Advertisement

Bipolar abstract argumentation systems

  • Claudette Cayrol
  • Marie-Christine Lagasquie-Schiex
Chapter

In most existing argumentation systems, only one kind of interaction is considered between arguments. It is the so-called attack relation. However, recent studies on argumentation [23, 34, 35, 4] have shown that another kind of interaction may exist between the arguments. Indeed, an argument can attack another argument, but it can also support another one. This suggests a notion of bipolarity, i.e. the existence of two independent kinds of information which have a diametrically opposed nature and which represent repellent forces.

Keywords

Coalition Structure Support Relation Argumentation Framework Direct Attack Argumentation System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Amgoud. Contribution à l’intégration des préférences dans le raisonnement argumentatif. PhD thesis, Université Paul Sabatier, Toulouse, July 1999.Google Scholar
  2. 2.
    L. Amgoud. Towards a formal model for task allocation via coalition formation. In Proc. of AAMAS, pages 1185–1186, 2005.Google Scholar
  3. 3.
    L. Amgoud, J.-F. Bonnefon, and H. Prade. An argumentation-based approach to multiple criteria decision. In Proc. of ECSQARU, pages 269–280, 2005.Google Scholar
  4. 4.
    L. Amgoud, C. Cayrol, and M. Lagasquie-Schiex. On the bipolarity in argumentation frameworks. In Proc. of the 10 th NMR-UF workshop, pages 1–9, 2004.4Google Scholar
  5. 5.
    L. Amgoud, C. Cayrol, M.-C. Lagasquie-Schiex, and P. Livet. On bipolarity in argumentation frameworks. International Journal of Intelligent Systems, 23:1062–1093, 2008.MATHCrossRefGoogle Scholar
  6. 6.
    S. Benferhat, D. Dubois, S. Kaci, and H. Prade. Bipolar representation and fusion of preferences in the possibilistic logic framework. In Proc. of KR, pages 158–169, 2002.Google Scholar
  7. 7.
    C. Berge. Graphs and Hypergraphs. North-Holland Mathematical Library, 1973.Google Scholar
  8. 8.
    P. Besnard and A. Hunter. A logic-based theory of deductive arguments. Artificial Intelligence, 128 (1-2):203–235, 2001.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    A. Bochman. Collective argumentation and disjunctive programming. Journal of Logic and Computation, 13 (3):405–428, 2003.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    C. Boutilier. Towards a logic for qualitative decision theory. In Proc. of KR, pages 75–86, 1994.Google Scholar
  11. 11.
    G. Cabanac, M. Chevalier, C. Chrisment, and C. Julien. A social validation of collaborative annotations on digital documents. In Proc. of IWAC, pages 31–40, 2005.Google Scholar
  12. 12.
    G. Cabanac, M. Chevalier, C. Chrisment, and C. Julien. Collective annotation: Perspectives for information retrieval improvement. In Proc. of RIAO, 2007.Google Scholar
  13. 13.
    C. Cayrol and M. Lagasquie-Schiex. Gradual valuation for bipolar argumentation frameworks. In Proc of the 8 th ECSQARU, pages 366–377, 2005.Google Scholar
  14. 14.
    C. Cayrol and M. Lagasquie-Schiex. On the acceptability of arguments in bipolar argumentation frameworks. In Proc of the 8 th ECSQARU, pages 378–389, 2005.Google Scholar
  15. 15.
    C. Cayrol and M.-C. Lagasquie-Schiex. Gradual handling of contradiction in argumentation frameworks. In Intelligent Systems for Information Processing: From representation to Applications, chapter Reasoning, pages 179–190. Elsevier, 2003.Google Scholar
  16. 16.
    C. Cayrol and M.-C. Lagasquie-Schiex. Graduality in argumentation. Journal of Artificial Intelligence Research, 23:245–297, 2005.MATHMathSciNetGoogle Scholar
  17. 17.
    C. Cayrol and M.-C. Lagasquie-Schiex. Coalitions of arguments in bipolar argumentation frameworks. In Proc. of CMNA, pages 14–20, 2007.Google Scholar
  18. 18.
    V. Dang and N. Jennings. Generating coalition structures with finite bound from the optimal guarantees. In Proc. of AAMAS, pages 564–571, 2004.Google Scholar
  19. 19.
    D. Dubois and H. Fargier. On the qualitative comparison of sets of positive and negative affects. In Proc. of ECSQARU, pages 305–316, 2005.Google Scholar
  20. 20.
    D. Dubois and H. Prade. A bipolar possibilitic representation of knowledge and preferences and its applications. In Proc. of WILF (LNCS 3849), pages 1–10, 2006.Google Scholar
  21. 21.
    P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence, 77:321–357, 1995.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    H. Jakobovits and D. Vermeir. Robust semantics for argumentation frameworks. Journal of logic and computation, 9(2):215–261, 1999.MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    N. Karacapilidis and D. Papadias. Computer supported argumentation and collaborative decision making: the hermes system. Information systems, 26(4):259–277, 2001.MATHCrossRefGoogle Scholar
  24. 24.
    P. Krause, S. Ambler, M. Elvang, and J. Fox. A logic of argumentation for reasoning under uncertainty. Computational Intelligence, 11 (1):113–131, 1995.CrossRefMathSciNetGoogle Scholar
  25. 25.
    J. Lang, L. Van der Torre, and E. Weydert. Utilitarian desires. Journal of Autonomous Agents and Multi-Agents Systems, 5(3):329–363, 2002.CrossRefGoogle Scholar
  26. 26.
    J. Nielsen. On the number of maximal independent sets in a graph. Technical Report RS 02-15, Center for Basic Research in Computer Science (BRICS), April 2002.Google Scholar
  27. 27.
    S. Nielsen and S. Parsons. A generalization of Dung’s abstract framework for argumentation. In Proc. of the 3 rd WS on Argumentation in multi-agent systems, 2006.Google Scholar
  28. 28.
    N. Oren and T. J. Norman. Semantics for evidence-based argumentation. In Proc. of COMMA, pages 276–284, 2008.Google Scholar
  29. 29.
    S. Parsons. Normative argumentation and qualitative probability. In Proc. of ECSQARU, pages 466–480, 1997.Google Scholar
  30. 30.
    H. Prakken and G. Sartor. Argument-based extended logic programming with defeasible priorities. Journal of Applied Non-Classical Logics, 7:25–75, 1997.MATHMathSciNetGoogle Scholar
  31. 31.
    S. W. Tan and J. Pearl. Specification and evaluation of preferences under uncertainty. In Proc. of KR, pages 530–539, 1994.Google Scholar
  32. 32.
    S. Toulmin. The Uses of Arguments. Cambridge University Press, Mass., 1958.Google Scholar
  33. 33.
    B. Verheij. Two Approaches to Dialectical Argumentation: Admissible Sets and Argumentation Stages. In Proc. of Dutch Conference on Artificial Intelligence, 357–368, 1996.Google Scholar
  34. 34.
    B. Verheij. Automated argument assistance for lawyers. In Proc. of International Conference on Artificial Intelligence and Law, 43–52, 1999.Google Scholar
  35. 35.
    B. Verheij. Deflog: on the logical interpretation of prima facie justified assumptions. Journal of Logic in Computation, 13:319–346, 2003.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag US 2009

Authors and Affiliations

  • Claudette Cayrol
    • 1
  • Marie-Christine Lagasquie-Schiex
    • 1
  1. 1.IRIT-UPS118 route de NarbonneFrance

Personalised recommendations