Skip to main content

The Different Observation Modes in Electron Microscopy (SEM, TEM, STEM)

  • Chapter
  • First Online:
Sample Preparation Handbook for Transmission Electron Microscopy

Abstract

Electron microscopy constitutes a key technique for characterizing materials because of its various imaging and spectrometry options. Depending on the scale and nature of the information desired (topographical, morphological, structural, and/or chemical), either scanning and/or transmission electron microscopy is used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Ammou, M. (1989). Microcaractérisation des solides. Méthodes d’observation et d’analyse, CRAM CNRS S. Antipolis.

    Google Scholar 

  • Angenault, J. (2001). Symétrie et structure cristallochimique du solide. Vuibert, Paris.

    Google Scholar 

  • Ayache, J. and Morniroli, J.-P. (2001). Microscopie des défauts cristallins (ed. Société Française des Microscopies). École d’Oléron, Paris.

    Google Scholar 

  • Barna, A., Radnoczi, G., and Pecz, B. (1997). Preparation techniques for electron microscopy. In Handbook of Microscopy Application in Material Science. VCH, Weinheim.

    Google Scholar 

  • Bethge, H. and Heydenreich, J. (1987). Electron Microscopy in Solid State Physics. Elsevier, Amsterdam.

    Google Scholar 

  • Colliex, C. (2004). La microscopie électronique. Que sais-je – PUF.

    Google Scholar 

  • Delain, E., Fourcade, A., Révet, B., and Mory, C. (1992). Microsc. Microanal. Microstruct., 3, 175.

    Article  Google Scholar 

  • Delain, E. and Le Cam, E. (1995). The spreading of nucleic acids. In Visualization of Nucleic Acids (ed. G. Morel). CRC Press, Boca Raton, London, Tokyo.

    Google Scholar 

  • Eberhart, J.-P. (1989). Méthodes Physiques d’étude des minéraux et des matériaux solides. Dunod BORDAS, Paris.

    Google Scholar 

  • Georges, J.-M. (2000). Frottement, usure et lubrification, Sciences et techniques de l’ingénieur. Eyrolles, Paris.

    Google Scholar 

  • Goldstein, J.I., Newbury, D.E., Echlin, D.C., Romig, A.D., Lyman, C.E., Fiori, C., and Lifshin, E. (2003). Scanning Electron Microscopy and X-Ray Microanalysis, 3rd edition. Kluwer Academic/Plenum Publishers, New York.

    Book  Google Scholar 

  • Goodhew, P.J. (1985). Thin foil preparation for electron microscopy. In Practical Methods in Electron Microscopy, vol. II. Elsevier, Amsterdam.

    Google Scholar 

  • Hawkes, P. (1995). Electrons et microscopes – vers les nanosciences. CNRS Editions, Belin.

    Google Scholar 

  • Hirsch, P.B., Howie, A., Nichols, R., Pashley, D.W., and Whelan, M.J. (1977). Electron Microscopy of Thin Crystals, vol. 13. R.E. Krieger, New York.

    Google Scholar 

  • Jensen, P. (2001). Entrée en matière: les atomes expliquent le monde? Seuil, Paris.

    Google Scholar 

  • Jouffrey, B., Bourret, A., and Colliex, C. (1983). Cours de l’école de microscopie électronique en science des matériaux, Bombannes. CNRS, Paris.

    Google Scholar 

  • Marioge, J.-P. (2000). Surfaces Optiques. EDP Sciences, 229–231.

    Google Scholar 

  • Maurice, F., Meny, L., and Tixier, R. (1987). Microanalyse, microscopie électronique á balayage, Ecole d’été 1978. Les éditions de Physique.

    Google Scholar 

  • Morel, G. (1995). Visualization of Nucleic Acids. CRC Press, Boca Raton, London, Tokyo.

    Google Scholar 

  • Morniroli, J.-P. (2002). Large-angle convergent-beam electron diffraction. In Applications to Crystal Defects (ed. Société Française des Microscopies). Monograph of the French Society of Microscopies, Paris.

    Google Scholar 

  • Newbury, D.E., Echlin, P., Fiori, C.E., Joy, D.C., and Goldstein, J. (1986). Advanced Scanning Electron Microscopy and X-Ray Microanalysis. Plenum Press, New York.

    Book  Google Scholar 

  • Ratner, M. and Ratner, D. (2003). Nanotechnologies: La révolution de demain. Campus Press, France.

    Google Scholar 

  • Sherzer, O. (1949), The theoretical resolution limit in the microscope, JAP 20, 20.

    Google Scholar 

  • Spence, J.C.H. and Zuo, J.M. (1992). Electron Microdiffraction. Plenum Press, New York and London.

    Book  Google Scholar 

  • Wautelet, M. (2003). Les nanotechnologies. Dunod, Paris.

    Google Scholar 

  • Willaime, C. (1987). Initiation á la microscopie électronique á transmission. Société Française de Minéralogie et Cristallographie.

    Google Scholar 

  • Williams, D.B. (1984). Practical analytical electron microscopy. In Materials Science (ed. Philips Electronic Instruments, Inc.). Electron Optics Publishing Group, New Jersey.

    Google Scholar 

  • Williams, D. and Carter, B. (1996). Transmission Electron Microscopy. Plenum Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeanne Ayache or Jeanne Ayache .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ayache, J., Beaunier, L., Boumendil, J., Ehret, G., Laub, D. (2010). The Different Observation Modes in Electron Microscopy (SEM, TEM, STEM). In: Sample Preparation Handbook for Transmission Electron Microscopy. Springer, New York, NY. https://doi.org/10.1007/978-0-387-98182-6_3

Download citation

Publish with us

Policies and ethics