Advertisement

The Different Observation Modes in Electron Microscopy (SEM, TEM, STEM)

  • Jeanne Ayache
  • Luc Beaunier
  • Jacqueline Boumendil
  • Gabrielle Ehret
  • Danièle Laub
Chapter

Abstract

Electron microscopy constitutes a key technique for characterizing materials because of its various imaging and spectrometry options. Depending on the scale and nature of the information desired (topographical, morphological, structural, and/or chemical), either scanning and/or transmission electron microscopy is used.

Keywords

Objective Lens Spherical Aberration Convergent Beam Electron Diffraction Incident Electron Beam Objective Aperture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Bibliography

  1. Ammou, M. (1989). Microcaractérisation des solides. Méthodes d’observation et d’analyse, CRAM CNRS S. Antipolis.Google Scholar
  2. Angenault, J. (2001). Symétrie et structure cristallochimique du solide. Vuibert, Paris.Google Scholar
  3. Ayache, J. and Morniroli, J.-P. (2001). Microscopie des défauts cristallins (ed. Société Française des Microscopies). École d’Oléron, Paris.Google Scholar
  4. Barna, A., Radnoczi, G., and Pecz, B. (1997). Preparation techniques for electron microscopy. In Handbook of Microscopy Application in Material Science. VCH, Weinheim.Google Scholar
  5. Bethge, H. and Heydenreich, J. (1987). Electron Microscopy in Solid State Physics. Elsevier, Amsterdam.Google Scholar
  6. Colliex, C. (2004). La microscopie électronique. Que sais-je – PUF.Google Scholar
  7. Delain, E., Fourcade, A., Révet, B., and Mory, C. (1992). Microsc. Microanal. Microstruct., 3, 175.CrossRefGoogle Scholar
  8. Delain, E. and Le Cam, E. (1995). The spreading of nucleic acids. In Visualization of Nucleic Acids (ed. G. Morel). CRC Press, Boca Raton, London, Tokyo.Google Scholar
  9. Eberhart, J.-P. (1989). Méthodes Physiques d’étude des minéraux et des matériaux solides. Dunod BORDAS, Paris.Google Scholar
  10. Georges, J.-M. (2000). Frottement, usure et lubrification, Sciences et techniques de l’ingénieur. Eyrolles, Paris.Google Scholar
  11. Goldstein, J.I., Newbury, D.E., Echlin, D.C., Romig, A.D., Lyman, C.E., Fiori, C., and Lifshin, E. (2003). Scanning Electron Microscopy and X-Ray Microanalysis, 3rd edition. Kluwer Academic/Plenum Publishers, New York.CrossRefGoogle Scholar
  12. Goodhew, P.J. (1985). Thin foil preparation for electron microscopy. In Practical Methods in Electron Microscopy, vol. II. Elsevier, Amsterdam.Google Scholar
  13. Hawkes, P. (1995). Electrons et microscopes – vers les nanosciences. CNRS Editions, Belin.Google Scholar
  14. Hirsch, P.B., Howie, A., Nichols, R., Pashley, D.W., and Whelan, M.J. (1977). Electron Microscopy of Thin Crystals, vol. 13. R.E. Krieger, New York.Google Scholar
  15. Jensen, P. (2001). Entrée en matière: les atomes expliquent le monde? Seuil, Paris.Google Scholar
  16. Jouffrey, B., Bourret, A., and Colliex, C. (1983). Cours de l’école de microscopie électronique en science des matériaux, Bombannes. CNRS, Paris.Google Scholar
  17. Marioge, J.-P. (2000). Surfaces Optiques. EDP Sciences, 229–231.Google Scholar
  18. Maurice, F., Meny, L., and Tixier, R. (1987). Microanalyse, microscopie électronique á balayage, Ecole d’été 1978. Les éditions de Physique.Google Scholar
  19. Morel, G. (1995). Visualization of Nucleic Acids. CRC Press, Boca Raton, London, Tokyo.Google Scholar
  20. Morniroli, J.-P. (2002). Large-angle convergent-beam electron diffraction. In Applications to Crystal Defects (ed. Société Française des Microscopies). Monograph of the French Society of Microscopies, Paris.Google Scholar
  21. Newbury, D.E., Echlin, P., Fiori, C.E., Joy, D.C., and Goldstein, J. (1986). Advanced Scanning Electron Microscopy and X-Ray Microanalysis. Plenum Press, New York.CrossRefGoogle Scholar
  22. Ratner, M. and Ratner, D. (2003). Nanotechnologies: La révolution de demain. Campus Press, France.Google Scholar
  23. Sherzer, O. (1949), The theoretical resolution limit in the microscope, JAP 20, 20.Google Scholar
  24. Spence, J.C.H. and Zuo, J.M. (1992). Electron Microdiffraction. Plenum Press, New York and London.CrossRefGoogle Scholar
  25. Wautelet, M. (2003). Les nanotechnologies. Dunod, Paris.Google Scholar
  26. Willaime, C. (1987). Initiation á la microscopie électronique á transmission. Société Française de Minéralogie et Cristallographie.Google Scholar
  27. Williams, D.B. (1984). Practical analytical electron microscopy. In Materials Science (ed. Philips Electronic Instruments, Inc.). Electron Optics Publishing Group, New Jersey.Google Scholar
  28. Williams, D. and Carter, B. (1996). Transmission Electron Microscopy. Plenum Press, New York.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Jeanne Ayache
    • 1
  • Luc Beaunier
    • 2
  • Jacqueline Boumendil
    • 3
  • Gabrielle Ehret
    • 4
  • Danièle Laub
    • 5
  1. 1.Laboratoire de Microscopie Moléculaire et CellulaireInstitut Gustave Roussy Unité mixte CNRS-UMR8126-IGRVillejuif CXFrance
  2. 2.Labo. Interfaces et Systèmes ElectrochimiquesUniversité Paris VI UPR 15 CNRS Boîte courrier 133Paris CX 05France
  3. 3.Centre de Microscopie Electronique Appliquée à la Biologie et à la GéologieUniversité Lyon IVilleurbanne CXFrance
  4. 4.Inst. Physique et Chimie des MatériauxUniversité Strasbourg CNRS-UMR 7504Strasbourg CX 2France
  5. 5.Faculté des Sciences de Base Centre Interdisciplinaire de Microscopie ElectroniqueEcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations