucas, W.J. (1993) Can K+ channels do it all? The Plant Cell, 5, 720–1.PubMedGoogle Scholar
  83. Koo, K. and Stuart, W.D. (1991) Sequence and structure of mtr, an amino acid transport gene of Neurospora crassa. Genome, 34, 644–51.PubMedCrossRefGoogle Scholar
  84. Kruckeberg, A.L. and Bisson, L.F. (1990) The HXT2 gene of Saccharomyces cerevisiae is required for high-affinity glucose transport. Molecular and Cellular Biology, 10, 5903–13.PubMedGoogle Scholar
  85. Lagunas, R. (1993) Sugar transport in Saccharomyces cerevisiae. FEMS Microbiological Reviews, 104, 229–42.CrossRefGoogle Scholar
  86. Levina, N.N., Lew, R.R. and Heath, I.B. (1994) Cytoskeletal regulation of ion channel distribution in the tip-growing organism Saprolegnia ferax. Journal of Cell Science, 107, 127–34.PubMedGoogle Scholar
  87. Lew, R.R., Garrill, A., Covic, L. et al. (1992) Novel ion channels in the protists Mougeotia and Saprolegnia, using sub-gigaseals. FEBS Letters, 310, 219–22.PubMedCrossRefGoogle Scholar
  88. Lewis, D.A. and Bisson, L.F. (1991) The HXT1 gene product of Saccharomyces cerevisiae is a new member of the family of hexose transporters. Molecular and Cellular Biology, 11, 3804–13.PubMedGoogle Scholar
  89. Lichko, L.P. and Okorokov, L.A. (1984) Some properties of membrane-bound, solubilized and reconstituted into liposomes H+-ATPase of vacuoles of Saccharomyces carlsbergensis. FEBS Letters, 174, 233–7.PubMedCrossRefGoogle Scholar
  90. Lichko, L.P. and Okorokov, L.A. (1985) What family of ATPases does the vacuolar H+-ATPase belong to? FEBS Letters, 187, 349–53.PubMedCrossRefGoogle Scholar
  91. Lichko, L.P. and Okorokov, L.A. (1991) Purification and some properties of membrane-bound and soluble pyrophosphatase of yeast vacuoles. Yeast, 7, 805–12.PubMedCrossRefGoogle Scholar
  92. Lowendorf, H.S., Slayman, C.L. and Slayman, C.W. (1974) Phosphate transport in Neurospora. Kinetic characterization of a constitutive low affinity transport system. Biochimica et Biophysica Acta, 373, 369–82.PubMedCrossRefGoogle Scholar
  93. Lowendorf, H.S., Bazinet, G.F. Jr. and Slayman, C.W. (1975) Phosphate transport in Neurospora crassa: derepression of a high affinity transport system during phosphate starvation. Biochimica et Biophysica Acta, 389, 541–9.PubMedCrossRefGoogle Scholar
  94. Maathuis, F.J.M. and Sanders, D. (1993) Energization of potassium uptake in Arabidopsis thaliana. Planta, 191, 302–7.CrossRefGoogle Scholar
  95. Malpartida, F. and Serrano, R. (1981) Phosphorylated intermediate of the ATPase from the plasma membrane of yeast. European Journal of Biochemistry, 116, 413–17.PubMedCrossRefGoogle Scholar
  96. Mann, B.J., Bowman, B.J., Grotelueschen, J. and Metzenberg, R.L. (1989) Nucleotide sequence of pho-4+, encoding a phosphate-repressible phosphate permease of Neurospora crassa. Gene, 83, 281–9.PubMedCrossRefGoogle Scholar
  97. Marzluf, G.A. (1970a) Genetic and biochemical studies of distinct sulfate permease species in different developmental stages of Neurospora crassa. Archives of Biochemistry and Biophysics, 138, 254–63.PubMedCrossRefGoogle Scholar
  98. Marzluf, G.A. (1970b) Genetic and metabolic controls for sulfate metabolism in Neurospora crassa: isolation and study of chromate-resistant and sulfate transport-negative mutants, Journal of Bacteriology, 102, 716–21.PubMedGoogle Scholar
  99. Metzenberg, R.L. (1979) Implications of some genetic control mechanisms in Neurospora. Microbiological Reviews, 43, 361–83.PubMedGoogle Scholar
  100. Mitchell, P. (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biological Reviews, 41, 445–502.PubMedCrossRefGoogle Scholar
  101. Monk, B.C., Kurtz, M.B., Marrinan, J.A. and Perlin, D.S. (1991a) Cloning and characterisation of the plasma membrane H+-ATPase from Candida albicans. Journal of Bacteriology, 173, 6826–836.PubMedGoogle Scholar
  102. Monk, B.C., Montesinos, C., Ferguson, C. et al. (1991b) Immunological approaches to the transmembrane topology and conformational changes of the carboxyl-terminal regulatory domain of yeast plasma membrane H+ATPase. Journal of Biological Chemistry, 266, 18097–103.PubMedGoogle Scholar
  103. Nakamoto, R.K., Rao, R. and Slayman, C.W. (1991) Expression of the yeast plasma membrane [H+] ATPase in secretory vesicles. A new strategy for directed mutagenesis. Journal of Biological Chemistry, 266, 7940–9.PubMedGoogle Scholar
  104. Nelson, N. (1992) Organellar proton — ATPases. Current Opinion in Cell Biology, 4, 654–60.PubMedCrossRefGoogle Scholar
  105. Nelson, N. and Taiz, L. (1989) The evolution of H+-ATPases. Trends in Biochemical Sciences, 14, 113–16.PubMedCrossRefGoogle Scholar
  106. Norais, N., Prome, D. and Velours, J. (1991) ATP synthase of yeast mitochondria. Characterization of subunit d and sequence analysis of the structural gene ATP7. Journal of Biological Chemistry, 266, 16541–9.PubMedGoogle Scholar
  107. Ohsumi, Y. and Anraku, Y. (1981) Active transport of basic amino acids driven by a proton motive force in vacuolar membrane vesicles of Saccharomyces cerevisiae. Journal of Biological Chemistry, 256, 2079–82.PubMedGoogle Scholar
  108. Ohya, Y., Umemoto, N., Tanida, I. et al. (1991) Calcium-sensitive cls mutants of Saccharomyces cerevisiae showing a Pet—phenotype are ascribable to defects of vacuolar membrane H+ATPase activity. Journal of Biological Chemistry, 266, 13971–7.PubMedGoogle Scholar
  109. Paek, Y.L. and Weiss, R.L. (1989) Identification of an arginine carrier in the vacuolar membrane of Neurospora crassa. Journal of Biological Chemistry, 264, 7285–90.PubMedGoogle Scholar
  110. Pall, M.J. (1971) Amino acid transport in Neurospora crassa. IV. Properties and regulation of a methionine transport system. Biochimica et Biophysica Acta, 223, 201–14.CrossRefGoogle Scholar
  111. Pall, M.J. and Kelly, K.A. (1971) Specificity of transinhibition of amino acid transport in Neurospora. Biochemical and Biophysical Research Communications, 42, 940–7.PubMedCrossRefGoogle Scholar
  112. Pardo, J.P. and Slayman, C.W. (1989) Cysteine 532 and cysteine 545 are the N-ethylmaleimide-reactive residues of the Neurospora plasma membrane H+ATPase. Journal of Biological Chemistry, 264, 9373–9.PubMedGoogle Scholar
  113. Perlin, D.S., Kasamo, K., Brooker, R.J. and Slayman, C.W. (1984) Electrogenic H+ translocation by the plasma membrane ATPase of Neurospora. Studies on plasma membrane vesicle and reconstituted enzyme. Journal of Biological Chemistry, 259, 7884–92.PubMedGoogle Scholar
  114. Perlin, D.S., San Francisco, M.J.D., Slayman, C.W. and Rosen, B.P. (1986) H+/ATP stoichiometry of proton pumps from Neurospora crassa and Escherichia coli. Archives of Biochemistry and Biophysics, 248, 53–61.PubMedCrossRefGoogle Scholar
  115. Peters, R.H.J. and Borst-Pauwels, G.W.F.H. (1979) Properties of the piasmamembrane ATPase and mitochondrial ATPase of Saccharomyces cerevisiae. Physiologia Plantarum, 46, 330–7.CrossRefGoogle Scholar
  116. Portillo, F. and Serrano, R. (1988) Dissection of functional domains of the yeast proton-pumping ATPase by directed mutagenesis. EMBO Journal, 7, 1793–8.PubMedGoogle Scholar
  117. Portillo, F., de Larrinoa, I.F. and Serrano, R. (1989) Deletion analysis of yeast plasma membrane H+-ATPase and identification of a regulatory domain at the carboxyl terminus. FEBS Letters, 247, 381–5.PubMedCrossRefGoogle Scholar
  118. Portillo, F., Eraso, P. and Serrano, R. (1991) Analysis of the regulatory domain of yeast plasma membrane H+-ATPase by directed mutagenesis and intragenic suppression. FEBS Letters, 287, 71–4.PubMedCrossRefGoogle Scholar
  119. Ramirez, J.A., Vacata, V., McKusker, J.H. et al. (1989) ATP-sensitive K+ channels in a plasma membrane H+-ATPase mutant of the yeast Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the USA, 86, 7866–70.PubMedCrossRefGoogle Scholar
  120. Rao, R. and Slayman, C.W. (1993) Mutagenesis of conserved residues in the phosphorylation domain of the yeast plasma membrane H+-ATPase. Effects on structure and function. Journal of Biological Chemistry, 268, 6708–13.PubMedGoogle Scholar
  121. Rao, R., Nakamoto, R.K., Verjovsky-Almeida, S. and Slayman, C.W. (1992) Structure and function of the yeast plasma membrane H+-ATPase. Annals of the New York Academy of Sciences, 671, 195–203.PubMedCrossRefGoogle Scholar
  122. Rea, P. A., Kim, Y., Sarafian, V. et al. (1992) Vacuolar H+-translocating pyrophosphatases: a new category of ion translocase. Trends in Biochemical Sciences, 17, 348–53.PubMedCrossRefGoogle Scholar
  123. Rodriguez-Navarro, A. and Ramos, J. (1984) Dual systems for potassium transport in Saccharomyces cerevisiae. Journal of Bacteriology, 159, 940–5.PubMedGoogle Scholar
  124. Rodriguez-Navarro, A., Blatt, M.R. and Slayman, C.L. (1986) A potassium-proton symport in Neurospora crassa. Journal of General Physiology, 87, 649–74.PubMedCrossRefGoogle Scholar
  125. Roomans, G.M. and Borst-Pauwels, G.W.F.H. (1977) Interaction of phosphate with monovalent cation uptake in yeast. Biochimica et Biophysica Acta, 470, 84–91.PubMedCrossRefGoogle Scholar
  126. Roomans, G.M. and Borst-Pauwels, G.W.F.H. (1979) Interactions of cations with phosphate uptake by Saccharomyces cerevisiae. Biochemical Journal, 178, 521–7.PubMedGoogle Scholar
  127. Roomans, G.M., Kuypers, G.A.J., Theuvenet, A.P.R. and Borst-Pauwels, G.W.F.H. (1979) Kinetics of sulfate uptake by yeast. Biochimica et Biophysica Acta, 551, 197–206.PubMedCrossRefGoogle Scholar
  128. Sachs, G., Wallmark, B., Saccomani, G. et al. (1982) The ATP-dependent component of gastric acid secretion. Current Topics in Membranes and Transport, 16, 135–59.CrossRefGoogle Scholar
  129. Sanders, D. (1988) Fungi, in Solute Transport in Plant Cells and Tissues, (eds D.A. Baker and J.L. Hall), Longman, Harlow, UK, pp. 106–65.Google Scholar
  130. Sanders, D. (1990) Kinetic modelling of plant and fungal membrane transport systems. Annual Review of Plant Physiology and Plant Molecular Biology, 41,77–107.CrossRefGoogle Scholar
  131. Sanders, D. and Slayman, C.L. (1982) Control of intracellular pH. Predominant role of oxidative metabolism, not proton transport, in the eukaryotic microorganism Neurospora. Journal of General Physiology, 80, 377–402.PubMedCrossRefGoogle Scholar
  132. Sanders, D., Hansen, U.-P. and Slayman, C.L. (1981) Role of the plasma membrane proton pump in pH regulation in non-animal cells. Proceedings of the National Academy of Sciences of the USA, 78, 5903–7.PubMedCrossRefGoogle Scholar
  133. Sato, T., Ohsumi, Y. and Anraku, Y. (1984a) Substrate specificities of active transport systems for amino acids in vacuolar-membrane vesicles of Saccharomyces cerevisiae. Journal of Biological Chemistry, 259, 11505–8.PubMedGoogle Scholar
  134. Sato, T., Ohsumi, Y. and Anraku, Y. (1984b) An arginine/histidine exchange transport system in vacuolar membrane vesicles of Saccharomyces cerevisiae. Journal of Biological Chemistry, 259, 11509–11.PubMedGoogle Scholar
  135. Scarborough, G.A. (1970a) Sugar transport in Neurospora crassa. Journal of Biological Chemistry, 245, 1694–8.PubMedGoogle Scholar
  136. Scarborough, G.A. (1970b) Sugar transport in Neurospora crassa.II. A second glucose transport system. Journal of Biological Chemistry 245, 3985–7.PubMedGoogle Scholar
  137. Scarborough, G.A.(1977) Properties of the Neurospora crassa plasma membrane ATPase. Archives of Biochemistry and Biophysics, 180, 384–93.Google Scholar
  138. Scarborough, G.A. and Addison, R. (1984) On the subunit composition of the Neurospora plasma membrane H+-ATPase. Journal of Biological Chemistry, 259, 9109–14.PubMedGoogle Scholar
  139. Schlesser, A., Ulaszewski, S., Ghislain, M. and Goffeau, A. (1988) A second transport ATPase gene in Saccharomyces cerevisiae. Journal of Biological Chemistry, 263, 19480–7.PubMedGoogle Scholar
  140. Sebald, W. (1977) Biogenesis of the mitochondrial ATPase. Biochimica et Biophysica Acta, 463, 1–27.PubMedCrossRefGoogle Scholar
  141. Sentenac, H., Bonneaud, N., Minet, M. et al. (1992) Cloning and expression in yeast of a plant potassium ion transport system. Science, 256, 663–5.PubMedCrossRefGoogle Scholar
  142. Serrano, R. (1978) Characterisation of the plasma-membrane ATPase of Saccharomyces cerevisiae. Molecular and Cellular Biochemistry, 22, 51–63.PubMedCrossRefGoogle Scholar
  143. Serrano, R. (1983) In vivo glucose activation of the yeast plasma membrane ATPase. FEBS Letters, 156, 11–14.PubMedCrossRefGoogle Scholar
  144. Serrano, R. (1984) Plasmamembrane ATPase of Plants and Fungi, CRC Press, Boca Raton, FL.Google Scholar
  145. Serrano, R. (1988) Structure and function of proton translocating ATPase in plasma membranes of plants and fungi. Biochimica et Biophysica Acta, 947, 1–28.PubMedCrossRefGoogle Scholar
  146. Serrano, R., Kielland-Brandt, M.C. and Fink, G.R. (1986) Yeast plasma membrane ATPase is essential for growth and has homology with (Na++K+), K+-and Ca2+-ATPases. Nature, 319, 689–93.PubMedCrossRefGoogle Scholar
  147. Siegenthaler, P.A., Belsky, M.M. and Goldstein, S. (1967) Phosphate uptake in an obligately marine fungus: a specific requirement for sodium. Science, 155, 93–4.PubMedCrossRefGoogle Scholar
  148. Sista, H.S. (1991) Characterization of a component of the proton channel of the vacuolar ATPase. PhD thesis, University of California, Santa Cruz, CA.Google Scholar
  149. Slayman, C.L. (1965a) Electrical properties of Neurospora crassa. Effects of external cations on the intracellular potential. Journal of General Physiology, 49, 69–92.PubMedCrossRefGoogle Scholar
  150. Slayman, C.L. (1965b) Electrical properties of Neurospora crassa. Respiration and the intracellular potential. Journal of General Physiology, 49, 93–116.PubMedCrossRefGoogle Scholar
  151. Slayman, C.L. (1977) Energetics and control of transport in Neurospora, in Water Relationships in Membrane Transport in Plants and Animals (eds A.M. Jungreis, T.K. Hodges, A. Kleinzeller and S.G. Schultz), Academic Press, New York, pp. 69–89Google Scholar
  152. Slayman, C.L. (1987) The plasma membrane ATPase of Neurospora: a proton-pumping electroenzyme. Journal of Bioenergetics and Biomembranes, 19, 1–20.PubMedGoogle Scholar
  153. Slayman, C.L. and Slayman, C.W. (1974) Depolarisation of the plasma membrane of Neurospora during active transport of glucose: evidence for a proton-dependent cotransport system. Proceedings of the National Academy of Sciences of the USA, 71, 1935–9.PubMedCrossRefGoogle Scholar
  154. Slayman, C.W. and Slayman, C.L. (1975) Energy coupling in the plasma membrane of Neurospora: ATP-dependent proton transport and proton-dependent sugar transport, in Molecular Aspects of Membrane Phenomena, (eds H.R. Kaback, H. Neurath, G.K. Radda, R. Schwyzer and W.R. Wiley), Springer-Verlag, Berlin pp. 233–48.CrossRefGoogle Scholar
  155. Stevens, T.H. (1992) The structure and function of the fungal V-ATPase. Journal of Experimental Biology, 172, 47–55.PubMedGoogle Scholar
  156. Stuart, W.D. (1977) New class of ribonucleic acid in Neurospora associated with the outer cell envelope. Journal of Bacteriology, 129, 395–9.PubMedGoogle Scholar
  157. Stuart, W.D., Koo, K. and Vollmer, S.J. (1988) Cloning of mtr, an amino acid transport gene of Neurospora crassa. Genome, 30, 198–203.PubMedCrossRefGoogle Scholar
  158. Supply, P., Wach, A. and Goffeau, A. (1993a) Enzymatic properties of the PMA2 plasma membrane-bound H+-ATPase of Saccharomyces cerevisiae. Journal of Biological Chemistry, 268, 19753–9.PubMedGoogle Scholar
  159. Supply, P., Wach, A., Thinès-Sempoux, D. and Goffeau, A. (1993b) Proliferation of intracellular structures upon overexpression of the PMA2 ATPase in Saccharomyces cerevisiae. Journal of Biological Chemistry, 268, 19744–2.PubMedGoogle Scholar
  160. Uchida, E., Ohsumi, Y. and Anraku, Y. (1985) Purification and properties of H+-translocating, Mg2+-adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. Journal of Biological Chemistry, 260, 1090–5.PubMedGoogle Scholar
  161. Vacata, V., Hofer, M., Larsson, H.P. and Lecar, H. (1992) Ionic channels in the plasma membrane of Schizo-saccharomyces pombe. Evidence from patch clamp measurements. Journal of Bioenergetics and Biomembranes, 24, 43–53.Google Scholar
  162. Wada, Y., Ohsumi, Y. and Anraku, Y. (1992) Chloride transport of yeast vacuolar membrane vesicles: a study of in vitro vacuolar acidification. Biochimica et Biophysica Acta, 1101, 296–302.PubMedCrossRefGoogle Scholar
  163. Walworth, N.C. and Novick, PJ. (1987) Purification and characterization of constitutive secretory vesicles from yeast. Journal of Cell Biology, 105, 163–74.PubMedCrossRefGoogle Scholar
  164. Willsky, G.R. (1979) Characterisation of the plasma-membrane Mg2+-ATPase from the yeast Saccharomyces cerevisiae. Journal of Biological Chemistry, 254, 3326–32.PubMedGoogle Scholar
  165. Yamashiro, C.T., Kane, P.M., Wolczyk, D.F. et al. (1990) Role of vacuolar acidification in protein sorting and zymogen activation. Molecular and Cellular Biology, 10, 3737–49.PubMedGoogle Scholar
  166. Zhou, X.-L. and Kung, C. (1992) A mechanosensitive ion channel in Schizosaccharomyces pombe. EMBO Journal, 11, 2869–75.PubMedGoogle Scholar
  167. Zhou, X.-L., Stumpf, M.A., Hoch, H.C. and Kung, C. (1991) A mechanosensitive cation channel in membrane patches and in whole cells of the fungus Uromyces. Science, 253, 1415–17.PubMedCrossRefGoogle Scholar

Copyright information

© Neil A.R. Gow and Geoffrey M. Gadd 1995

Authors and Affiliations

  • A. Garrill
    • 1
  1. 1.School of Biological SciencesFlinders UniversityAdelaideAustralia

Personalised recommendations