Advertisement

Assumption-Based Argumentation

  • Phan Minh Dung
  • Robert A. Kowalski
  • Francesca Toni

Assumption-Based Argumentation (ABA) [4, 3, 27, 11, 12, 20, 22] was developed, starting in the 90s, as a computational framework to reconcile and generalise most existing approaches to default reasoning [24, 25, 4, 3, 27, 26]. ABA was inspired by Dung’s preferred extension semantics for logic programming [9, 7], with its dialectical interpretation of the acceptability of negation-as-failure assumptions based on the notion of “no-evidence-to-the-contrary” [9, 7], by the Kakas, Kowalski and Toni interpretation of the preferred extension semantics in argumentation-theoretic terms [24, 25], and by Dung’s abstract argumentation (AA) [6, 8].

Keywords

Inference Rule Logic Programming Argumentation Framework Actual Argument Default Reasoning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Bench-Capon and H. Prakken. Justifying actions by accruing arguments. In Proc. COMMA’06, pages 247–258. IOS Press, 2006.Google Scholar
  2. 2.
    P. Besnard and A. Hunter. Elements of Argumentation. MIT Press, 2008.Google Scholar
  3. 3.
    A. Bondarenko, P. Dung, R. Kowalski, and F. Toni. An abstract, argumentation-theoretic approach to default reasoning. Artificial Intelligence, 93(1-2):63–101, 1997.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    A. Bondarenko, F. Toni, and R. Kowalski. An assumption-based framework for non-monotonic reasoning. In Proc. LPRNR’93, pages 171–189. MIT Press, 1993.Google Scholar
  5. 5.
    Y. Dimopoulos, B. Nebel, and F. Toni. On the computational complexity of assumption-based argumentation for default reasoning. Artificial Intelligence, 141:57–78, 2002.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    P. M. Dung. On the acceptability of arguments and its fundamental role in non-monotonic reasoning and logic programming. In Proc. IJCAI’93, pages 852–859. Morgan Kaufmann, 1993.Google Scholar
  7. 7.
    P. M. Dung. An argumentation theoretic foundation of logic programming. Journal of Logic Programming, 22:151–177, 1995.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    P. M. Dung. On the acceptability of arguments and its fundamental role in non-monotonic reasoning, logic programming and n-person games. Artificial Intelligence, 77:321–357, 1995.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    P. M. Dung. Negations as hypotheses: An abductive foundation for logic programming. In Proc. ICLP, pages 3–17. MIT Press, 1991.Google Scholar
  10. 10.
    P. M. Dung. An argumentation semantics for logic programming with explicit negation. In Proc. ICLP, pages 616–630. MIT Press, 1993.Google Scholar
  11. 11.
    P. M. Dung., R. Kowalski, and F. Toni. Dialectic proof procedures for assumption-based, admissible argumentation. Artificial Intelligence, 170:114–159, 2006.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    P. M. Dung, P. Mancarella, and F. Toni. Computing ideal sceptical argumentation. Artificial Intelligence, 171(10-15):642–674, 2007.CrossRefMathSciNetGoogle Scholar
  13. 13.
    P. M. Dung and P. M. Thang. Towards an argument-based model of legal doctrines in common law of contracts. In Proc. CLIMA IX, 2008.Google Scholar
  14. 14.
    P. M. Dung, P. M. Thang, and N. D. Hung. Argument-based decision making and negotiation in e-business: Contracting a land lease for a computer assembly plant. In Proc. CLIMA IX, 2008.Google Scholar
  15. 15.
    P. M. Dung, P. M. Thang, and F. Toni. Towards argumentation-based contract negotiation. In Proc. COMMA’08. IOS Press, 2008.Google Scholar
  16. 16.
    P. M. Dung, P. M. Thang, F. Toni, N. D. Hung, P.-A. Matt, J. McGinnis, and M. Morge. Towards argumentation-based contract negotiation. ARGUGRID Deliverable D.4.1, 2008.Google Scholar
  17. 17.
    K. Eshghi and R. Kowalski. Abduction compared with negation as failure. In Proc. ICLP. MIT Press, 1989.Google Scholar
  18. 18.
    D. Gaertner, J. Rodriguez, and F. Toni. Agreeing on institutional goals for multi-agent societies. In Proc. COIN, pages 94–113, 2008.Google Scholar
  19. 19.
    D. Gaertner and F. Toni. CaSAPI: A system for credulous and sceptical argumentation. In Proc. ArgNMR, 2007.Google Scholar
  20. 20.
    D. Gaertner and F. Toni. Computing arguments and attacks in assumption-based argumentation. IEEE Intelligent Systems, 22(6):24–33, 2007.CrossRefGoogle Scholar
  21. 21.
    D. Gaertner and F. Toni. Preferences and assumption-based argumentation for conflict-free normative agents. In Proc. ArgMAS’07. Springer, 2007.Google Scholar
  22. 22.
    D. Gaertner and F. Toni. Hybrid argumentation and its computational properties. In Proc. COMMA’08. IOS Press, 2008.Google Scholar
  23. 23.
    A. Garcia and G. Simari. Defeasible logic programming: An argumentative approach. Journal of Theory and Practice of Logic Programming, 4(1-2):95–138, 2004.MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    A. C. Kakas, R. A. Kowalski, and F. Toni. Abductive logic programming. Journal of Logic and Computation, 2(6):719–770, 1993.CrossRefMathSciNetGoogle Scholar
  25. 25.
    A. C. Kakas, R. A. Kowalski, and F. Toni. The role of abduction in logic programming. In Handbook of Logic in Artificial Intelligence and Logic Programming, volume 5, pages 235–324. OUP, 1998.Google Scholar
  26. 26.
    A. C. Kakas and F. Toni. Computing argumentation in logic programming. Journal of Logic and Computation, 9:515–562, 1999.MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    R. A. Kowalski and F. Toni. Abstract argumentation. Journal of Artificial Intelligence and Law, 4(3-4):275–296, 1996.CrossRefGoogle Scholar
  28. 28.
    P.-A. Matt and F. Toni. Basic influence diagrams and the liberal stable semantics. In Proc. COMMA’08. IOS Press, 2008.Google Scholar
  29. 29.
    P.-A. Matt, F. Toni, T. Stournaras, and D. Dimitrelos. Argumentation-based agents for eprocurement. In Proc. AAMAS 2008, 2008.Google Scholar
  30. 30.
    J. Pollock. Defeasible reasoning. Cognitive Science, 11(4):481–518, 1987.CrossRefGoogle Scholar
  31. 31.
    D. Poole. A logical framework for default reasoning. Artificial Intelligence, 36(1):27–47, 1988.MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    H. Prakken and G. Sartor. The role of logic in computational models of legal argument: a critical survey. In Computational Logic: Logic Programming and Beyond – Essays in Honour of Robert A. Kowalski, pages 342–381. Springer, 2002.Google Scholar
  33. 33.
    F. Toni. Assumption-based argumentation for selection and composition of services. In Proc. CLIMA VIII, 2007.Google Scholar
  34. 34.
    F. Toni. Assumption-based argumentation for closed and consistent defeasible reasoning. In Proc. JSAI 2007, pages 390–402. Springer, 2008.Google Scholar
  35. 35.
    F. Toni. Assumption-based argumentation for epistemic and practical reasoning. In Computable Models of the Law, pages 185–202. Springer, 2008.Google Scholar
  36. 36.
    F. Toni and A. Kakas. Computing the acceptability semantics. In Proc. LPNMR’95, pages 401–415. Springer, 1995.Google Scholar
  37. 37.
    B. Verheij. DefLog: on the Logical Interpretation of Prima Facie Justified Assumptions. Journal of Logic and Computation, 13(3):319–346, 2003.MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    D. Walton, C. Reed, and F. Macagno. Argumentation Schemes. Cambridge Univ. Press, 2008.Google Scholar

Copyright information

© Springer-Verlag US 2009

Authors and Affiliations

  • Phan Minh Dung
    • 1
  • Robert A. Kowalski
    • 2
  • Francesca Toni
    • 2
  1. 1.Asian Institute of TechnologySiamThailand
  2. 2.Imperial College LondonLondonUK

Personalised recommendations