Foundations of Knowledge Acquisition pp 313-330 | Cite as
On the Automated Discovery of Scientific Theories
Chapter
- 260 Downloads
Abstract
This paper summarizes recent research results on applications of computational learning theory to problems involving rich systems of knowledge representation, in particular, first-order logic and extensions thereof.
Keywords
Truth Detection Inductive Inference Discovery Problem Approximate Truth Computational Learning Theory
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- [1]Blumer, A., A. Ehrenfeucht, D. Haussler, & M. Warmuth (1987). Learnability and the Vapnik-Chervonenkis Dimension (Technical Report UCSC-CRL-87-20). Santa Cruz: University of California.Google Scholar
- [2]Case, J. & Fulk, M. (Eds.) (1990). Proceedings of the third annual workshop on computational learning theory, San Mateo, CA: Morgan-Kaufmann.Google Scholar
- [3]Chang, C. C. & Keisler, H. J. (1973). Model theory, Amsterdam: North-Holland.zbMATHGoogle Scholar
- [4]Ebbinghaus, H.-D. (1985). Extended logics: the general framework. In Barwise, J. & S. Feferman (eds.), Model theoretic logics. New York: Springer-Verlag.Google Scholar
- [5]Gaifman, H., Osherson, D. & Weinstein, S. (1990). A reason for theoretical terms. Erkenntnis, 32, 149–159.CrossRefGoogle Scholar
- [6]Glymour, C. (1985). Inductive inference in the limit. Erkenntnis, 22, 23–31.CrossRefGoogle Scholar
- [7]Gold, E. M. (1967). Language identification in the limit. Information and Control, 10, 447–474.CrossRefGoogle Scholar
- [8]Hempel, C. G. (1965) Aspects of scientific explanation and other essays in the philosophy of science. The Free Press.Google Scholar
- [9]Langley, P., Bradshaw, G., & Simon, H. (1983). Rediscovering chemistry with the BACON system. In R. Michalski, J. Carbonell, & T. Mitchell (Eds.) Machine learning: An artificial intelligence approach. Palo Alto, CA: Tioga.Google Scholar
- [10]Langley, P. & Nordhausen, B. (1986). A framework for empirical discovery. In Proceedings of the International Meeting on Advances in Learning, Les Arcs, France.Google Scholar
- [11]Osherson, D., Stob, M., & Weinstein, S. (1986). Systems that Learn. Cambridge, MA: MIT Press.Google Scholar
- [12]Osherson, D., Stob, M., & Weinstein, S. (1989). On approximate truth. In R. Rivest, D. Haussler, & M. Warmuth (Eds.), Proceedings of the second annual workshop on computational learning theory. San Mateo, CA: Morgan-Kaufmann.Google Scholar
- [13]Osherson, D., Stob, M., & Weinstein, S. (1989). A theory of approximate truth. (Technical Report). Cambridge, MA: M.I.T.Google Scholar
- [14]Osherson, D. & Weinstein, S. (1986). Identification in the limit of first-order structures. Journal of Philosophical Logic, 15, 55–81.CrossRefGoogle Scholar
- [15]Osherson, D., Stob, M., & Weinstein, S. (1988). Mechanical learners pay a price for Bayesianism. Journal of Symbolic Logic, 53, 1245–1251.zbMATHCrossRefGoogle Scholar
- [16]Osherson, D. & Weinstein, S. (1989). Paradigms of truth detection. Journal of Philosophical Logic, 18, 1–42.CrossRefGoogle Scholar
- [17]Osherson, D., Stob, M., & Weinstein, S. (1991). A universal inductive inference machine,” Journal of Symbolic Logic, 56, 661–672.zbMATHCrossRefGoogle Scholar
- [18]Osherson, D., Stob, M., & Weinstein, S., (in press). A universal method of scientific inquiry. Machine Learning.Google Scholar
- [19]Osherson, D., Stob, M., & Weinstein, S. (1991). New directions in automated scientific discovery. Information Sciences.Google Scholar
- [20]Osherson, D. & Weinstein, S. (1989). Identifiable collections of countable structures. Philosophy of Science, 56, 95–105.CrossRefGoogle Scholar
- [21]Osherson, D. & Weinstein, S. (1990). On advancing simple hypotheses. Philosophy of Science, 57, 266–277.CrossRefGoogle Scholar
- [22]Osherson, D. & Weinstein, S. (in press). Relevant consequence and scientific discovery. Journal of Philosophical Logic.Google Scholar
- [23]Rivest, R., Haussler, D., & Warmuth, M. (Eds.) (1989). Proceedings of the second annual workshop on computational learning theory. San Mateo, CA: Morgan-Kaufmann.Google Scholar
- [24]Schurz, G. (1991). Relevant deduction. Erkenntnis.Google Scholar
- [25]Schurz, G. & Weingartner, P. (1987). Verisimilitude defined by relevant consequence-elements: A new reconstruction of Popper’s idea. In T. A. Kuipers (Ed.), What is closer-to-the-truth? Amsterdam: Rodopi.Google Scholar
- [26]Shapiro, E. (1981). An algorithm that infers theories from facts. In Proceedings of the seventh international joint conference on artificial intelligence.Google Scholar
- [27]Valiant, L. (1984). A theory of the learnable. Communications of the ACM, 27, 1134–1142.zbMATHCrossRefGoogle Scholar
- [28]Weingartner, P. (1988). Remarks on the consequence-class of theories. In E. Scheibe (Ed.), The role of experience in science. Walter de Gruyter.Google Scholar
- [29]Weingartner, P. & Schurz, G. (1986). Paradoxes solved by simple relevance criteria. Logique et Analyse.Google Scholar
- [30]J. Zytkow (1987). Combining many searches in the FAHRENHEIT discovery system. In Proceedings of the Fourth International Workshop on Machine Learning, Irvine CA.Google Scholar
Copyright information
© Kluwer Academic Publishers 1993