Empowering Recommendation Technologies Through Argumentation

  • CarlosIván Chesñevar
  • Ana Gabriela Maguitman
  • María Paula González

User support systems have evolved in the last years as specialized tools to assist users in a plethora of computer-mediated tasks by providing guidelines or hints 19. Recommender systems are a special class of user support tools that act in cooperation with users, complementing their abilities and augmenting their performance by offering proactive or on-demand, context-sensitive support. Recommender systems are mostly based on machine learning and information retrieval algorithms, providing typically suggestions based on quantitative evidence (i.e. measures of similarity between objects or users). The inference process which led to such suggestions is mostly unknown (i.e. ‘black-box’ metaphor). Although the effectiveness of existing recommenders is remarkable, they still have some serious limitations.


Logic Programming Argumentation Scheme User Support Argumentation System Defeasible Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was funded by Agencia Nacional de Promoción Científica y Tecnológica (PICT 2005 - 32373), by CONICET (Argentina), by Projects TIN2006-15662-C02-01 and TIN2008-06596-C02-01 (MEC, Spain), and PGI Projects 24/ZN10, 24/N023 and 24/N020 (SGCyT, Universidad Nacional del Sur, Argentina).


  1. 1.
    T. Alsinet, C. Chesñevar, L. Godo, S. Sandri, and G. Simari. Formalizing argumentative reasoning in a possibilistic logic programming setting with fuzzy unification. International Journal of Approximate Reasoning, 48(3):711–729, 2008.CrossRefMathSciNetGoogle Scholar
  2. 2.
    T. Alsinet, C. Chesñevar, L. Godo, and G. Simari. A logic programming framework for possibilistic argumentation: Formalization and logical properties. Fuzzy Sets and Systems, 159,(10):1208–1228, 2008.CrossRefMathSciNetGoogle Scholar
  3. 3.
    L. Amgoud and M. Serrurier. Agents that argue and explain classifications. Autonomous Agents and Multi-Agent Systems, 16(2):187–209, 2008.CrossRefGoogle Scholar
  4. 4.
    M. Balabanovic and Y. Shoham. Content-based, collaborative recommendation. Communications of the ACM, 40(3):66–72, 1997.CrossRefGoogle Scholar
  5. 5.
    T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American, May 2001.Google Scholar
  6. 6.
    R. Brena, J. Aguirre, C. Chesñevar, E. Ramírez, and L. Garrido. Knowledge and information distribution leveraged by intelligent agents. Knowledge and Information Systems, 12(2):203–227, 2007.CrossRefGoogle Scholar
  7. 7.
    J. Budzik, K. Hammond, and L. Birnbaum. Information access in context. Knowledge based systems, 14(1–2):37–53, 2001.CrossRefGoogle Scholar
  8. 8.
    R. Burke. Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction, 12(4):331–370, 2002.MATHCrossRefGoogle Scholar
  9. 9.
    C. Chesñevar, J. McGinnis, S. Modgil, I. Rahwan, C. Reed, G. Simari, M. South, G. Vreeswijk, and S. Wilmott. Towards an argument interchange format. Knowledge Engineering Review, 21(4):293–316, 2006.CrossRefGoogle Scholar
  10. 10.
    C. Chesñevar, A. Maguitman, and R. Loui. Logical Models of Argument. ACM Computing Surveys, 32(4):337–383, Dec. 2000.CrossRefGoogle Scholar
  11. 11.
    C. Chesñevar, A. Maguitman, and M. Sabaté. An argument-based decision support system for assessing natural language usage on the basis of the web corpus. International Journal of Intelligent Systems (IJIS), 21(11):1151–1180, 2006.MATHCrossRefGoogle Scholar
  12. 12.
    C. Chesñevar, A. Maguitman, and G. Simari. Argument-Based Critics and Recommenders: AQualitative Perspective on User Support Systems. Journal of Data and Knowledge Engineering, 59(2):293–319, 2006.CrossRefGoogle Scholar
  13. 13.
    D. Engelbart. Augmenting human intellect: A conceptual framework. Summary report, Stanford Research Institute, on Contract AF 49(638)-1024, October 1962.Google Scholar
  14. 14.
    A. García and G. Simari. Defeasible Logic Programming: An Argumentative Approach. Theory and Practice of Logic Programming, 4(1):95–138, 2004.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    S. Gómez, C. Chesñevar, and G. Simari. Defeasible reasoning in web-based forms through argumentation. International Journal of Information Technology and Decision Making (IJITDM), 7(1):71–101, Mar. 2008.MATHCrossRefGoogle Scholar
  16. 16.
    M. González, C. Chesñevar, C. Collazos, and G. Simari. Modelling shared knowledge and shared knowledge awareness in cscl scenarios through automated argumentation systems. In J. M. Haake, S. F. Ochoa, and A. Cechich, editors, CRIWG, volume 4715 of Lecture Notes in Computer Science, pages 207–222. Springer, 2007.Google Scholar
  17. 17.
    G. Governatori and A. Stranieri. Towards the application of association rules for defeasible rules discovery. In Legal Knowledge & Information Systems, pages 63–75. JURIX, IOS Press, 2001.Google Scholar
  18. 18.
    A. Hunter. Hybrid argumentation systems for structured news reports. Knowledge Engineering Review, pages 295–329, 2001.Google Scholar
  19. 19.
    J. Konstan. Introduction to recommender systems: Algorithms and evaluation. ACM Transactions on Information Systems, 22(1):1–4, 2004.CrossRefGoogle Scholar
  20. 20.
    F. Linton, D. Joy, and H. Schaefer. Building user and expert models by long-term observation of application usage. In Proceedings of the seventh international conference on User modeling, pages 129–138. Springer-Verlag New York, Inc., 1999.Google Scholar
  21. 21.
    M. Mozina, J. Zabkar, and I. Bratko. Argument based machine learning. Artificial Intelligence, 171(10-15):922–937, 2007.CrossRefMathSciNetGoogle Scholar
  22. 22.
    J. O’Donovan and B. Smyth. Trust in recommender systems. In IUI’05: Proceedings of the 10th international conference on Intelligent user interfaces, pages 167–174, New York, NY, USA, 2005. ACM.CrossRefGoogle Scholar
  23. 23.
    M. Pazzani and D. Billsus. Content-based recommendation systems. In P. Brusilovsky, A. Kobsa and W. Nejdl, editors, The Adaptive Web, Methods and Strategies of Web Personalization, volume 4321 of Lecture Notes in Computer Science, pages 325–341. Springer, 2007.Google Scholar
  24. 24.
    H. Prakken and G. Sartor. The role of logic in computational models of legal argument: A critical survey. In A. C. Kakas and F. Sadri, editors, Computational Logic: Logic Programming and Beyond, volume 2408 of Lecture Notes in Computer Science, pages 342–381. Springer, 2002.Google Scholar
  25. 25.
    H. Prakken and G. Vreeswijk. Logical Systems for Defeasible Argumentation. In D. Gabbay and F.Guenther, editors, Handbook of Philosophical Logic, pages 219–318. Kluwer, 2002.Google Scholar
  26. 26.
    I. Rahwan. Mass argumentation and the semantic web. Journal of Web Semantics, 6(1):29–37, 2008.Google Scholar
  27. 27.
    I. Rahwan, F. Zablith, and C. Reed. Laying the foundations for a world wide argument web. Artificial Intelligence, 171(10-15):897–921, 2007.CrossRefGoogle Scholar
  28. 28.
    J. Sandvig, B. Mobasher, and R. Burke. A survey of collaborative recommendation and the robustness of model-based algorithms. IEEE Data Engineering Bulletin, 31(2):3–13, 2008.Google Scholar
  29. 29.
    R. Schenkel, T. Crecelius, M. Kacimi, T. Neumann, J. Parreira, M. Spaniol, and G. Weikum. Social wisdom for search and recommendation. IEEE Data Engineering Bulletin, 31(2):40–49, 2008.Google Scholar
  30. 30.
    G. Simari and R. Loui. AMathematical Treatment of Defeasible Reasoning and its Implementation. Artificial Intelligence, 53:125–157, 1992.CrossRefMathSciNetGoogle Scholar
  31. 31.
    B. Verheij. Artificial argument assistants for defeasible argumentation. Artificial Intelligence, 150(1-2):291–324, 2003.CrossRefGoogle Scholar
  32. 32.
    D. Walton. Argumentation Schemes for Presumptive Reasoning. Erlbaum, Mahwah, NJ, 1996.Google Scholar
  33. 33.
    M. Wardeh, T. Bench-Capon, and F. Coenen. Arguments from experience: The padua protocol. In P. Besnard, S. Doutre, and A. Hunter, editors, COMMA, volume 172 of Frontiers in Artificial Intelligence and Applications, pages 405–416. IOS Press, 2008.Google Scholar
  34. 34.
    P. Zhang, J. Sun, and H. Chen. Frame-based argumentation for group decision task generation and identification. Decision Support Systems, 39:643–659, 2005.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag US 2009

Authors and Affiliations

  • CarlosIván Chesñevar
    • 1
  • Ana Gabriela Maguitman
    • 1
  • María Paula González
    • 1
  1. 1.Department of Computer Science and EngCONICET (National Council of Technical and Scientific Research,Universidad Nacional del Sur)Bahía BlancaArgentina

Personalised recommendations