Advertisement

Physical and Chemical Mechanisms of Preparation Techniques

  • Jeanne Ayache
  • Luc Beaunier
  • Jacqueline Boumendil
  • Gabrielle Ehret
  • Danièle Laub
Chapter

Abstract

Microstructural investigations of materials using transmission electron microscopy involve two constraints due to the illumination source. Electrons displace only in a high vacuum, and even when highly accelerated, they transit only a very small material thickness. The sample preparation should resolve both of these issues: the sample must be stable under vacuum and it must be very thin (on the order of 100-nm thick).

Keywords

Mechanical Polishing Thin Slice Specimen Holder Chemical Fixation Hydrated Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Bibliography

Mechanical Action

  1. Al-Amoudi A, Studer D, Dubochet J (2005) Cutting artefacts and cutting process in vitreous sections for cryo-electron microscopy. J Struct Biol 150(1):109–121CrossRefGoogle Scholar
  2. Dorlot J-M, Baîlon J-P, Masounave J (1986) Des matériaux, deuxième édition revue et augmentée. Editions de l’École Polytechnique de MontréalGoogle Scholar
  3. Dupeux M (2004) Aide-mémoire Science des matériaux. Dunod, Sciences SUPGoogle Scholar
  4. Guinier, A. and Julien, R. La matière à l’état solide, Liaisons scientifiques Hachette.Google Scholar
  5. Mercier J-P, Zambelli G, Kurtz W (1987) Introduction à la Science desMatériaux. Presses Polytechniques et Universitaires RomandesGoogle Scholar
  6. Reid, N. and Beesley, J.E. (1991). Sectioning and Cryosectioning for Electron Microscopy in Practical Methods in Electron Microscopy, vol. 13. (ed. A.M. Glauert). Elsevier, Amsterdam, 1–245.Google Scholar

Chemical Action

  1. Goodhew PJ (1972) Specimen Preparation in Materials Science, Practical Methods in Electron Microscopy. Audrey M, GlauertGoogle Scholar
  2. Morel G (1995a) Visualization of Nucleic Acids. CRC Press, Boca Raton, London, Tokyo, EdGoogle Scholar
  3. Shigolev PV (1974) Electrolytic and Chemical Polishing of Metals. Freund Publishing HouseGoogle Scholar

Ionic Action

  1. Giannuzzi, L.A., Prenitzer, B.I., Drown-MacDonald, J.-L., Shofner, T.L., Brown, S.R., Irwin, R.B., and Stevie, F.A. (1999). Electron microscopy sample preparation for the biological and physical sciences using focused ion beams. J. Process Anal. Chem., IV(3, 4), 162–167.Google Scholar
  2. Obst M, Gasser P, Mavrocordatos D, Dittrich M (2005) TEM-specimen preparation of cell/mineral interfaces by focused ion beam milling. Am Mineralo 90:1270–1277CrossRefGoogle Scholar
  3. Prenitzer BI, Giannuzzi LA, Brown SR, Shofner TL, Stevie FA (2003) The correlation between ion beam/material interactions and practical FIB specimen preparation. Microsc Microanal 9:216–236CrossRefGoogle Scholar
  4. Stevie FA, Giannuzzi LA, Prenitzer BI (2005) Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques, and Practice (ed. L.A. Giannuzzi and F.A, Stevie)Google Scholar
  5. Vieu Ch, Gierak J, Manin L (2001) La Nanofabrication au Service de la Préparation d’Échantillons pour la Microscopie Electronique en Transmission. Atelier de préparation d’Échantillons pour la Caractérisation des Matériaux Nouveaux Multiphasés par Microscopie Electronique en Transmission, CSNSM Orsay, CNRS FormationGoogle Scholar
  6. Vieu C, Gierak J, Schneider M, Ben Assayang G, Marzin J-Y (1998) Evidence of depth and lateral diffusion of defects during focused ion beam implantation. J Vac Sci Technol B16:1919CrossRefGoogle Scholar

Actions Resulting in a State Change of Materials Containing an Aqueous Phase

  1. Burton EF, Olivier WF (1935) The crystal structure of ice at low temperature. Proc R Soc Lond 153:166CrossRefGoogle Scholar
  2. Brüggeller P, Mayer E (1980) Complete vitrification in pure liquid water and dilute aqueous solutions. Nature 288:569CrossRefGoogle Scholar
  3. Cavalier A, Spehner D, Humbel BM (2008) Handbook of Cryo-Preparation Methods for Electron Microscopy. Editions CRC Press, Boca Rotan, FLGoogle Scholar
  4. Dubochet, J. and McDowall, A.W. (1981). Vitrification of pure water for electron microscopy. J. Microsc., 124, RP3-RP.Google Scholar
  5. Morel G (1995b) Visualization of Nucleic Acids. CRC Press, Boca Raton, London, TokyoGoogle Scholar
  6. Richter K, Marilley D, Dubochet J (1991) Cryo-electron microscopy of vitrified biological material. Eur. J. Cell, BiolGoogle Scholar
  7. Sawyer LC, Grubb DT (1996) Polymer Microscopy, 2nd edn. Chapman et Hall edGoogle Scholar
  8. Steinbrecht RA, Zierold K (1987) Cryotechniques in Biological Electron Microscopy. Springer, Berlin, pp 114–131CrossRefGoogle Scholar
  9. Studer D, Graber W, Al-Amoudi A, Eggli P (2001) A new approach for cryofixation by high-pressure freezing. J Microsc 203:285–294CrossRefGoogle Scholar

Actions Resulting in a Change in Material Properties

  1. Carlemalm E, Garavito RM, Acetarin J-D, Kellenberger E (1985) J Microsc 140:55–63CrossRefGoogle Scholar
  2. Luft JH (1961) Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol 9:409CrossRefGoogle Scholar

Physical Actions Resulting in a Deposit

  1. Goldstein JI, Newbury D, Joy C, Lyman C, Echlin P, Lifshin E, Sawyer L, Michael J (2003) Scanning Electron Microscopy and X-Ray Microanalysis. Kluwer Academic/Plenum Publishers, New YorkCrossRefGoogle Scholar
  2. Hayat MA, Miller SE (1990) Negative Staining. McGraw-Hill Publishing CompanyGoogle Scholar
  3. Holland L (1966) Vacuum Deposition of Thin Films. Chapman and Hall, LondonGoogle Scholar
  4. Richardt A, Richardt I (2000) Les évaporations sous vide, théorie et pratique. IN FINEGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Jeanne Ayache
    • 1
  • Luc Beaunier
    • 2
  • Jacqueline Boumendil
    • 3
  • Gabrielle Ehret
    • 4
  • Danièle Laub
    • 5
  1. 1.Laboratoire de Microscopie Moléculaire et CellulaireInstitut Gustave Roussy Unité mixte CNRS-UMR8126-IGRVillejuif CXFrance
  2. 2.Labo. Interfaces et Systèmes ElectrochimiquesUniversité Paris VI UPR 15 CNRS Boîte courrier 133Paris CX 05France
  3. 3.Centre de Microscopie Electronique Appliquée à la Biologie et à la GéologieUniversité Lyon IVilleurbanne CXFrance
  4. 4.Inst. Physique et Chimie des MatériauxUniversité Strasbourg CNRS-UMR 7504Strasbourg CX 2France
  5. 5.Faculté des Sciences de Base Centre Interdisciplinaire de Microscopie ElectroniqueEcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations