Skip to main content

A Unique Design of Fiber-Optic Interconnection Networks and Algorithms

  • Chapter
Parallel Computing Using Optical Interconnections

Part of the book series: The Springer International Series in Engineering and Computer Science ((SECS,volume 468))

Abstract

A unique 2D mesh called reconfigurable array with spanning optical buses (RASOB) is described, which supports a high degree of transparency (e.g. bit-rate) and reconfigurability with a low control and hardware (e.g. optical switches) complexity. Efficient algorithms that can take advantage of the unique features of the architecture are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Akl, D. Barnard, and R. Doran. Design, analysis, and implementation of a parallel tree search algorithm. IEEE Trans. on Pattern Analysis and Machine Intelligence, PAMI-4(2):192–203, March 1982.

    Google Scholar 

  2. R. Alferness, L. Buhl, S. Korotky, and R. Tucker. High-speed Δ β-reversal directional coupler switch. In Photonic Switching, OSA Technical Digest, volume 13, pages 77–78, 1987.

    Google Scholar 

  3. A. Benner, H. Jordan, and V. Heuring. Optically switched lithium niobate directional couplers for digital optical computing. In SPIE Proceedings, Digital Optical Computing II, volume 1215, pages 343–352, January 1990.

    Google Scholar 

  4. F. Bermon and L. Snyder. On mapping parallel algorithms into parallel architectures. Journal of Parallel and Distributed Computing, 4:439–458, 1987.

    Article  Google Scholar 

  5. S. Bhatt, F. Chung, T. Leighton, and A. Rosenberg. Optimal simulations of tree machines. In Symp. on Foundations of Computer Sciences, pages 274–282, October 1986.

    Google Scholar 

  6. D. Chiarulli, R. Ditmore, R. Melhem, and S. Levitan. An all optical addressing circuit: Experimental results and scalability analysis. IEEE/OSA Journal of Lightwave Technology, 9(12):1717–1725, 1991.

    Article  Google Scholar 

  7. J. Cooper and S. Akl. Efficient selection on a binary tree. Information Processing Letters, 23(3):123–126, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  8. E. Dekel and S. Sahni. Binary trees and parallel scheduling algorithms. IEEE Transactions on Computers, 32(3):307–315, 1983.

    MATH  Google Scholar 

  9. Z. Guo. Optically interconnected processor arrays with switching capability. Journal of Parallel and Distributed Computing, 23:314–329, 1994.

    Article  Google Scholar 

  10. Z. Guo et al. Array processors with pipelined optical busses. Journal of Parallel and Distributed Computing, 12(3):269–282, 1991.

    Article  Google Scholar 

  11. A. Gupta and S. Hambrusch. Embedding complete binary trees into butterfly networks. IEEE Transactions on Computers, 40(7):853–863, 1991.

    Article  MathSciNet  Google Scholar 

  12. A. Gupta and S. Hambrusch. Load balanced tree embeddings. Parallel computing, 18:595–614, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  13. E. Horowitz and A. Zorat. The binary tree as an interconnection network: applications to multiprocessor systems and VLSI. IEEE Transactions on Computers, 30:247–253, April 1981.

    MathSciNet  Google Scholar 

  14. V.P. Kumar and C.S. Raghavendra. Array processors with multiple broadcasting. Journal of Parallel and Distributed Computing, 2:173–190, 1987.

    Article  MATH  Google Scholar 

  15. R. Lin and S. Olariu. Reconfigurable buses with shift switching — architecture and applications. In Int’l Phoenix Conf. on Computers and Communications, pages 23–29, 1993.

    Google Scholar 

  16. Y. Mei and C. Qiao. Embedding binary trees in arrays with optical buses. In International Conference on Massively Parallel Processing Using Optical Interconnections (MPPOI), pages 136–141, October 1997.

    Google Scholar 

  17. R. Miller, V.K.P. Kumar, D.I. Reisis, and Q.F. Stout. Parallel computations on reconfigurable meshes. IEEE Transactions on Computers, 42:678–692, 1993.

    Article  Google Scholar 

  18. B. Monien and H. Sudborough. Simulating binary trees on hypercubes. In 3rd Aegean Workshop on Computing: VLSI algorithms and architectures (also in Vol. 319 of Lecture Notes in Computer Science, Springer-Verlag), pages 170–180, July 1988.

    Google Scholar 

  19. C. Qiao. On designing communication-intensive algorithms for a spanning optical bus based array. Parallel Processing Letters, 5(5):499–511, 1995.

    Article  Google Scholar 

  20. C. Qiao and Y. Mei. An optimal embedding of binary trees in a square reconfigurable arrays with spanning optical buses. Parallel Processing Letters, 1998. to appear.

    Google Scholar 

  21. C. Qiao and R. Melhem. Time-division optical communications in multiprocessor arrays. IEEE Transactions on Computers, 42(5):577–590, May 1993.

    Article  Google Scholar 

  22. C. Qiao and R. Melhem. Reconfiguration with time-division multiplexed MINs for multiprocessor communications. IEEE Transactions on Parallel and Distributed Systems, 5(4):337–352, 1994.

    Article  Google Scholar 

  23. C. Qiao, R. Melhem, D. Chiarulli, and S. Levitan. Optical multicasting in linear arrays. International Journal of Optical Computing, 2(1):31–48, 1991.

    Google Scholar 

  24. D. Sarrazin, H. Jordan, and V. Heuring. Fiber optic delay line memory. Applied Optics, 29(5):627–637, February 1990.

    Article  Google Scholar 

  25. Q.F. Stout. Mesh connected computers with broadcasting. IEEE Transactions on Computers, 32:826–830, 1983.

    MATH  Google Scholar 

  26. S. Tang et al. 1-GHz clock signal distribution for multiprocessor supercomputer. In International Conference on Massively Parallel Processing Using Optical Interconnections (MPPOI), pages 186–191, 1996.

    Google Scholar 

  27. A. Wagner and D. Corneil. Embedding trees in a hypercube is NP-complete. SIAM Journal on Computing, 15(1):570–590, 1990.

    Article  MathSciNet  Google Scholar 

  28. A. Wu. Embedding of tree networks into hypercubes. Journal of Parallel and Distributed Computing, 2:238–249, 1985.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this chapter

Cite this chapter

Qiao, C. (1998). A Unique Design of Fiber-Optic Interconnection Networks and Algorithms. In: Li, K., Pan, Y., Zheng, S.Q. (eds) Parallel Computing Using Optical Interconnections. The Springer International Series in Engineering and Computer Science, vol 468. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-27268-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-27268-9_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8296-6

  • Online ISBN: 978-0-585-27268-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics