Advertisement

Abstract

During particular stages in the life history of many fungi, hyphae become differentiated and aggregated to form tissues distinct from the vegetative hyphae which ordinarily compose a mycelium. The mycelium, of course, is a diverse, dynamic population of hyphae which is a fascinating study in its own right (CR10 and CR10, 1983a CR10 and CR10, 1983b; CR80, 1984; CR168 and CR169, 1984 ; CR10, 1993; Chapter 2), but this chapter will deal specifically with the patterns which result in formation of defined tissues in multihyphal fungal structures.

Keywords

Fruit Body High Fungus Schizophyllum Commune Mycological Research British Mycological Society 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ainsworth, A.M. and Rayner, A.D.M. (1990) Aerial mycelial transfer by Hymenochaete corrugata between stems of hazel and other trees. Mycological Research, 92, 263–6.CrossRefGoogle Scholar
  2. Ainsworth, G.C. (1961) Ainsworth and Bisby’s Dictionary of the Fungi, 5th edn. Commonwealth Mycological Institute, Kew, Surrey, UK.Google Scholar
  3. Allen, J.J., Moore, D. and Elliott, T.J. (1992) Persistent meiotic arrest in basidia of Agaricus bisporus. Mycological Research, 96, 125–7.CrossRefGoogle Scholar
  4. Ashby, A.M. and Johnstone, K. (1993) Expression of the E. coli β-glucuronidase gene in the light of leaf spot pathogen Pyrenopeziza brassicae and its use as a reporter gene to study developmental interactions in fungi. Mycological Research, 97, 575–81.CrossRefGoogle Scholar
  5. Barnett, H.L. and Lilly, V.G. (1949) Production of haploid and diploid fruit bodies of Lenzites trabea in culture. Proceedings of the West Virginia Academy of Science, 19, 34–9.Google Scholar
  6. Bartnicki-Garcia, S. (1990) Role of vesicles in apical growth and a new mathematical model of hyphal morphogenesis, in Tip Growth in Plant and Fungal Cells, (ed. I.B. Heath), Academic Press, San Diego and London, pp. 211–32.Google Scholar
  7. Bastouill-Descollonges, Y. and Manachère, G. (1984) Photosporogenesis of Coprinus congregatus: correlations between the physiological age of lamellae and the development of their potential for renewed fruiting. Physiologia Plantarum, 61, 607–10.CrossRefGoogle Scholar
  8. Beavan, M.J., Belk, D.M., Stewart, G.G. and Rose, A.H. (1979) Changes in electrophoretic mobility and lytic enzyme activity associated with the development of flocculating ability in Saccharomyces cerevisiae. Canadian Journal of Microbiology, 25, 888–95.PubMedCrossRefGoogle Scholar
  9. Boddy, L. (1993) Saprotrophic cord-forming fungi: warfare strategies and other ecological aspects. Mycological Research 97, 641–55.CrossRefGoogle Scholar
  10. Boddy, L. and Rayner, A.D.M. (1983a) Mycelial interactions, morphogenesis and ecology of Phlebia radiata and P. rufa from oak. Transactions of the British Mycological Society, 80, 437–48.CrossRefGoogle Scholar
  11. Boddy, L. and Rayner, A.D.M. (1983b) Ecological roles of basidiomycetes forming decay columns in attached oak branches. New Phytologist, 93, 77–88.CrossRefGoogle Scholar
  12. Booth, C. (1966) Fruit bodies in Ascomycetes, in The Fungi: An Advanced Treatise, vol. II, (eds G.C. Ainsworth and A.S. Sussman), Academic Press, New York and London, pp. 133–50.Google Scholar
  13. Botton, B. and Dexheimer, J. (1977) The ultrastructure of the rhizomorphs of Sphaerostilbe repens B. & B. Zeitschrift fur Pflanzenphysiologie, 85,42, 429–43.Google Scholar
  14. Bougher, N.L., Tommerup, I.C. and Malajczuk, N. (1993) Broad variation in developmental and mature basidiome morphology of the ectomycorrhizal fungus Hydnangium sublamellatum sp. nov. bridges morphologically-based generic concepts of Hydnangium, Podohydnangium and Laccaria. Mycological Research, 97, 613–19.CrossRefGoogle Scholar
  15. Brefeld, O. (1877) Botanische Untersuchungen über Schimmepilze. III Heft. Basidiomyceten I. Arthur Felix, Leipzig.Google Scholar
  16. Broxholme, S.J., Read, N.D. and Bond, D.J. (1991) Developmental regulation of proteins during fruit-body morphogenesis in Sordaria brevicollis. Mycological Research, 95, 958–69.CrossRefGoogle Scholar
  17. Buller, A.H.R. (1924) Researches on Fungi, vol. 3. Longman Green, London.Google Scholar
  18. Burnett, J.H. (1968) Fundamentals of Mycology. Edward Arnold, London.Google Scholar
  19. Butler, G.M. (1957) The development and behaviour of mycelial strands in Merulius lacrymans (Wulf.) Fr. I. Strand development during growth from a food-base through a non-nutrient medium. Annals of Botany, 21, 523–37.Google Scholar
  20. Butler, G.M. (1958) The development and behaviour of mycelial strands in Merulius lacrymans (Wulf.) Fr. II. Hyphal behaviour during strand formation. Annals of Botany, 22, 219–36.Google Scholar
  21. Butler, G.M. (1966) Vegetative structure, in The Fungi: An Advanced Treatise, vol. II, (eds G.C. Ainsworth and A.S. Sussman), Academic Press, New York and London, pp. 83–112.Google Scholar
  22. Butler, G.M. (1988) Pattern of pore morphogenesis in the resupinate basidiome of Phellinus contiguus. Transactions of the British Mycological Society, 91, 677–86.CrossRefGoogle Scholar
  23. Butler, G.M. (1992a) Location of hyphal differentiation in the agar pore field of the basidiome of Phellinus contiguus. Mycological Research, 96, 313–17.CrossRefGoogle Scholar
  24. Butler, G.M. (1992b) Capacity for differentiation of setae and other hyphal types of the basidiome in explants from cultures of the polypore Phellinus contiguus. Mycological Research, 96, 949–55.CrossRefGoogle Scholar
  25. Cairney, J.W.G. and Clipson, N.J.W. (1991) Internal structure of rhizomorphs of Trechispora vaga, 95, 764–7.Google Scholar
  26. Cairney, J.W.G., Jennings, D.H. and Veltkamp, C.J. (1989) A scanning electron microscope study of the internal structure of mature linear mycelial organs of four basidiomycete species. Canadian Journal of Botany, 67, 2266–71.CrossRefGoogle Scholar
  27. Castle, E.S. (1942) Spiral growth and reversal of spiralling in Phycomyces, and their bearing on primary wall structure. American Journal of Botany, 29, 664–72.CrossRefGoogle Scholar
  28. Cavalier-Smith, T. (1981) Eukaryote kingdoms: seven or nine? BioSystems, 14, 461–81.PubMedCrossRefGoogle Scholar
  29. Chadefaud, M. (1982a) Les principaux types d’ascocarpes: leur organisation et leur evolution. Cryptogamie Mycologie, 3, 1–9.Google Scholar
  30. Chadefaud, M. (1982b) Les principaux types d’ascocarpes: leur organisation et leur évolution. Deuxième partie: les discocarpes. Cryptogamie Mycologie, 3, 103–44.Google Scholar
  31. Chadefaud, M. (1982c) Les principaux types d’ascocarpes: leur organisation et leur evolution. Troisieme partie: les pyrenocarpes. Cryptogamie Mycologie, 3, 199–235.Google Scholar
  32. Chen, J.L. and Tzean, S.S. (1993) Podosporium elongatum, a new synnematous hyphomycete from Taiwan. Mycological Research, 97, 637–40.CrossRefGoogle Scholar
  33. Chet, I. and Henis, Y. (1975) Sclerotial morphogenesis in fungi. Annual Review of Phytopathology, 13, 169–92.CrossRefGoogle Scholar
  34. Chet, I., Henis, Y. and Kislev, N. (1969) Ultrastructure of sclerotia and hyphae of Sclerotium rolfsii Sacc. Journal of General Microbiology, 57, 143–7.CrossRefGoogle Scholar
  35. Chiu, S.W. and Moore, D. (1988a) Evidence for developmental commitment in the differentiating fruit body of Coprinus cinereus. Transactions of the British Mycological Society, 90, 247–53.CrossRefGoogle Scholar
  36. Chiu, S.W. and Moore, D. (1988b) Ammonium ions and glutamine inhibit sporulation of Coprinus cinereus basidia assayed in vitro. Cell Biology International Reports, 12, 519–26.PubMedCrossRefGoogle Scholar
  37. Chiu, S.W. and Moore, D. (1990a) Development of the basidiome of Volvariella bombycina. Mycological Research, 94, 327–37.CrossRefGoogle Scholar
  38. Chiu, S.W. and Moore, D. (1990b) A mechanism for gill pattern formation in Coprinus cinereus. Mycological Research, 94, 320–6.CrossRefGoogle Scholar
  39. Chiu, S.W. and Moore, D. (1990c) Sporulation in Coprinus cinereus: use of an in vitro assay to establish the major landmarks in differentiation. Mycological Research, 94, 249–53.CrossRefGoogle Scholar
  40. Chiu, S.W. and Moore, D. (1993) Cell form, function and lineage in the hymenia of Coprinus cinereus and Volvariella bombycina. Mycological Research, 97, 221–6.CrossRefGoogle Scholar
  41. Chiu, S.W., Moore, D. and Chang, S.T. (1989) Basidiome polymorphism in Volvariella bombycina. Mycological Research, 92, 69–77.CrossRefGoogle Scholar
  42. Coggins, C.R., Hornung, U., Jennings, D.H. and Veltkamp, C.J. (1980) The phenomenon of ‘point-growth’ and its relation to flushing and strand formation in mycelium of Serpula lacrimans. Transactions of the British Mycological Society, 75, 69–76.CrossRefGoogle Scholar
  43. Coley-Smith, J.R. and Cooke, R.C. (1971) Survival and germination of fungal sclerotia. Annual Review of Phytopathology, 9, 65–92.CrossRefGoogle Scholar
  44. Colson, B. (1935) The cytology of the mushroom Psalliota campestris Quél. Annals of Botany, 49, 1–17.Google Scholar
  45. Cooke, R.C. (1983) Morphogenesis of sclerotia, in Fungal Differentiation, a Contemporary Synthesis, (ed. J.E. Smith), Marcel Dekker: New York, pp. 397–418.Google Scholar
  46. Corda, A.C.J. (1839) Icones Fungorum Hucusque Cognitorum III. Prague.Google Scholar
  47. Corner, E.J.H. (1932) A Fomes with two systems of hyphae. Transactions of the British Mycological Society, 17, 51–81.CrossRefGoogle Scholar
  48. Corner, E.J.H. (1966) A Monograph of Cantharelloid Fungi. Annals of Botany Memoirs no. 2. Oxford University Press, London.Google Scholar
  49. Corner, E.J.H. (1991) Trogia (Basidiomycetes). The Garden’s Bulletin, Singapore, supplement 2, 1–100.Google Scholar
  50. Damsky, C.H. and Werb, Z. (1992) Signal transduction by integrin receptors for extracellular matrix: cooperative processing of extracellular information. Current Opinions in Cell Biology, 4, 772–81.CrossRefGoogle Scholar
  51. de Bary, A. (1884) Vergleichende Morphologic und Biologie der Pilze. USW Leipzig.Google Scholar
  52. de Bary, A. (1887) Comparative Morphology and Biology of the Fungi, Mycetozoa and Bacteria. Oxford University (Clarendon) Press, London and New York.Google Scholar
  53. de Silva, L.R., Youatt, J., Gooday, G.W. and Gow, N.A.R. (1992) Inwardly directed ionic currents of Allomyces macrogynus and other water moulds indicate sites of proton-driven nutrient transport but are incidental to tip growth. Mycological Research, 96, 925–31.CrossRefGoogle Scholar
  54. de Vries, O.M.H. and Wessels, J.G.H. (1984) Patterns of polypepride synthesis in non-fruiting monokaryons and a fruiting dikaryon of Schizophyllum commune. Journal of General Microbiology, 133, 145–54.Google Scholar
  55. de Vries, O.M.H., Hoge, J.H.C. and Wessels, J.G.H. (1980) Translation of RNA from Schizophyllum commune in a wheat germ and rabbit reticulocyte cell-free system: comparison of in vitro and in vivo products after two-dimensional gel electrophoresis. Biochimica et Biophysica Acta, 607, 373–8.PubMedCrossRefGoogle Scholar
  56. Dons, J.J.M., Springer, J., de Vries, S.C. and Wessels, J.G.H. (1984) Molecular cloning of a gene abundantly expressed during fruiting body initiation in Schizophyllum commune. Journal of Bacteriology, 157, 802–8.PubMedGoogle Scholar
  57. Dormer, K.J. (1980) Fundamental Tissue Geometry for Biologists. Cambridge University Press, Cambridge, UK.Google Scholar
  58. Elhiti, M.M.Y., Butler, R.D. and Moore, D. (1979) Cytochemical localization of glutamate dehydrogenase during carpophore development in Coprinus cinereus. New Phytologist, 82, 153–7.CrossRefGoogle Scholar
  59. Elhiti, M.M.Y., Moore, D. and Butler, R.D. (1987) Ultrastructural distribution of glutamate dehydrogenases during fruit body development in Coprinus cinereus. New Phytologist, 107, 531–9.CrossRefGoogle Scholar
  60. Elliott, T.J. (1985) Developmental genetics — from spore to sporophore, in Developmental Biology of Higher Fungi, (eds D. Moore, L.A. Casselton, D.A. Wood and J.C. Frankland), Cambridge University Press, Cambridge, pp. 451–65.Google Scholar
  61. Esposito, R.E., Frink, N., Bernstein, P. and Esposito, M.S. (1972) The genetic control of sporulation in Saccharomyces. II. Dominance and complementation of mutants of meiosis and spore formation. Molecular and General Genetics, 114, 241–8.PubMedCrossRefGoogle Scholar
  62. Esser, K. and Hoffman, F. (1977) Genetic basis for speciation in higher basidiomycetes with special reference to the genus Polyporus, in The Species Concept in Hymenomycetes, (ed. H. Clémençon), Cramer, Vaduz, pp. 189–214.Google Scholar
  63. Esser, K. and Meinhardt, F. (1977) A common genetic control of dikaryotic and monokaryotic fruiting in the basidiomycete Agrocybe aegerita. Molecular and General Genetics, 155, 113–15.CrossRefGoogle Scholar
  64. Esser, K. and Straub, J. (1958) Genetische Untersuchungen an Sordaria macrospora Auersw., Compensation und induktion bei genbedingten Entwicklungsdefekten. Zeitschrift für Vererbungslehre, 89, 729–46.PubMedGoogle Scholar
  65. Esser, K., Stahl, U. and Meinhardt, F. (1977) Genetic aspects of differentiation in fungi, in Biotechnology and Fungal Differentiation, (eds J. Meyrath and J.D. Bu’-Lock), Academic Press, London, pp. 67–75.Google Scholar
  66. Esser, K., Saleh, F. and Meinhardt, F. (1979) Genetics of fruit body production in higher basidiomycetes. II. Monokaryotic and dikaryotic fruiting in Schizophyllum commune. Current Genetics, 1, 85–8.CrossRefGoogle Scholar
  67. Evans, H.J. (1959) Nuclear behaviour in the cultivated mushroom. Chromosoma, 10, 115–35.PubMedCrossRefGoogle Scholar
  68. Fayod, V. (1889) Prodrome d’une histoire naturelle des Agaricinés. Annales des Sciences Naturelles. Botanique Serie, 7-9, 179–411.Google Scholar
  69. Fisher, R. A. (1928) The possible modifications of the wild type to recurrent mutations. American Naturalist, 62, 115–26.CrossRefGoogle Scholar
  70. Fisher, R.A. (1931) The evolution of dominance. Biological Reviews, 6, 345–68.CrossRefGoogle Scholar
  71. Garrett, S.D. (1953) Rhizomorph behaviour in Armillaria mellea (Vahl) Quél. I. Factors controlling rhizomorph initiation by Armillaria mellea in pure culture. Annals of Botany, 17, 63–79.Google Scholar
  72. Garrett, S.D. (1954) Function of the mycelial strands in substrate colonization by the cultivated mushroom Psalliota hortensis. Transactions of the British Mycological Society, 37, 51–7.CrossRefGoogle Scholar
  73. Garrett, S.D. (1956) Biology of Root-Infecting Fungi. Cambridge University Press, Cambridge.Google Scholar
  74. Garrett, S.D. (1960) Inoculum potential, in Plant Pathology: an Advanced Treatise, vol. 3, (eds J.G. Horsfall and A.E. Dimond), Academic Press: New York and London, pp. 23–56.Google Scholar
  75. Garrett, S.D. (1970) Pathogenic Root-Infecting Fungi. Cambridge University Press, Cambridge.Google Scholar
  76. Girbardt, M. (1979) A microfilamentous septal belt (FSB) during induction of cytokinesis in Trametes versicolor (L. ex Fr.). Experimental Mycology, 3, 215–28.CrossRefGoogle Scholar
  77. Gooday, G.W. (1985) Elongation of the stipe of Coprinus cinereus, in Developmental Biology of Higher Fungi, (eds D. Moore, L.A. Casselton, D.A. Wood and J.C. Frankland), Cambridge University Press, Cambridge, pp. 311–31.Google Scholar
  78. Granlund, H.I., Jennings, D.H. and Thompson, W. (1985) Translocation of solute along rhizomorphs of Armillaria mellea. Transactions of the British Mycological Society, 84, 111–19.CrossRefGoogle Scholar
  79. Green, J.B.A. and Smith, J.C. (1991) Growth factors as morphogens: do gradients and thresholds establish body plan? Trends in Genetics, 7, 245–50.PubMedGoogle Scholar
  80. Gregory, P.H. (1984) The fungal mycelium — an historical perspective, in The Ecology and Physiology of the Fungal Mycelium, (eds D.H. Jennings and A.D.M. Rayner), Cambridge University Press: Cambridge, pp. 383–417.Google Scholar
  81. Griffin, D.H., Timberlake, W.E. and Cheney, J.C. (1974) Regulation of macromolecular synthesis, colony development and specific growth rate of Achlya bisexualis during balanced growth. Journal of General Microbiology, 80, 381–8.CrossRefGoogle Scholar
  82. Grove, S.N. (1978) The cytology of hyphal tip growth, in The Filamentous Fungi, vol. 3, Developmental Mycology, (eds J.E. Smith and D.R. Berry). Edward Arnold, London, pp. 28–50.Google Scholar
  83. Gull, K. (1976) Differentiation of septal ultrastructure according to cell type in the basidiomycete Agrocybe praecox. Journal of Ultrastructure Research, 54, 89–94.PubMedCrossRefGoogle Scholar
  84. Gull, K. (1978) Form and function of septa in filamentous fungi, in The Filamentous Fungi, vol. 3, Developmental Mycology, (ed. J.E. Smith and D.R. Berry), Edward Arnold, London, pp. 78–93.Google Scholar
  85. Hammad, F., Watling, R. and Moore, D. (1993a) Cell population dynamics in Coprinus cinereus: narrow and inflated hyphae in the basidiome stipe. Mycological Research, 97, 269–74.CrossRefGoogle Scholar
  86. Hammad, F., Ji, J., Watling, R. and Moore, D. (1993b) Cell population dynamics in Coprinus cinereus: coordination of cell inflation throughout the maturing basidiome. Mycological Research, 97, 275–82.CrossRefGoogle Scholar
  87. Harold, F.M. and Caldwell, J.H. (1990) Tips and currents: electrobiology of apical growth, in Tip Growth in Plant and Fungal Cells (ed. I.B. Heath), Academic Press, San Diego and London, pp. 59–90.Google Scholar
  88. Hedger, J.N. (1985) Tropical agarics: resource relations and fruiting periodicity, in Developmental Biology of Higher Fungi, (eds D. Moore, L.A. Casselton, D.A. Wood and J.C. Frankland), Cambridge University Press, Cambridge, pp. 41–86.Google Scholar
  89. Hedger, J.N., Lewis, P. and Gitay, H. (1993) Litter-trapping by fungi in moist tropical forest, in Aspects of Tropical Mycology, (eds S. Isaac, R. Watling, A.J.S. Whalley and J.C. Frankland), Cambridge University Press, Cambridge, pp. 15–35.Google Scholar
  90. Hereward, F.V. and Moore, D. (1979) Polymorphic variation in the structure of aerial sclerotia of Coprinus cinereus. Journal of General Microbiology, 113, 13–18.CrossRefGoogle Scholar
  91. Horner, J. and Moore, D. (1987) Cystidial morphogenetic field in the hymenium of Coprinus cinereus. Transactions of the British Mycological Society, 88, 479–88.CrossRefGoogle Scholar
  92. Horton, J.S. and Raper, C.A. (1991) A mushroom-inducing DNA sequence isolated from the basidiomycete, Schizophyllum commune. Genetics, 129, 707–16.PubMedGoogle Scholar
  93. Hughes, S.J. (1953) Conidiophores, conidia, and classification. Canadian Journal of Botany, 31, 577–659.CrossRefGoogle Scholar
  94. Hughes, S.J. (1971) On conidia of fungi, and gemmae of algae, bryophytes, and pteridophytes. Canadian Journal of Botany, 49, 1319–39.CrossRefGoogle Scholar
  95. Hynes, R.O. (1992) Integrins: versatility, modulation, and signalling in cell adhesion. Cell, 69, 11–25.PubMedCrossRefGoogle Scholar
  96. Ingold, C.T. (1979), The Nature of Toadstools. Studies in Biology Series, no. 113. Edward Arnold, London.Google Scholar
  97. Jacques-Félix, M. (1967) Recherches morphologiques, anatomiques, morphogénétiques et physiologiques sur des rhizomorphes de champignons supérieurs et sur le déterminisme de leur formation. I. Observations sur les formations’ synnémiques’ des champignons supérieurs dans le milieu naturel. Bulletin Trimestrial de la Societé Mycologique de France, 83, 5–103.Google Scholar
  98. Jennings, D.H. (1991) The physiology and biochemistry of the vegetative mycelium, in Serpula lacrymans: Fundamental Biology and Control Strategies, (eds D.H. Jennings and A.F. Bravery), Wiley, Chichester, pp. 55–79.Google Scholar
  99. Jennings, D.H. and Bravery, A.F. (1991) Serpula lacrymans: Fundamental Biology and Control Strategies. Wiley, Chichester.Google Scholar
  100. Jennings, D.H. and Watkinson, S.C. (1982). Structure and development of mycelial strands in Serpula lacrimans. Transactions of the British Mycological Society, 78, 465–74.CrossRefGoogle Scholar
  101. Ji, J. and Moore, D. (1993) Glycogen metabolism in relation to fruit body maturation in Coprinus cinereus. Mycological Research, 97, 283–9.CrossRefGoogle Scholar
  102. Johnson, T.E. (1976) Analysis of pattern formation in Neurospora perithecial development using generic mosaics. Developmental Biology, 54, 23–36.PubMedCrossRefGoogle Scholar
  103. Johnson, T.E. (1978) Isolation and characterisation of perithecial development mutants in Neurospora. Genetics 88, 27–47.PubMedGoogle Scholar
  104. Kamada, T. and Takemaru, T. (1977a) Stipe elongation during basidiocarp maturation in Coprinus macrorhizus: mechanical properties of stipe cell wall. Plant and Cell Physiology, 18, 831–40.Google Scholar
  105. Kamada, T. and Takemaru, T. (1977b) Stipe elongation during basidiocarp maturation in Coprinus macrorhizus: changes in polysaccharide composition of stipe cell wall during elongation. Plant and Cell Physiology, 18, 1291–1300.Google Scholar
  106. Kamada, T. and Takemaru, T. (1983) Modifications of cell wall polysaccharides during stipe elongation in the basidiomycete Coprinus cinereus. Journal of General Microbiology, 129, 703–9.Google Scholar
  107. Kamada, T., Sumiyoshi, T., Shindo, Y. and Takemaru, T. (1989) Isolation and genetic analysis of resistant mutants to the benzimidazole fungicide benomyl in Coprinus cinereus. Current Microbiology, 18, 215–18.CrossRefGoogle Scholar
  108. Kamada, T., Takemaru, T., Prosser, J.I. and Gooday, G.W. (1991) Right and left handed helicity of chitin microfibrils in stipe cells in Coprinus cinereus. Protoplasma, 165, 64–70.CrossRefGoogle Scholar
  109. Kamada, T. and Tsuru, M. (1993) The onset of the helical arrangement of chitin microfibrils in fruit body development of Coprinus cinereus. Mycological Research, 97, 884–8.CrossRefGoogle Scholar
  110. Kanda, T. and Ishikawa, T. (1986) Isolation of recessive developmental mutants in Coprinus cinereus. Journal of General and Applied Microbiology, 32, 541–3.CrossRefGoogle Scholar
  111. Kanda, T., Goto, A., Sawa, K. et al. (1989a). Isolation and characterization of recessive sporeless mutants in the basidiomycete Coprinus cinereus. Molecular and General Genetics, 216, 526–9.CrossRefGoogle Scholar
  112. Kanda, T., Ishihara, H. and Takemaru, T. (1989b) Genetic analysis of recessive primordiumless mutants in the basidiomycete Coprinus cinereus. Botanical Magazine, Tokyo, 102, 561–4.CrossRefGoogle Scholar
  113. Kanda, T., Arakawa, H., Yasuda, Y. and Takemaru, T. (1990), Basidiospore formation in a mutant of the incompatibility factors and mutants that arrest at meta-anaphase I in Coprinus cinereus. Experimental Mycology, 14, 218–26.CrossRefGoogle Scholar
  114. Kemp, R.F.O. (1977) Oidial homing and the taxonomy and speciation of basidiomycetes with special reference to the genus Coprinus, in The Species Concept in Hymenomycetes, (ed. H. Clemencon, Cramer, Vaduz, pp. 259–73.Google Scholar
  115. Kihn, J.C., Masy, C.L. and Mestdagh, M. M. (1988) Yeast flocculation: competition between nonspecific repulsion and specific bonding in cell adhesion. Canadian Journal of Microbiology, 34, 773–8.PubMedCrossRefGoogle Scholar
  116. Kligman, A.M. (1943) Some cultural and genetic problems in the cultivation of the mushroom Agaricus campestris. American Journal of Botany, 30, 745–63.CrossRefGoogle Scholar
  117. Kropf, D.L., Lupa, M.D.A., Caldwell, J.C. and Harold, F.M. (1983) Cell polarity: endogenous ion currents precede and predict branching in the water mould Achlya. Science, 220, 1385–7.PubMedCrossRefGoogle Scholar
  118. Kropf, D.L., Caldwell, J.C., Gow, N.A.R. and Harold, F.M. (1984) Transcellular ion currents in the water mould Achlya. Amino acid proton symport as a mechanism of current entry. Journal of Cell Biology, 99, 486–96.PubMedCrossRefGoogle Scholar
  119. Kües, U. and Casselton, L.A. (1992) Fungal mating type genes — regulators of sexual development. Mycological Research, 96, 993–1006.CrossRefGoogle Scholar
  120. Lentz, P.L. (1971) Analysis of modified hyphae as a tool in taxonomic research in the higher Basidiomycetes, in Evolution in the Higher Basidiomycetes, (ed. R.H. Petersen), University of Tennessee Press, Knoxville, pp. 99–127.Google Scholar
  121. Leonard, T.J. and Dick, S. (1968) Chemical induction of haploid fruiting bodies in Schizophyllum commune. Proceedings of the National Academy of Sciences of the USA, 59, 745–51.PubMedCrossRefGoogle Scholar
  122. Leslie, J.F. and Leonard, T.J. (1979a) Three independent genetic systems that control initiation of a fungal fruiting body. Molecular and General Genetics, 171, 257–60.CrossRefGoogle Scholar
  123. Leslie, J.F. and Leonard, T.J. (1979b) Monokaryotic fruiting in Schizophyllum commune: genetic control of the response to mechanical injury. Molecular and General Genetics, 175, 5–12.CrossRefGoogle Scholar
  124. Lewis, D. and Vakeria, D. (1977) Resistance to p-fluorophenylalanine in diploid/haploid dikaryons: dominance modifier gene explained as a controller of hybrid multimer formation. Genetical Research, 30, 31–43PubMedCrossRefGoogle Scholar
  125. Locquin, M. (1953) Recherches sur l’organisation et le développement des Agarics, des Bolets et des Clavulaires. Bulletin de la Société Mycologique de France, 69, 389–402.Google Scholar
  126. Lu, B.C. (1991) Cell degeneration and gill remodelling during basidiocarp development in the fungus Coprinus cinereus. Canadian journal of Botany, 69, 1161–9.CrossRefGoogle Scholar
  127. Macfarlane, T.D., Kuo, J. and Hilton, R.N. (1978) Structure of the giant sclerotium of Polyporus mylittae. Transactions of the British Mycological Society, 71, 359–65.CrossRefGoogle Scholar
  128. Manning, J.T. (1976) Is sex maintained to facilitate or minimise mutational advance? Heredity, 36, 351–7.PubMedCrossRefGoogle Scholar
  129. Manning, J.T. (1977) The evolution of dominance: Haldane v Fisher revisited. Heredity, 38, 117–19.PubMedCrossRefGoogle Scholar
  130. Margulis, L. (1974) Five-Kingdom classification and the origin and evolution of cells. Evolutionary Biology, 7, 45–78.CrossRefGoogle Scholar
  131. Mathew, K.T. (1961) Morphogenesis of mycelial strands in the cultivated mushroom Agaricus bisporus. Transactions of the British Mycological Society, 44, 285–90.CrossRefGoogle Scholar
  132. Matthews, T.R. and Niederpruem, D.J. (1972) Differentiation in Coprinus lagopus. I. Control of fruiting and cytology of initial events: Archives of Microbiology, 87, 257–68.Google Scholar
  133. McGillivray, A.M. and Gow, N.A.R. (1986) Applied electrical fields polarize the growth of mycelial fungi. Journal of General Microbiology, 132, 2515–25.Google Scholar
  134. Meinhardt, F. and Esser, K. (1983) Genetic aspects of sexual differentiation in fungi, in Fungal Differentiation, (ed. J.E. Smith), Marcel Dekker, New York, pp. 537–57.Google Scholar
  135. Meinhardt, H. (1984) Models of pattern formation and their application to plant development, in Positional Controls in Plant Development, (ed. P.W. Barlow and D.J. Carr), Cambridge University Press, Cambridge, pp. 1–32.Google Scholar
  136. Meinhardt, H. and Gierer, A. (1974) Applications of a theory of biological pattern formation based on lateral inhibition. Journal of Cell Science, 15, 321–46.PubMedGoogle Scholar
  137. Miller, J.H. (1980) Orientation of the plane of cell division in fern gametophytes: the roles of cell shape and stress. American Journal of Botany, 67, 534–42.CrossRefGoogle Scholar
  138. Miyake, H., Takemaru, T. and Ishikawa, T. (1980a) Sequential production of enzymes and basidiospore formation in fruiting bodies of Coprinus macrorhizus. Archives of Microbiology, 126, 201–5.CrossRefGoogle Scholar
  139. Miyake, H., Tanaka, K. and Ishikawa, T. (1980b) Basidiospore formation in monokaryotic fruiting bodies of a mutant strain of Coprinus macrorhizus. Archives of Microbiology, 126, 207–12.CrossRefGoogle Scholar
  140. Miyata, M., Miyata H. and Johnson, B.F. (1986) Establishment of septum orientation in a morphologically altered fission yeast, Schizosaccharomyces pombe. Journal of General Microbiology, 132, 2535–40.Google Scholar
  141. Mol, P.C., Vermeulen, C.A. and Wessels, J.G.H. (1990) Diffuse extension of hyphae in stipes of Agaricus bisporus may be based on a unique wall structure. Mycological Research, 94, 480–8.CrossRefGoogle Scholar
  142. Moore, D. (1981) Developmental genetics of Coprinus cinereus: genetic evidence that carpophores and sclerotia share a common pathway of initiation. Current Genetics, 3, 145–50.CrossRefGoogle Scholar
  143. Moore, D. (1984a) Positional control of development in fungi, in Positional Controls in Plant Development, (eds P.W. Barlow and D.J. Carr), Cambridge University Press, Cambridge, pp. 107–35.Google Scholar
  144. Moore, D. (1984b) Developmental biology of the Coprinus cinereus carpophore: metabolic regulation in relation to cap morphogenesis. Experimental Mycology, 8, 283–97.CrossRefGoogle Scholar
  145. Moore, D. (1987) The formation of agaric gills. Transactions of the British Mycological Society, 89, 105–8.CrossRefGoogle Scholar
  146. Moore, D. (1991) Perception and response to gravity in higher fungi — a critical appraisal. New Phytologist, 117, 3–23.PubMedCrossRefGoogle Scholar
  147. Moore, D. and Jirjis, R.I. (1981) Electrophoretic studies of carpophore development in the basidiomycete Coprinus cinereus. New Phytologist, 87, 101–13.CrossRefGoogle Scholar
  148. Moore, D., Elhiti, M.M.Y. and Butler, R.D. (1979) Morphogenesis of the carpophore of Coprinus cinereus. New Phytologist, 83, 695–722.CrossRefGoogle Scholar
  149. Moore, D., Homer, J. and Liu, M. (1987a) Co-ordinate control of ammonium-scavenging enzymes in the fruit body cap of Coprinus cinereus avoids inhibition of sporulation by ammonium. FEMS Microbiology Letters, 44, 239–42.CrossRefGoogle Scholar
  150. Moore, D., Liu, M. and Kuhad, R.C. (1987b) Karyogamy-dependent enzyme derepression in the basidiomycete Coprinus. Cell Biology International Reports, 11, 335–41.CrossRefGoogle Scholar
  151. Moore, R.T. (1985). The challenge of the dolipore/parenthesome septum, in Developmental Biology of Higher Fungi, (eds D. Moore, L. A. Casselton, D.A. Wood and J.C. Frankland), Cambridge University Press, Cambridge, pp. 175–212.Google Scholar
  152. Motta, J.J. (1967) A note on the mitotic apparatus in the rhizomorph meristem of Armillaria mellea. Mycologia, 59, 370–5.CrossRefGoogle Scholar
  153. Motta, J.J. (1969) Cytology and morphogenesis in the rhizomorph of Armillaria mellea. American Journal of Botany, 56, 610–19.CrossRefGoogle Scholar
  154. Motta, J.J. (1971) Histochemistry of the rhizomorph meristem of Armillaria mellea. American Journal of Botany, 58, 80–87.CrossRefGoogle Scholar
  155. Motta, J.J. and Peabody, D.C. (1982), Rhizomorph cytology and morphogenesis in Armillaria tabescens. Mycologia, 74, 671–4.CrossRefGoogle Scholar
  156. Mulder, G.H. and Wessels, J.G.H. (1986) Molecular cloning of RNAs differentially expressed in monokaryons and dikaryons of Schizophyllum commune in relation to fruiting. Experimental Mycology, 10, 214–27.CrossRefGoogle Scholar
  157. Nasrallah, J.B. and Srb, A.M. (1973) Genetically related protein variants specifically associated with fruiting body maturation in Neurospora. Proceedings of the National Academy of Sciences of the USA, 70, 1891–3.PubMedCrossRefGoogle Scholar
  158. Nasrallah, J.B. and Srb, A.M. (1977) Occurrence of a major protein associated with fruiting body development in Neurospora and related Ascomycetes. Proceedings of the National Academy of Sciences of the USA, 74, 3831–4.PubMedCrossRefGoogle Scholar
  159. Nasrallah, J.B. and Srb, A.M. (1978) Immunofluorescent localization of a phase-specific protein in Neurospora tetrasperma perithecia. Experimental Mycology, 2, 211–15.CrossRefGoogle Scholar
  160. Nathan, C. and Sporn, M. (1991) Cytokines in context. Journal of Cell Biology, 113, 981–6.PubMedCrossRefGoogle Scholar
  161. Nuss, I., Jennings, D.H. and Veltkamp, C.J. (1991) Morphology of Serpula lacrymans, in Serpula lacrymans: Fundamental Biology and Control Strategies, (eds D.H. Jennings and A.F. Bravery), Wiley, Chichester, pp. 9–38.Google Scholar
  162. Nyunoya, H. and Ishikawa, T. (1979) Control of unusual hyphal morphology in a mutant of Coprinus macrorhizus. Japanese journal of Genetics, 54, 11–20.CrossRefGoogle Scholar
  163. Powell, K.A. and Rayner, A.D.M. (1983) Ultrastructure of the rhizomorph apex in Armillaria bulbosa in relation to mucilage production. Transactions of the British Mycological Society, 81, 529–34.CrossRefGoogle Scholar
  164. Prosser, J.I. (1993) Growth kinetics of mycelial colonies and hyphal aggregates of ascomycetes. Mycological Research, 97.Google Scholar
  165. Pukkila, P.J. and Casselton, L.A. (1991) Molecular genetics of the agaric Coprinus cinereus. More Gene Manipulations in Fungi, (ed. J.W. Bennett and L.A. Lasure), Academic Press, New York, pp. 126–50.CrossRefGoogle Scholar
  166. Rahary, L., Bonaly, R., Lematre, J. and Poulain, D. (1985) Aggregation and disaggregation of Candida albicans germ tubes. FEMS Microbiology Letters, 30, 383–7.CrossRefGoogle Scholar
  167. Raper, J.R. and Krongelb, G.S. (1958) Genetic and environmental aspects of fruiting in Schizophyllum commune Fr. Mycologia, 50, 707–40.CrossRefGoogle Scholar
  168. Rayner, A.D.M. (1994) Differential insulation and the generation of mycelial patterns, in Shape and Form in Plants and Fungi, (ed. D.S. Ingram), Academic Press, London, pp. 291–310.Google Scholar
  169. Rayner, A.D.M. and Webber, J.F. (1984) Interspecific mycelial interactions — an overview, in The Ecology and Physiology of the Fungal Mycelium, (eds D.H. Jennings and A.D.M. Rayner), Cambridge University Press, Cambridge, pp. 383–417.Google Scholar
  170. Rayner, A.D.M., Powell, K.A., Thompson, W. and Jennings, D.H. (1985a) Morphogenesis of vegetative organs, in Developmental Biology of Higher Fungi, (eds D. Moore, L. A. Casselton, D.A. Wood and J.C. Frankland), Cambridge University Press, Cambridge, pp. 249–79.Google Scholar
  171. Rayner, A.D.M., Watling, R. and Frankland, J.C. (1985b). Resource relations — an overview, in Developmental Biology of Higher Fungi, (eds D. Moore, L.A. Casselton, D.A. Wood and J.C. Frankland), Cambridge University Press: Cambridge, pp. 1–40.Google Scholar
  172. Read, D.J. (1991) Mycorrhizas in ecosystems — Nature’s response to the ‘Law of the Minimum’, in Frontiers of Mycology, (ed. D.L. Hawksworth), CAB International, Wallingford, pp. 101–30.Google Scholar
  173. Read, D.J. and Armstrong, W. (1972) A relationship between oxygen transport and the formation of the ectotrophic mycorrhizal sheath in conifer seedlings. New Phytologist, 71, 49–53.CrossRefGoogle Scholar
  174. Read, D.J., Leake, J.R. and Langdale, A.R. (1989) The nitrogen nutrition of mycorrhizal fungi and their host plants, in Nitrogen, Phosphorus and Sulphur Utilization by Fungi, (eds L. Boddy, R. Marchant and D.J. Read), Cambridge University Press, Cambridge, pp. 181–204.Google Scholar
  175. Read, N.D. (1983) A scanning electron microscopic study of the external features of perithecium development in Sordaria humana. Canadian Journal of Botany, 61, 3217–29.CrossRefGoogle Scholar
  176. Read, N.D. (1993) Multicellular development in fungi, in Shape and Form in Plants and Fungi, (ed. D.S. Ingram), Academic Press, London.Google Scholar
  177. Read, N.D. and Beckett, A. (1985) The anatomy of the mature perithecium in Sordaria humana; and its significance for fungal multicellular development. Canadian Journal of Botany, 63, 281–96.CrossRefGoogle Scholar
  178. Redhead, S.A. (1987) The Xerulaceae (Basidiomycetes), a family with sarcodimitic tissues. Canadian Journal of Botany, 65, 1551–62.CrossRefGoogle Scholar
  179. Reijnders, A.F.M. (1948) Études sur le développement et l’organisation histologique des carpophores dans les Agaricales. Recuil des Travaux Botaniaues Néerlandais, 41, 213–396.Google Scholar
  180. Reijnders, A.F.M. (1963) Les problèmes du Développement des Carpophores des Agaricales et de Quelques Groupes Voisins. Dr W. Junk, The Hague.Google Scholar
  181. Reijnders, A.F.M. (1976) Recherches sur le développement et l’histogénèse dans les Asterosporales. Persoonia, 9, 65–83.Google Scholar
  182. Reijnders, A.F.M. (1977) The histogenesis of bulb and trama tissue of the higher Basidiomycetes and its phylogenetic implications. Persoonia, 9, 329–62.Google Scholar
  183. Reijnders, A.F.M. (1979) Developmental anatomy of Coprinus. Persoonia, 10, 383–424.Google Scholar
  184. Reijnders, A.F.M. (1993) On the origin of specialised trama types in the Agaricales. Mycological Research, 97, 257–68.CrossRefGoogle Scholar
  185. Reijnders, A.F.M. and Moore, D. (1985) Developmental biology of agarics — an overview, in Developmental Biology of Higher Fungi, (ed. D. Moore, L.A. Casselton, D.A. Wood and J.C. Frankland), Cambridge University Press, Cambridge, pp. 333–51.Google Scholar
  186. Reynolds, D.R. (1981), Ascomycete Systematics: The Luttrellian Concept. Springer-Verlag, New York.CrossRefGoogle Scholar
  187. Rishbeth, J. (1985) Armillaria: resources and hosts, in Developmental Biology of Higher Fungi, (eds D. Moore, L.A. Casselton, D.A. Wood and J.C. Frankland), Cambridge University Press, Cambridge, pp. 87–101.Google Scholar
  188. Rosin, I.V. and Moore, D. (1985a) Origin of the hymenophore and establishment of major tissue domains during fruit body development in Coprinus cinereus. Transactions of the British Mycological Society, 84, 609–19.CrossRefGoogle Scholar
  189. Rosin, I.V. and Moore, D. (1985b) Differentiation of the hymenium in Coprinus cinereus. Transactions of the British Mycological Society 84, 621–8.CrossRefGoogle Scholar
  190. Rosin, I.V., Horner, J. and Moore, D. (1985) Differentiation and pattern formation in the fruit body cap of Coprinus cinereus, in Developmental Biology of Higher Fungi, (eds D. Moore, L.A. Casselton, D.A. Wood and J.C. Frankland), Cambridge University Press, Cambridge, pp. 333–51.Google Scholar
  191. Ruiters, M.H.J. and Wessels, J.G.H. (1989a) In situ localization of specific RNAs in whole fruiting colonies of Schizophyllum commune. Journal of General Microbiology, 135, 1747–54.Google Scholar
  192. Ruiters, M.H.J. and Wessels, J.G.H. (1989b) In situ localization of specific RNAs in developing fruit bodies of the basidiomycete Schizophyllum commune. Experimental Mycology, 13, 212–22.CrossRefGoogle Scholar
  193. Russo, G.M., Dahlberg, K.R. and Van Etten, J.L. (1982) Identification of a development-specific protein in sclerotia of Sclerotinia sclerotiorum. Experimental Mycology, 6, 259–67.CrossRefGoogle Scholar
  194. Schuren, F.H.J., van der Lende, T.R. and Wessels, J.G.H. (1993) Fruiting genes of Schizophyllum commune are transcriptionally regulated. Mycological Research, 97, 538–42.CrossRefGoogle Scholar
  195. Senathirajah, S. and Lewis, D. (1975) Resistance to amino acid analogues in Coprinus: dominance modifier genes and dominance reversal in dikaryons and diploids. Genetical Research, 25, 95–107.CrossRefGoogle Scholar
  196. Sheppard, P.M. (1967) Natural Selection and Heredity. Hutchinson, London.Google Scholar
  197. Slack, J.M.W. (1983) From Egg to Embryo: Determinative Events in Early Development. Cambridge University Press, Cambridge.Google Scholar
  198. Snider, P.J. (1959) Stages of development in rhizomorphic thalli of Armillaria mellea. Mycologia, 51, 693–707.CrossRefGoogle Scholar
  199. Stahl, U. and Esser, K. (1976) Genetics of fruit body production in higher basidiomycetes. I. Monokaryotic fruiting and its correlation with dikaryotic fruiting in Polyporus ciliatus. Molecular and General Genetics, 148, 183–97.CrossRefGoogle Scholar
  200. Stephenson, N.A. and Gooday, G.W. (1984) Nuclear numbers in the stipe cells of Coprinus cinereus. Transactions of the British Mycological Society, 82, 531–4.CrossRefGoogle Scholar
  201. Streuli, C.H. (1993) Extracellular matrix and gene expression in mammary epithelium. Seminars in Cell Biology, 4, 203–12.PubMedCrossRefGoogle Scholar
  202. Sussman, A.S. (1968) Longevity and survivability of fungi, in The Fungi: An Advanced Treatise, vol. III, (ed. G.C. Ainsworth and A.S. Sussman), Academic Press, New York and London, pp. 447–86.Google Scholar
  203. Swamy, S., Uno, I. and Ishikawa, T. (1984) Morphogenetic effects of mutations at the A and B incompatibility factors in Coprinus cinereus. Journal of General Microbiology, 130, 3219–24.Google Scholar
  204. Takemaru, T. and Kamada, T. (1971) Gene control of basidiocarp development in Coprinus macrorhizus. Reports of the Tottori Mycological Institute, Japan, 9, 21–35.Google Scholar
  205. Takemaru, T. and Kamada, T. (1972) Basidiocarp development in Coprinus macrorhizus. I. Induction of developmental variations. Botanical Magazine (Tokyo), 85, 51–7.CrossRefGoogle Scholar
  206. Talbot, P.H.B. (1968) Fossilized pre-Patouillardian taxonomy? Taxon, 17, 622–8.CrossRefGoogle Scholar
  207. Thompson, W. (1984) Distribution, development and functioning of mycelial cord systems of decomposer basidiomycetes of the deciduous woodland floor, in The Ecology and Physiology of the Fungal Mycelium, (eds D.H. Jennings and A.D.M. Rayner), Cambridge University Press, Cambridge, pp. 185–214.Google Scholar
  208. Timberlake, W.E. (1980) Developmental gene regulation in Aspergillus nidulans. Developmental Biology, 78, 497–510.PubMedCrossRefGoogle Scholar
  209. Timberlake, W.E. and Marshall, M.A. (1988) Genetic regulation of development in Aspergillus nidulans. Trends in Genetics, 4, 162–9.PubMedCrossRefGoogle Scholar
  210. Todd, N.K. and Aylmore, R.C. (1985) Cytology of hyphal interactions and reactions in Schizophyllum commune, in Developmental Biology of Higher Fungi, (eds D. Moore, L.A. Casselton, D.A. Wood and J.C. Frankland), Cambridge University Press, Cambridge, pp. 231–48.Google Scholar
  211. Townsend, B.B. (1954) Morphology and development of fungal rhizomorphs. Transactions of the British Mycological Society, 37, 222–33.CrossRefGoogle Scholar
  212. Townsend, B.B. and Willetts, H.J. (1954) The development of sclerotia of certain fungi. Transactions of the British Mycological Society, 37, 213–21.CrossRefGoogle Scholar
  213. Trinci, A.P.J. (1974) A study of the kinetics of hyphal extension and branch initiation of fungal mycelia. Journal of General Microbiology, 81, 225–36.PubMedCrossRefGoogle Scholar
  214. Trinci, A.P.J. (1978) The duplication cycle and vegetative development in moulds, in The Filamentous Fungi, vol. 3, Developmental Mycology, (eds J.E. Smith and D.R. Berry), Edward Arnold, London, pp. 133–63.Google Scholar
  215. Trinci, A.P.J. (1984) Regulation of hyphal branching and hyphal orientation, in The Ecology and Physiology of the Fungal Mycelium, (eds D.H. Jennings and A.D.M. Rayner), Cambridge University Press, Cambridge, pp. 23–52.Google Scholar
  216. Trinci, A.P.J. and Banbury, G.H. (1967) A study of the tall conidiophores of Aspergillus giganteus. Transactions of the British Mycological Society, 50, 525–38.CrossRefGoogle Scholar
  217. Turian, G. (1978) Sexual morphogenesis in the Ascomycetes, in The Filamentous Fungi, vol. 3, Developmental Mycology, (eds J.E. Smith and D.R. Berry), 315–33. Edward Arnold, London.Google Scholar
  218. Ullrich, R.C. (1973) Sexuality, incompatibility, and intersterility in the biology of the Sistotrema brinkmannii aggregate. Mycologia, 65, 1234–49.CrossRefGoogle Scholar
  219. Uno, I. and Ishikawa, T. (1971) Chemical and genetical control of induction of monokaryotic fruiting bodies in Coprinus macrorhizus. Molecular and General Genetics, 113, 228–39.CrossRefGoogle Scholar
  220. Van der Valk, P. and Marchant, R. (1978) Hyphal ultrastructure in fruit body primordia of the basidiomycetes Schizophyllum commune and Coprinus cinereus. Protoplasma, 95, 57–72.CrossRefGoogle Scholar
  221. Waters, H. (1972) Aspects of sclerotium morphogenesis in Coprinus lagopus (sensu) Bull. PhD Thesis, University of Manchester.Google Scholar
  222. Waters, H., Moore, D. and Butler, R.D. (1975a) Morphogenesis of aerial sclerotia of Coprinus lagopus. New Phytologist, 74, 207–13.CrossRefGoogle Scholar
  223. Waters, H., Butler, R.D. and Moore, D. (1975b) Structure of aerial and submerged sclerotia of Coprinus lagopus. New Phytologist, 74, 199–205.CrossRefGoogle Scholar
  224. Watkinson, S.C. (1971) The mechanism of mycelial strand induction in Serpula lacrimans: a possible effect of nutrient distribution. New Phytologist, 70, 1079–88.CrossRefGoogle Scholar
  225. Watkinson, S.C. (1975) The relation between nitrogen nutrition and the formation of mycelial strands in Serpula lacrimans. Transactions of the British Mycological Society, 64, 195–200.CrossRefGoogle Scholar
  226. Watkinson, S.C. (1979) Growth of rhizomorphs, mycelial strands coremia and sclerotia, in Fungal Walls and Hyphal Growth, (ed. J.H. Burnett and A.P.J. Trinci), Cambridge University Press, Cambridge, pp. 93–113.Google Scholar
  227. Watling, R. (1971) Polymorphism in Psilocybe merdaria. New Phytologist, 70, 307–26.CrossRefGoogle Scholar
  228. Watling, R. (1985) Developmental characters of agarics, in Developmental Biology of Higher Fungi, (ed. D. Moore, L.A. Casselton, D.A. Wood and J.C. Frankland), Cambridge University Press, Cambridge, pp. 281–310.Google Scholar
  229. Watling, R. and Moore, D. (1994) Moulding moulds into mushrooms: shape and form in the higher fungi, in Shape and Form in Plants and Fungi, (ed. D.S. Ingram), Academic Press, London, pp. 274–92.Google Scholar
  230. Watling, R. and Nicoll, H. (1980) Sphaerocysts in Lactarius rufus. Transactions of the British Mycological Society 75, 331–3.CrossRefGoogle Scholar
  231. Webster, J. (1980) Introduction to Fungi, 2nd edn. Cambridge University Press, Cambridge.Google Scholar
  232. Wessels, J.G.H. (1992) Gene expression during fruiting in Schizophyllum commune. Mycological Research, 96, 609–20.CrossRefGoogle Scholar
  233. Wessels, J.G.H., Mulder, G.H. and Springer, J. (1987) Expression of dikaryon-specific and non-specific mRNAs of Schizophyllum commune in relation to environmental conditions and fruiting. Journal of General Microbiology, 133, 2557–61.Google Scholar
  234. Whittaker, R.H. (1969) New concepts of kingdoms of organisms. Science, 163, 150–60.PubMedCrossRefGoogle Scholar
  235. Willetts, H.J. (1968) The development of stromata of Sclerotinia fructicola and related species. II. In fruits. Transactions of the British Mycological Society, 51, 633–42.CrossRefGoogle Scholar
  236. Willetts, HJ. (1969) Structure of the outer surfaces of sclerotia of certain fungi. Archiv für Mikrobiologie, 69, 48–53.PubMedCrossRefGoogle Scholar
  237. Willetts, H.J. (1971) The survival of fungal sclerotia under adverse environmental conditions. Biological Reviews, 46, 387–407.CrossRefGoogle Scholar
  238. Willetts, H.J. (1972) The morphogenesis and possible evolutionary origins of fungal sclerotia. Biological Reviews, 47, 515–36.CrossRefGoogle Scholar
  239. Willetts, H.J. and Bullock, S. (1992) Developmental biology of sclerotia. Mycological Research, 96, 801–16.CrossRefGoogle Scholar
  240. Willetts, H.J. and Calonge, F.D. (1969) Spore development in the brown rot fungi (Sclerotinia spp.). New Phytologist, 68, 123–31.CrossRefGoogle Scholar
  241. Willetts, H.J. and Wong, A.L. (1971) Ontogenetic diversity of sclerotia of Sclerotinia sclerotiorum and related species. Transactions of the British Mycological Society, 57, 515–24.CrossRefGoogle Scholar
  242. Williams, M.A.J. (1986) Studies on the structure and development of Flammulina velutipes (Curtis: Fries) Singer. PhD Thesis, University of Bristol.Google Scholar
  243. Williams, M.A.J., Beckett, A. and Read, N.D. (1985) Ultrastructural aspects of fruit body differentiation in Flammulina velutipes, in Developmental Biology of Higher Fungi (ed. D. Moore, L.A. Casselton, D.A. Wood and J.C. Frankland), Cambridge University Press, Cambridge, pp. 429–50.Google Scholar
  244. Wittier, R., Baumgartl, H., Lubbers, D.W. and Shugerl, K. (1986) Investigations of oxygen transfer into Penicillium chrysogenum pellets by microprobe measurements. Biotechnology and Bioengineering, 28, 1024–36.PubMedCrossRefGoogle Scholar
  245. Wosten, H.A.B., De Vries, O.M.H. and Wessels, J.G.H. (1993) Interfacial self-assembly of a fungal hydrophobin into a hydrophobic rootlet layer. Plant Cell, 5, 1567–74.PubMedGoogle Scholar
  246. Wosten, H.A.B., Asgeirsdottir, S.A., Krook, J.H., Drenth, J.H.H. and Wessels, J.G.H. (1994) The fungal hydrophobin Sc3p self-assembles at the surface of aerial hyphae as a protein membrane constituting the hydrophobic rootlet layer. European Journal of Cell Biology, 63, 122–9.PubMedGoogle Scholar
  247. Yashar, B.M. and Pukkila, PJ. (1985) Changes in polyadenylated RNA sequences associated with fruiting body morphogenesis in Coprinus cinereus. Transactions of the British Mycological Society, 84, 215–26.CrossRefGoogle Scholar
  248. Zantinge, B., Dons, H. and Wessels, J.G.H. (1979) Comparison of poly(A)-containing RNAs in different cell types of the lower eukaryote Schizophyllum commune. European Journal of Biochemistry, 101, 251–60.PubMedCrossRefGoogle Scholar
  249. Zolan, M.E., Tremel, C.J. and Pukkila, P.J. (1988) Production and characterization of radiation-sensitive meiotic mutants of Coprinus cinereus. Genetics, 120, 379–87.PubMedGoogle Scholar

Copyright information

© Neil A.R. Gow and Geoffrey M. Gadd 1995

Authors and Affiliations

  • D. Moore
    • 1
  1. 1.Microbiology Research Group, Department of Cell and Structural Biology, School of Biological SciencesThe University of ManchesterManchesterUK

Personalised recommendations