Mathematical Formalism and Economic Explanation

  • Philip Mirowski
Part of the Recent Economic Thought book series (RETH, volume 8)


Is there really nothing useful or novel to be said about the relationship between the study of economic phenomena and the casting of economic inquiry in quantitative and mathematical format? Everyone is fully aware that the trend over the last century has been toward ever greater mathematical sophistication as part and parcel of the professionalization of the disci-pline of economics. Everyone is equally aware that this trend has provoked periodic controversies over the meaning and significance of this conjunc-ture. Where awareness, or perhaps self-consciousness, is deficient is in the areas of the historical determinants of mathematical conceptualization, and of recent developments in the history and philosophy of mathematics.


Economic Theory Mathematical Formalism Neoclassical Economist Mathematical Economic Abstract Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aristotle, 1962. The Politics, trans. E. Barker, Oxford: Oxford University Press.Google Scholar
  2. Arrow, Kenneth. 1951. “Mathematical Models in the Social Sciences”, in. D. Lerner & H. Lasswell, eds., The Policy Sciences. Stanford, Cal.: Stanford Univ. Press.Google Scholar
  3. Arrow, Kenneth, and Hahn, Frank. 1971. General Competitive Analysis. San Francisco: Holden-Day.Google Scholar
  4. Barnes, Barry, and Shapin, Steven. 1979. Natural Order. Beverley Hills, CA: Sage.Google Scholar
  5. Baumol, William, and Goldfeld, Steven. 1968. Precursors in Mathematical Economics. London: LSE Reprints.Google Scholar
  6. Bloor, David. 1973. Wittgenstein and Mannheim on the Sociology of Mathematics. Studies in the History and Philosophy of Science 4:173–191.CrossRefGoogle Scholar
  7. Bloor, David. 1978. Polyhedra and the Abominations of Leviticus. British Journal for the History of Science 11:245–272.CrossRefGoogle Scholar
  8. Bloor, David. 1983. Wittgenstein: A Social Theory of Knowledge. New York: Columbia University Press.Google Scholar
  9. Bompaire, François. 1932. L’Économie Mathematique D’Apres Comparée de ses Representations les Plus Typiques. Revue D’Économie Politique 46:1321–1346.Google Scholar
  10. Bouvier, Emile. 1901. La Methode Mathématique en Économie Politique. Revue D’Économie Politique 15:817–850, 1029–1086.Google Scholar
  11. Brewer, J., and Smith, M. 1981. Emmy Noether New York: Marcel Dekker.Google Scholar
  12. Buckley, P., and Peat, F. 1979. A Question of Physics. London: Routledge and Kegan Paul.Google Scholar
  13. Campbell, Norman. 1957. What is Science? New York: Dover.Google Scholar
  14. Charlesworth, James, ed. 1963. Mathematics and the Social Sciences. Philadelphia: American Academy of Political & Social Science.Google Scholar
  15. Chipman, John, et al. 1971. Preferences, Utility and Demand. New York: Harcourt Brace Jovanovich.Google Scholar
  16. Clower, Robert. 1965. The Keynesian Counterrevolution. In F. Hahn and F. Brechling (eds.), The Theory of Interest Rates. London: Macmillan.Google Scholar
  17. Clower, Robert. 1967. A Reconsideration of the Microfoundations of Monetary Theory. Western Economic Journal 6:1–9.Google Scholar
  18. Colvin, Phyllis. 1977. Ontological and Epistemological Commitments in the Social Sciences. In E. Mendelsohn, P. Weingart, and R. Whitley (eds.), The Social Production of Scientific Knowledge. Boston: Reidel.Google Scholar
  19. Cournot, A. 1897. Researches into the Mathematical Principles of the Theory of Wealth, Trans. N. Bacon. New York: Macmillan.Google Scholar
  20. Debreu, Gerard. 1959. The Theory of Value. New Haven: Yale University Press.Google Scholar
  21. Debreu, Gerard. 1984. Economic Theory in the Mathematical Mode. American Economic Review 74:267–278.Google Scholar
  22. Dennis, Ken. 1982. Economic Theory and the Problem of Translation. Journal of Economic Issues 16:691–712; 1039–1062.Google Scholar
  23. Douglas, Mary. 1966. Purity and Danger. London: Routledge and Kegan Paul.Google Scholar
  24. Douglas, Mary. 1970. Natural Symbols. London: Barrie and Jenkins.Google Scholar
  25. Durbin, John. 1985. Modern Algebra. 2nd ed. New York: Wiley.Google Scholar
  26. Ellerman, David. 1980. Property Theory and Orthodox Economics. In E. Nell (ed.), Growth, Property and Profits. Cambridge: Cambridge University Press.Google Scholar
  27. Ellerman, David. 1984. Arbitrage Theory: A Mathematical Introduction. SIAM Review 26:241–261.CrossRefGoogle Scholar
  28. Elliott, J., and Dawber, P. 1979. Symmetries in Physics. New York: Oxford University Press.Google Scholar
  29. Fisher, Irving. 1926. Mathematical Investigations in the Theory of Value and Prices. New Haven, CT: Yale University Press.Google Scholar
  30. Galison, Peter. 1983. Rereading the Past from the End of Physics. In L. Graham, W. Lepenies, and P. Weingart (eds.), The Function and Uses of Disciplinary Histories. Boston: Reidel.Google Scholar
  31. Garegnani, Pierangelo. 1983. On a Change in the Notion of Equilibrium in Recent Work on Value and Distribution. In J. Eatwell and M. Milgate (eds.), Keynes’ Economics and the Theory of Value. Oxford: Oxford University Press.Google Scholar
  32. Georgescu-Roegen, Nicholas. 1971. The Entropy Law and the Economic Process. Cambridge: Harvard University Press.Google Scholar
  33. Georgescu-Roegen, Nicholas. 1976. Energy and Economic Myths. Elmsford, NY: Pergamon Press.Google Scholar
  34. Giedymin, Jerzy. 1982. Science and Convention. Elmsford, NY.: Pergamon Press.Google Scholar
  35. Gorenstein, Daniel. 1985. “The Enormous Theorem”, Scientific American 253:104–115.CrossRefGoogle Scholar
  36. Grattan-Guiness, Ivor. 1980. From the Calculus to Set Theory 1630-1910. London: Duckworth.Google Scholar
  37. Green, H. A. J. 1971. Consumer Theory. Baltimore: Penguin.Google Scholar
  38. Hacking, Ian. 1984. Representing and Intervening. Cambridge: Cambridge University Press.Google Scholar
  39. Hamermesh, Morton. 1962. Group Theory. Reading: Addison-Wesley.Google Scholar
  40. Harcourt, Geoffrey. 1984. Reflections on the Development of Economics as a Discipline. History of Political Economy 16:489–517.CrossRefGoogle Scholar
  41. Harman, P. M. 1982. Metaphysics and Natural Philosophy. Sussex: Harvester.Google Scholar
  42. Herstein, I. 1964. Topics in Algebra. New York: Blaisdell.Google Scholar
  43. Hicks, J. R. 1979. Causality in Economics. New York: Basic Books.Google Scholar
  44. Hofstadter, Douglas. 1979. Gödel, Escher, Bach. New York: Basic Books.Google Scholar
  45. Hurwicz, Leonid, and Richter, Marcel. 1979. An Integrability Condition with Applications to Utility Theory and Thermodynamics. Journal of Mathematical Economics 6:7–14.CrossRefGoogle Scholar
  46. Ipsen, D. 1960. Units, Dimensions and Dimensionless Numbers. New York: McGraw Hill.Google Scholar
  47. Jevons, W. S. 1970. The Theory of Political Economy. Baltimore: Penguin.Google Scholar
  48. Katzner, Donald. 1983. Analysis Without Measurement. New York: Cambridge University Press.Google Scholar
  49. Kindleberger, Charles. 1984. A History of Finance in Western Europe. Boston: Allen and Unwin.Google Scholar
  50. Kitcher, Philip. 1983. The Nature of Mathematical Knowledge. New York: Oxford University Press.Google Scholar
  51. Kline, Morris. 1972. Mathematical Thought from Ancient to Modern Times. New York: Oxford University Press.Google Scholar
  52. Kline, Morris. 1980. Mathematics: The Loss of Certainty. New York: Oxford University Press.Google Scholar
  53. Koopmans, Tjalling. 1954. On the Use of Mathematics in Economics. Review of Economics and Statistics 36:377–379.CrossRefGoogle Scholar
  54. Koopmans, Tjalling. 1957. Three Essays on the State of Economic Science. New York: McGraw Hill.Google Scholar
  55. Kornai, J. 1971. Anti-Equilibrium. Amsterdam: North Holland.Google Scholar
  56. Krantz, David, et al. 1971. Foundations of Measurement, vol. I. New York: Academic Press.Google Scholar
  57. Kyburg, Henry. 1984. Theory and Measurement. New York: Cambridge University Press.Google Scholar
  58. Ladrière, Jean. 1972. L’Applicabilité des Mathématiques aux sciences sociales. Économies et Sociétes 6:1511–1548.Google Scholar
  59. Lakatos, Imre. 1976. Proofs and Refutations. Cambridge: Cambridge University Press.Google Scholar
  60. Lancaster, Kelvin. 1966. A New Approach to Consumer Theory. Journal of Political Economy 74:132–157.CrossRefGoogle Scholar
  61. Leontief, W. 1982. Letter: Academic Economics. Science 217:104–107.CrossRefGoogle Scholar
  62. Levine, David. 1980. On the Classical Theory of Markets. Australian Economic Papers 19:1–15.Google Scholar
  63. Levinson, Arnold. 1978. Wittgenstein and Logical Laws. In K. T. Fann (ed.), Ludwig Wittgenstein: The Man and His Philosophy. New York: Humanities.Google Scholar
  64. Lichnerowicz, André. 1972. Mathématique et Transdisciplinarité. Économie et Sociéte 6:1497–1509.Google Scholar
  65. Ljapin, E. 1974. Semigroups. 3rd edition. Providence: American Mathematical Society.Google Scholar
  66. Magill, M. J. P. 1970. On a General Economic Theory of Motion. New York: Springer Verlag.Google Scholar
  67. Marshall, Alfred. 1920. Principles of Economics. 8th ed. London: Macmillan.Google Scholar
  68. Marshall, Alfred. 1971. The Early Economic Writings. New York: Free Press.Google Scholar
  69. Marx, Karl. 1971. Theories of Surplus Value, Part III, Moscow: Progress Pub.Google Scholar
  70. Marx, Karl. 1977. Capital, vol. I. B. Fowkes, trans. New York: Vintage.Google Scholar
  71. McCloskey, Donald. 1986. The Rhetoric of Economics. Madison: Univ. of Wisconsin Press.Google Scholar
  72. Meyerson, Emile. 1962. Identity and Reality. New York: Dover.Google Scholar
  73. Mirowski, Philip. 1984a. Macroeconomic Instability and Natural Fluctuations. Journal of Economic History 44:345–354.CrossRefGoogle Scholar
  74. Mirowski, Philip. 1984b. Physics and the Marginalist Revolution. Cambridge Journal of Economics. 8:361–379.Google Scholar
  75. Mirowski, Philip. 1984c. The Role of Conservation Principles in 20th Century Economic Theory. Philosophy of the Social Sciences, 14:461–473.CrossRefGoogle Scholar
  76. Mirowski, Philip. Forthcoming. More Heat Than Light.Google Scholar
  77. Moret, Jacques. 1915. L’Emploi des Mathématiques en Économie Politique. Paris: Giard & Brière.Google Scholar
  78. Morgenstern, Oskar. 1963a. On the Accuracy of Economic Observations. 2nd edition. Princeton, NJ: Princeton University Press.Google Scholar
  79. Morgenstern, Oskar. 1963b. Limits to the Use of Mathematics in Economics. In Charlesworth (1963).Google Scholar
  80. Morishima, Michio. 1984. The Good and Bad Uses of Mathematics. In P. Wiles and G. Routh (eds.), Economics in Disarray. Oxford: Basil Blackwell.Google Scholar
  81. Mulvey, J., ed. 1981. The Nature of Matter. Oxford: Oxford University Press.Google Scholar
  82. Nagel, E., and Newman, J. 1958. Gödel’s Proof. New York: New York University Press.Google Scholar
  83. Olson, Harry. 1958. Dynamical Analogies. Princeton, NJ: Van Nostrand.Google Scholar
  84. O’Malley, Mary. 1971. The Emergence of the Concept of an Abstract Group, unpub. Ph.D. thesis, Columbia University.Google Scholar
  85. Palomba, Giuseppe. 1976. Les Héretiques dans l’Économie Mathématique. Économie Appliquée 29:353–407.Google Scholar
  86. Penrose, Roger. 1982. Playing with Numbers. Times Literary Supplement May 14:523–524.Google Scholar
  87. Petley, B. W. 1985. The Fundamental Physical Constants and the Frontiers of Measurement. Boston: Adam Hilger.Google Scholar
  88. Prigogine, Ilya. 1980. From Being to Becoming. San Francisco: Freeman.Google Scholar
  89. Putnam, Hilary. 1983. Models and Reality. In Realism and Reason. Cambridge: Cambridge University Press.Google Scholar
  90. Restivo, Sal. 1983. The Social Relations of Physics, Mysticism and Mathematics. Boston: Reidel.Google Scholar
  91. Robertson, Ross. 1949. Mathematical Economics Before Cournot. Journal of Political Economy 57:524–527.CrossRefGoogle Scholar
  92. Rosen, Joe. 1983. A Symmetry Primer for Scientists. New York: Wiley.Google Scholar
  93. Samuelson, Paul. 1952. Economic Theory and Mathematics—An Appraisal. American Economic Review 42:56–69.Google Scholar
  94. Samuelson, Paul. 1972. Collected Scientific Papers. Cambridge: MIT Press.Google Scholar
  95. Samuelson, Paul. 1983. The 1983 Nobel Prize in Economics. Science 222:987–989.CrossRefGoogle Scholar
  96. Sato, Ryuzo. 1981. Theory of Technical Change and Economic Invariance. New York: Academic Press.Google Scholar
  97. Schumpeter, Joseph. 1954. A History of Economic Analysis. New York: Oxford University Press.Google Scholar
  98. Shackle, G. L. S. 1967. Time in Economics. Amsterdam: North Holland.Google Scholar
  99. Sharma, C. S. 1982. The Role of Mathematics in Physics. British Journal for the Philosophy of Science 33:275–286.CrossRefGoogle Scholar
  100. Shea, William, ed. 1983. Nature Mathematized. Boston: Reidel.Google Scholar
  101. Skolem, T. 1970. Selected Works in Logic. Oslo: Universitets-Forlaget.Google Scholar
  102. Sohn-Rethel, Alfred. 1978. Intellectual and Manual Labour. London: Macmillan.Google Scholar
  103. Takayama, Akira. 1974. Mathematical Economics. Hinsdale, IL: Dryden.Google Scholar
  104. Theobald, D. W. 1966. The Concept of Energy. London: Spon.Google Scholar
  105. Theocharis, Reghnos. 1961. Early Developments in Mathematical Economics. London: Macmillan.Google Scholar
  106. t’Hooft, Gerard. 1980. Gauge Theories of the Forces Between Elementary Particles. Scientific American 243:104–138.Google Scholar
  107. Vind, Karl. 1977. Equilibrium with Respect to a Single Market. In G. Schwödiauer (ed.), Equilibrium and Disequilibrium in Economic Theory. Boston: Reidel.Google Scholar
  108. Waismann, Friedrich. 1982. Lectures on the Philosophy of Mathematics. W. Grassl, ed. Amsterdam: Rodopi.Google Scholar
  109. Walras, Leon. 1960. Économique et Mécanique. Metroeconomica 22:1–6.Google Scholar
  110. Walras, Leon. 1965. Correspondence and Related Papers. W. Jaffee, ed. Amsterdam: North Holland.Google Scholar
  111. Weintraub, E. R. 1983. The Existence of Competitive Equilibrium. Journal of Economic Literature 21:1–39.Google Scholar
  112. Westfall, R. S. 1980. Never at Rest: A Biography of Issac Newton. Cambridge: Cambridge University Press.Google Scholar
  113. Weyl, Hermann. 1952. Symmetry. Princeton, NJ: Princeton University Press.Google Scholar
  114. Wicksell, Knut. 1958. Selected Papers on Economic Theory. Cambridge: Harvard University Press.Google Scholar
  115. Wigner, Eugene. 1967. Symmetries and Reflections. Bloomington: Indiana University Press.Google Scholar
  116. Wilder, Raymond. 1965. Introduction to the Foundations of Mathematics. 2nd. edition. New York: Wiley.Google Scholar
  117. Wittgenstein, Ludwig. 1976. Wittgenstein’s Lectures on the Foundations of Mathematics. Cora Diamond, ed. Ithaca: Cornell University Press.Google Scholar
  118. Wittgenstein, Ludwig. 1978. Remarks on the Foundations of Mathematics. Rev. ed. Cambridge, MA: MIT Press.Google Scholar
  119. Wong, Stanley. 1978. The Foundations of Samuelson’s Revealed Preference Theory. Boston: Routledge Kegan Paul.Google Scholar
  120. Wright, Crispin. 1980. Wittgenstein on the Foundations of Mathematics. London: Duckworth.Google Scholar
  121. Wussing, Hans. 1984. The Genesis of the Abstract Group Concept. Cambridge: MIT Press.Google Scholar

Copyright information

© Kluwer-Nijhoff Publishing, Boston 1986

Authors and Affiliations

  • Philip Mirowski

There are no affiliations available

Personalised recommendations