Belief Revision and Argumentation Theory

  • Marcelo Alejandro Falappa
  • Gabriele Kern-Isberner
  • Guillermo Ricardo Simari

Belief revision is the process of changing beliefs to adapt the epistemic state of an agent to a new piece of information. The logical formalization of belief revision is a topic of research in philosophy, logic, and in computer science, in areas such as databases or artificial intelligence. On the other hand, argumentation is concerned primarily with the evaluation of claims based on premises in order to reach conclusions. Both provide basic and substantial techniques for the art of reasoning, as it is performed by human beings in everyday life situations and which goes far beyond logical deduction. Reasoning, in this sense, makes possible to deal successfully with problems in uncertain, dynamic environments and has been promoting the development of human societies.


Epistemic State Belief Revision Belief Base Epistemic Belief Argumentation Framework 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was funded by Consejo Nacional de Investigaciones Cientíificas y Técnicas (CONICET), Agencia Nacional de Promocion Científica y Tecnolóogica (ANPCyT), Universidad Nacional del Sur (UNS), Ministerio de Cienciay Tecnología (MinCyT) [Argentina] and Fundação para a Ciência e a Tecnologia (FCT) [Portugal].


  1. 1.
    C. Alchourrón, P. Gärdenfors, and D. Makinson. On the Logic of Theory Change: Partial Meet Contraction and Revision Functions. The Journal of Symbolic Logic, 50:510–530, 1985.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    C. Alchourrón and D. Makinson. On the Logic of Theory Change: Contraction Functions and their Associated Revision Functions. Theoria, 48:14–37, 1982.MathSciNetCrossRefGoogle Scholar
  3. 3.
    C. Alchourrón and D. Makinson. On the Logic of Theory Change: Safe Contraction. Studia Logica, 44:405–422, 1985.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    S. Benferhat, D. Dubois, and H. Prade. How to infer from inconsistent beliefs without revising. In Proceedings of IJCAI’95, pages 1449–1455, 1995.Google Scholar
  5. 5.
    C. Cayrol, F. D. de Saint Cyr, and M. C. Lagasquie Schiex. Revision of an Argumentation System. In Proceedings of KR 2008, pages 124–134, 2008.Google Scholar
  6. 6.
    S. Coste-Marquis, C. Devred, S. Konieczny, M.-C. Lagasquie-Schiex, and P. Marquis. On the Merging of Dung’s Argumentation Systems. Artficial Intelligence, 171:730–753, 2007.CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    A. Darwiche and J. Pearl. On the Logic of Iterated Belief Revision. Artificial Intelligence, 89:1–29, 1997.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    J. de Kleer. An Assumption-based TMS. Artificial Intelligence, 28(2):127–162, 1986.CrossRefGoogle Scholar
  9. 9.
    J. Delgrande, D. Dubois, and J. Lang. Iterated Revision and Prioritized Merging. In Proceedings of KR 2006, pages 210–220. AAAI Press, 2006.Google Scholar
  10. 10.
    J. Doyle. A Truth Maintenance System. Artificial Intelligence, 12:231–272, 1979.CrossRefMathSciNetGoogle Scholar
  11. 11.
    J. Doyle. Reason Maintenance and Belief Revision: Foundations versus Coherence Theories. In Belief Revision [21], pages 29–51.Google Scholar
  12. 12.
    D. Dubois. Three Scenarios for the Revision of Epistemic States. In Besnard and Hanks, editors, Proceedings of NMR 2006, pages 296–305, San Francisco, CA., 2006. Morgan Kaufmann.Google Scholar
  13. 13.
    P. M. Dung. On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games. Artificial Intelligence, 77:321–357, 1995.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    M. A. Falappa, E. L. Fermé, and G. Kern-Isberner. On the Logic of Theory Change: Relations between Incision and Selection Functions. In Proceedings of ECAI 2006, pages 402–406, 2006.Google Scholar
  15. 15.
    M. A. Falappa, A. J. García, and G. R. Simari. Belief Dynamics and Defeasible Argumentation in Rational Agents. In Proceedings of NMR 2004, section Belief Change, pages 164–170, 2004.Google Scholar
  16. 16.
    M. A. Falappa, G. Kern-Isberner, and G. R. Simari. Belief Revision, Explanations and Defeasible Reasoning. Artificial Intelligence Journal, 141:1–28, 2002.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    A. Fuhrmann. Theory Contraction through Base Contraction. The Journal of Philosophical Logic, 20:175–203, 1991.MATHMathSciNetGoogle Scholar
  18. 18.
    A. Fuhrmann and S. O. Hansson. A Survey of Multiple Contractions. The Journal of Logic, Language and Information, 3:39–76, 1994.CrossRefMathSciNetGoogle Scholar
  19. 19.
    A. J. Garcíia and G. R. Simari. Defeasible Logic Programming: an Argumentative Approach. Theory and Practice of Logic Programming, 4(1):95–138, 2004.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    P. Gärdenfors. Knowledge in Flux: Modelling the Dynamics of Epistemic States. The MIT Press, Bradford Books, Cambridge, Massachusetts, 1988.Google Scholar
  21. 21.
    P. Gärdenfors. Belief Revision. Gärdenfors, Cambridge University Press, 1992.MATHGoogle Scholar
  22. 22.
    P. Gärdenfors and D. Makinson. Revisions of Knowledge Systems using Epistemic Entrenchment. Second Conference on Theoretical Aspects of Reasoning About Knowledge, pages 83–95, 1988.Google Scholar
  23. 23.
    A. Grove. Two Modellings for Theory Change. The Journal of Philosophical Logic, 17:157–170, 1988.MATHMathSciNetGoogle Scholar
  24. 24.
    G. Guido Boella, C. d. Costa Perera, A. Tettamanzi, and L. van der Torre. Dung Argumentation and AGM Belief Revision. In Fifth International Workshop on Argumentation in Multi-Agent Systems, ArgMAS 2008, 2008.Google Scholar
  25. 25.
    G. Guido Boella, C. d. Costa Perera, A. Tettamanzi, and L. van der Torre. Making others believe what they want. Artificial Intelligence in Theory and Practice II, pages 215–224, 2008.Google Scholar
  26. 26.
    S. O. Hansson. New Operators for Theory Change. Theoria, 55:114–132, 1989.MATHMathSciNetGoogle Scholar
  27. 27.
    S. O. Hansson. Belief Contraction without Recovery. Studia Logica, 50:251–260, 1991.MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    S. O. Hansson. A Dyadic Representation of Belief. In Belief Revision [21], pages 89–121.Google Scholar
  29. 29.
    S. O. Hansson. In Defense of Base Contraction. Synthese, 91:239–245, 1992.MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    S. O. Hansson. Theory Contraction and Base Contraction Unified. The Journal of Symbolic Logic, 58(2), 1993.Google Scholar
  31. 31.
    S. O. Hansson. Kernel Contraction. The Journal of Symbolic Logic, 59:845–859, 1994.MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    S. O. Hansson. A Textbook of Belief Dymanics: Theory Change and Database Updating. Kluwer Academic Publishers, 1999.Google Scholar
  33. 33.
    H. Katsuno and A. Mendelzon. On the Difference between Updating a Knowledge Database and Revising it. In Belief Revision [21], pages 183–203.Google Scholar
  34. 34.
    G. Kern-Isberner. Postulates for Conditional Belief Revision. In Proceedings of IJCAI’99, pages 186–191. Morgan Kaufmann, 1999.Google Scholar
  35. 35.
    G. Kern-Isberner. A Thorough Axiomatization of a Principle of Conditional Preservation in Belief Revision. Annals of Mathematics and Artificial Intelligence, 40(1-2):127–164, 2004.MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    G. Kern-Isberner. Linking Iterated Belief Change Operations to Nonmonotonic Reasoning. In G. Brewka and J. Lang, editors, Proceedings of KR 2008, pages 166–176, Menlo Park, CA, 2008. AAAI Press.Google Scholar
  37. 37.
    J. Lang. Belief Update Revisited. In Proceedings of IJCAI 2007, pages 2517–2522, 2007.Google Scholar
  38. 38.
    I. Levi. Subjunctives, Dispositions, and Chances. Synthese, 34:423–455, 1977.MATHCrossRefGoogle Scholar
  39. 39.
    D. Lewis. Counterfactuals. Harvard University Press, Cambridge, Massachusetts, 1973.Google Scholar
  40. 40.
    D. Makinson and P. Gärdenfors. Relations between the Logic of Theory Change and Nonmonotonic Logic. Lecture Notes in Computer Science, 465:183–205, 1991.CrossRefGoogle Scholar
  41. 41.
    M. O. Moguillansky, N. D. Rotstein, M. A. Falappa, A. J. García, and G. R. Simari. Argument Theory Change: Revision Upon Warrant. In Proceedings of The Twenty-Third Conference on Artificial Intelligence, AAAI 2008, pages 132–137, 2008.Google Scholar
  42. 42.
    A. Nayak. Foundational Belief Change. Journal of Philosophical Logic, 23:495–533, 1994.MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    A. Newell. The Knowledge Level. Readings from the AI Magazine, pages 357–377, 1988.Google Scholar
  44. 44.
    R. Niederée. Multiple Contraction: a further case against Gärdenfors’ Principle of Recovery. Lecture Notes in Computer Science, 465:322–334, 1991.CrossRefGoogle Scholar
  45. 45.
    F. Paglieri and C. Castelfranchi. The Toulmin Test: Framing Argumentation within Belief Revision Theories, pages 359–377. Berlin, Springer, 2006.Google Scholar
  46. 46.
    J. L. Pollock and A. S. Gillies. Belief Revision and Epistemology. Synthese, 122(1–2):69–92, 2000.MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    N. D. Rotstein, M. O. Moguillansky, M. A. Falappa, A. J. García, and G. R. Simari. Argument Theory Change: Revision upon Warrant. In Proceedings of The Computational Models of Argument, COMMA 2008, pages 336–347, 2008.Google Scholar

Copyright information

© Springer-Verlag US 2009

Authors and Affiliations

  • Marcelo Alejandro Falappa
    • 1
  • Gabriele Kern-Isberner
    • 2
  • Guillermo Ricardo Simari
    • 3
  1. 1.CONICET (National Council of Technical and Scientific Research) – Department of ComputerScience and EngineeringUniversidad Nacional del SurBahía BlancaArgentina
  2. 2.Department of Computer ScienceUniversity of DortmundDortmundGermany
  3. 3.Department of Computer Science and EngineeringUniversidad Nacional del SurBahía BlancaArgentina

Personalised recommendations