Growth Factors on Biomaterial Scaffolds

  • Yoshihiro Ito


Growth factors act on cells via endocrine, paracrine, autocrine, intracrine, juxtacrine, and matricrine mechanisms. Four of these mechanisms are diffusible, and two are nondiffusible. Signal transduction of the diffusible growth factors is significantly different from that of the nondiffusible growth factors. It is important to design growth factors for tissue engineering, regenerative medicine, and cell culture systems by considering the mechanisms of their action at the cellular and molecular level. The action mechanism and the utilization of growth factors are discussed.


Vascular Endothelial Growth Factor Nerve Growth Factor Hepatocyte Growth Factor Soluble Growth Factor Micropatterned Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Basic fibroblast growth factor


Bone morphogenic protein


Collagen-binding domain


Collagen-binding EGF


Collagen-binding FGF


Chinese ovary cell


Colony stimulating factor-1


Epidermal growth factor


Elastin-like peptide


Heparin-binding epidermal growth factor


Hepatocyte growth factor


Human umbilical vein endothelial cell


Interleukin-1 receptor antagonist




Mitogen-activated protein kinase


Nerve growth factor


Rat adrenal pheochromocytoma cell line


Arg–Gly–Asp, a cell adhesive peptide sequence


Arg–Gly–Asp-Ser, a cell adhesive peptide sequence


Transforming growth factor-β


A monocytic cell line


A human leukemia cell line established from blast cells


Tumor necrosis factor


Tyrosine kinase A


A cell line established from the bone marrow; growth is supported byerythropoietin


Vascular endothelial growth factor


  1. 1.
    Ito Y. Covalently immobilized biosignal molecule materials for tissue engineering. Soft Matter 2008;4:46–56CrossRefGoogle Scholar
  2. 2.
    Wells A, Marti U. Signaling shortcut: cell-surface receptors in the nucleus? Nat Rev Mol Cell Biol 2002;3:697–702CrossRefGoogle Scholar
  3. 3.
    Re RN. The intracrine hypothesis and intracellular peptide hormone action. BioEssays 2003;25:401–409CrossRefGoogle Scholar
  4. 4.
    Singh AB, Harris RC. Autocrine, paracrine and juxtacrine signaling by EGFR ligands. Cell Signal 2005;17:1183–1193CrossRefGoogle Scholar
  5. 5.
    Massague J, Pandiella A. Membrane-anchored growth factors. Annu Rev Biochem 1993;62:515–541CrossRefGoogle Scholar
  6. 6.
    Iwamoto R, Mekada E. Heparin-binding EGF-like growth factor: a juxtacrine growth factor. Cytokine Growth Factor Rev 2000;11:335–344CrossRefGoogle Scholar
  7. 7.
    Ito Y, Liu SQ, Imanishi Y. Enhancement of cell growth on growth-factor-immobilized polymer film. Biomaterials 1991;12:449–453CrossRefGoogle Scholar
  8. 8.
    Liu SQ, Ito Y, Imanishi Y. Cell growth on immobilized cell growth factor. I. acceleration of the growth of fibroblast cells on insulin-immobilized polymer matrix in culture medium without serum. Biomaterials 1992;13:50–58CrossRefGoogle Scholar
  9. 9.
    Ito Y, Liu SQ, Nakabayashi M, Imanishi Y. Cell growth on immobilized cell growth factor. II. Fibroblast cell adhesion and growth on the poly(methyl methacrylate) film immobilized with various kinds of proteins. Biomaterials 1992;13:789–794CrossRefGoogle Scholar
  10. 10.
    Liu SQ, Ito Y, Imanishi Y. Cell growth on immobilized cell growth factor. 4. Interaction of fibroblast cells with insulin immobilized on poly(methyl methacrylate) membrane. J Biochem Biophys Method 1992;25:139–148CrossRefGoogle Scholar
  11. 11.
    Liu SQ, Ito Y, Imanishi Y. Cell growth on immobilized cell growth factor. 7. Protein-free cell culture by using growth factor-immobilized polymer membrane. Enzyme Microb Technol 1993;15:167–172CrossRefGoogle Scholar
  12. 12.
    Ito Y, Zheng J, Imanishi Y, Yonezawa K, Kasuga M. Protein-free cell culture on artificial substrate with covalently immobilized insulin. Proc Natl Acad Sci U S A 1996;93:3598–3601CrossRefGoogle Scholar
  13. 13.
    Ito Y, Uno T, Liu SQ, Imanishi Y. Cell growth on immobilized cell-growth factor. 8. Protein-free cell culture on insulin-immobilized microcarrie. Biotechnol Bioeng 1992;40:1271–1276CrossRefGoogle Scholar
  14. 14.
    Liu SQ, Ito Y, Imanishi Y. Cell growth on immobilized growth factor. 9. Covalent immobilization of cell growth and adhesion factors onto polyurethane surfaces to enhance growth of bovine endothelial cells. J Biomed Mater Res 1993;27:909–915CrossRefGoogle Scholar
  15. 15.
    Ito Y, Liu SQ, Orihara T, Imanishi Y. Cell growth on immobilized cell growth factor. Interactions of fibroblast cells with insulin immobilized on 2-hydroxyethyl methacrylate/ethyl methacrylate copolymer membranes. J Bioact Compat Polym 1994;9:170–183CrossRefGoogle Scholar
  16. 16.
    Kang IK, Choi SH, Shin DS, Yoon SC. Surface modification of polyhydroxyalkanoate films and their interaction with human fibroblasts. Int J Biol Macromol 2001;28:205–212CrossRefGoogle Scholar
  17. 17.
    Ito Y, Inoue M, Liu SQ, Imanishi Y. Cell growth on immobilized cell-growth factor. 6. Enhanced cell growth on cell growth factor and adhesion factor co-immobilized materials. J Biomed Mater Res 1993;27:901–907CrossRefGoogle Scholar
  18. 18.
    Chen G, Ito Y, Imanishi Y. Mitogenic activities of water-soluble and water-insoluble insulin conjugates. Bioconjug Chem 1997;8:106–110CrossRefGoogle Scholar
  19. 19.
    Bromberg L, Salvati L Jr. Bioactive surfaces via immobilization of self-assembling polymers onto hydrophobic materials. Bioconjug Chem 1999;10:678–686CrossRefGoogle Scholar
  20. 20.
    Kim EJ, Kang IK, Jang MK. Park YB. Preparation of insulin-immobilized polyurethanes and their interaction with human fibroblasts. Biomaterials 1998;19:239–249CrossRefGoogle Scholar
  21. 21.
    Tessmar J, Mikos A, Gopferich A. The use of poly(ethylene glycol)-block-poly(lactic acid) derived copolymers for the rapid creation of biomimetic surfaces. Biomaterials 2003;24:4475–4486CrossRefGoogle Scholar
  22. 22.
    Kellner K, Tessmar J, Milz S, Angele P, Nerlich M, Schulz MB, Blunk T, Gopferich A. PEGylation does not impair insulin efficacy in three-dimensional cartilage culture: an investigation toward biomimetic polymers. Tissue Eng 2004;10:429–440CrossRefGoogle Scholar
  23. 23.
    Tessmar J, Kellner K, Schulz MB, Blunk T, Gopferich A. Toward the development of biomimetic polymers by protein immobilization: PEGylation of insulin as a model reaction. Tissue Eng 2004;10:441–453CrossRefGoogle Scholar
  24. 24.
    Zheng J, Ito Y, Imanishi Y. Cell growth on immobilized cell-growth factor. 10. Insulin and polyallylamine co-immobilized materials. Biomaterials 1994;15:963–968CrossRefGoogle Scholar
  25. 25.
    Ito Y, Zheng J, Imanishi Y. Serum-free cell culture on insulin-immobilized porous collagen beads. Biotechnol Bioeng 1995;45:144–148CrossRefGoogle Scholar
  26. 26.
    Zheng J, Ito Y, Imanishi Y. Cell growth on insulin/RGDS-coimmobilized poly(methyl methacrylate) films. J Biomater Sci Polym Ed 1995;7:515–522CrossRefGoogle Scholar
  27. 27.
    Zheng J, Ito Y, Imanishi Y. Growth enhancement of anchorage-dependent and anchorage-independent cells by coimmobilization of insulin with poly(allylamine) or gelatin. Biotechnol Prog 1995;11:677–681CrossRefGoogle Scholar
  28. 28.
    Li JS, Ito Y, Zheng J, Takahashi T, Imanishi Y. Enhancement of artificial juxtacrine stimulation of insulin by co-immobilization with adhesion factors. J Biomed Mater Res 1997;31:190–197CrossRefGoogle Scholar
  29. 29.
    Ito Y, Zheng J, Imanishi Y. Enhancement of cell growth on a porous membrane co-immobilized with cell-growth and cell adhesion factors. Biomaterials 1997;18:197–202CrossRefGoogle Scholar
  30. 30.
    Gumusdrelioglu M, Turkoglu H. Biomodification of non-woven polyester fabrics by insulin and RGD for use in serum-free cultivation of tissue cells. Biomaterials 2002;23:3927–3935CrossRefGoogle Scholar
  31. 31.
    Gumusdrelioglu M, Karakecili AG. Uses of thermoresponsive and RGD/insulin-modified poly(vinyl ether)-based hydrogels in cell cultures. J Biomater Sci Polym Ed 2003;14:199–211CrossRefGoogle Scholar
  32. 32.
    Kim YJ, Kang IK, Huh MW, Yoon SC. Surface characterization and in vitro blood compatibility of poly(ethylene terephthalate) immobilized with insulin and/or heparin using plasma glow discharge. Biomaterials 2000;21:121–130CrossRefGoogle Scholar
  33. 33.
    Ito Y, Chen G, Imanishi Y. Photoimmobilization of insulin onto polystyrene dishes for protein-free cell culture. Biotechnol Prog 1996;12:700–703CrossRefGoogle Scholar
  34. 34.
    Ito Y, Kondo S, Chen G, Imanishi Y. Patterned artificial juxtacrine stimulation of cells by covalently immobilized insulin. FEBS Lett 1997;403:159–162CrossRefGoogle Scholar
  35. 35.
    Chen G, Ito Y, Imanishi Y. Regulation of growth and adhesion of cultured cells by insulin conjugated with thermoresponsive polymers. Biotechnol Bioeng 1997;53:339–344CrossRefGoogle Scholar
  36. 36.
    Hatakeyama H, Kikuchi A, Yamato M, Okano T. Bio-functionalized thermoresponsive interfaces facilitating cell adhesion and proliferation. Biomaterials 2006;27:5069–5078CrossRefGoogle Scholar
  37. 37.
    Hatakeyama H, Kikuchi A, Yamato M, Okano T. Influence of insulin immobilization to thermoresponsive culture surfaces on cell proliferation and thermally induced cell detachment. Biomaterials 2005;26:5167–5176CrossRefGoogle Scholar
  38. 38.
    Hatakeyama H, Kikuchi A, Yamato M, Okano T. Patterned biofunctional designs of thermoresponsive surfaces for spatiotemporally controlled cell adhesion, growth, and thermally induced detachment. Biomaterials 2007;28:3632–3643CrossRefGoogle Scholar
  39. 39.
    Kuhl PR, Griffith-Cima LG. Tethered epidermal growth factor as a paradigm for growth factor-induced stimulation from the solid phase. Nat Med 1996;2:1022–1027CrossRefGoogle Scholar
  40. 40.
    Ichinose J, Morimatsu M, Yanagida T, Sako Y. Covalent immobilization of epidermal growth factor molecules for single-molecule imaging analysis of intracellular signaling. Biomaterials 2006;27:3343–3350CrossRefGoogle Scholar
  41. 41.
    Nakajima M, Ishimuro T, Kato K, Ko IK, Hirata I, Arima Y, Iwata H. Combinatorial protein display for the cell-based screening of biomaterials that direct neural stem cell differentiation. Biomaterials 2007;28:1048–1060CrossRefGoogle Scholar
  42. 42.
    Ito Y, Li JS, Takahashi T, Imanishi Y, Okabayashi Y, Kido Y, Kasuga M. Enhancement of the mitogenic effect by artificial juxtacrine stimulation using immobilized EGF. J Biochem 1997;121:514–520Google Scholar
  43. 43.
    Klenkler BJ, Griffith M, Becerril C, West-Mays JA, Sheardown H. EGF-grafted PDMS surfaces in artificial cornea applications. Biomaterials 2005;26:7286–7296CrossRefGoogle Scholar
  44. 44.
    Klenkler BJ, Sheardown H. Characterization of EGF coupling to aminated silicone rubber surfaces. Biotechnol Bioeng 2006;95:1158–1166CrossRefGoogle Scholar
  45. 45.
    Chen G, Ito Y, Imanishi Y. Photo-immobilization of epidermal growth factor enhances its mitogenic effect by artificial juxtacrine signaling. Biochim Biophys Acta 1997;1358:200–208CrossRefGoogle Scholar
  46. 46.
    Ito Y, Chen G, Imanishi Y. Micropatterned immobilization of epidermal growth factor to regulate cell function. Bioconjug Chem 1998;9:277–282CrossRefGoogle Scholar
  47. 47.
    Chen G, Ito Y, Masuda S, Sasaki R. Growth and secretion of erythropoietin of Chinese hamster ovary cells coexpressing epidermal growth factor receptor and erythropoietin genes: design of cells for cell culture matrix. Cytotechnology 2001;35:3–8CrossRefGoogle Scholar
  48. 48.
    Chen G, Ito Y. Gradient micropattern immobilization of EGF to investigate the effect of artificial juxtacrine stimulation. Biomaterials 2001;22:2453–2457CrossRefGoogle Scholar
  49. 49.
    Ito Y, Chen G, Imanishi Y, Morooka T, Nishida E, Okabayashi Y, Kasuga M. Differential control of cellular gene expression by diffusible and non-diffusible EGF. J Biochem 2001;129:733–737CrossRefGoogle Scholar
  50. 50.
    Woo YK, Kwon SY, Lee HS, Park YS. Proliferation of anterior cruciate ligament cells in vitro by photo-immobilized epidermal growth factor. J Orthop Res 2007;25:73–80CrossRefGoogle Scholar
  51. 51.
    Nishi N, Matsushita O, Yuube K, Miyanaka H, Okabe A, Wada F. Collagen-binding growth factors: production and characterization of functional fusion proteins having a collagen-binding domain. Proc Natl Acad Sci U S A 1998;95:7018–7023CrossRefGoogle Scholar
  52. 52.
    Hayashi M, Tomita M, Yoshizato K. Production of EGF-collagen chimeric protein which shows the mitogenic activity. Biochim Biophys Acta 2001;1528:187–195CrossRefGoogle Scholar
  53. 53.
    Ishikawa T, Terai H, Kitajima T. Production of a biologically active epidermal growth factor fusion protein with high collagen affinity. J Biochem 2001;129:627–633CrossRefGoogle Scholar
  54. 54.
    Ogiwara K, Nagaoka M, Cho CS, Akaike T. Construction of a novel extracellular matrix using a new genetically engineered epidermal growth factor fused to IgG-Fc. Biotechnol Lett 2005;27:1633–1637CrossRefGoogle Scholar
  55. 55.
    Ogiwara K, Nagaoka M, Cho CS, Akaike T. Effect of photo-immobilization of epidermal growth factor on the cellular behaviors. Biochem Biophys Res Commun 2006;345:255–259CrossRefGoogle Scholar
  56. 56.
    Elloumi I, Kobayashi R, Funabashi H, Mie M, Kobatake E. Construction of epidermal growth factor fusion protein with cell adhesive activity. Biomaterials 2006;27:3451–3458CrossRefGoogle Scholar
  57. 57.
    Nakaji-Hirabayashi T, Kato K, Arima Y, Iwata H. Oriented immobilization of epidermal growth factor onto culture substrates for the selective expansion of neural stem cells. Biomaterials 2007;28:3517–3529CrossRefGoogle Scholar
  58. 58.
    Shibata SC, Hibino K, Mashimo T, Yanagida T, Sako Y. Formation of signal transduction complexes during immobile phase of NGFR movements. Biochem Biophys Res Commun 2006;342:316–322CrossRefGoogle Scholar
  59. 59.
    Kapur TA, Schoichet MS. Chemically-bound nerve growth factor for neural tissue engineering applications. J Biomater Sci Polym Ed 2003;14:383–394CrossRefGoogle Scholar
  60. 60.
    Kapur TA, Schoichet MS. Immobilized concentration gradients of nerve growth factor guide neurite outgrowth. J Biomed Mater Res 2004;68A:235–243CrossRefGoogle Scholar
  61. 61.
    Chen PR, Chen MH, Lin FH, Su WY. Release characteristics and bioactivity of gelatin-tricalcium phosphate membranes covalently immobilized with nerve growth factors. Biomaterials 2005;26:6579–6587CrossRefGoogle Scholar
  62. 62.
    Ito Y. Regulation of cellular gene expression by artificial biomaterial immobilized with biosignal molecules. Jpn J Artif Organs 1998;27:383–394Google Scholar
  63. 63.
    Sakiyama-Elbert S, Panitch A, Hubbell JA. Development of growth factor fusion proteins for cell-triggered drug delivery. FASEB J 2001;15:1300–1302Google Scholar
  64. 64.
    Gomez N, Lu Y, Chen S, Schmidt CE. Immobilized nerve growth factor and microtopography have distinct effects on polarization versus axon elongation in hippocampal cells in culture. Biomaterials 2007;28:271–284CrossRefGoogle Scholar
  65. 65.
    Puleo DA, Kissling RA, Sheu MS. A technique to immobilize bioactive proteins, including bone morphogenetic protein-4 (BMP-4), on titanium alloy. Biomaterials 2002;23:2079–2087CrossRefGoogle Scholar
  66. 66.
    Karageorgiou V, Meinel L, Hofmann S, Malhotra A, Volloch V, Kaplan D. Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells. J Biomed Mater Res 2004;71A:528–537CrossRefGoogle Scholar
  67. 67.
    Schmoekel HG, Weber FE, Schense JC, Graetz KW, Schwalder P, Hubbell JA. Bone repair with a form of BMP-2 engineered for incorporation into fibrin cell ingrowth matrices. Biotechnol Bioeng 2005;89:253–262CrossRefGoogle Scholar
  68. 68.
    Schliphake H, Aref A, Scharnweber D, Bierbaum S, Roessler S, Sewing A. Effect of immobilized bone morphogenic protein 2 coating of titanium implants on peri-implant bone formation. Clin Oral Implants Res 2005;16:563–569CrossRefGoogle Scholar
  69. 69.
    Tsujigiwa H, Nagatsuka H, Gunduz M, Rodriguez A, Rivera AJ, Legeros RZ, Inoue M, Nagai N. Effects of immobilized recombinant human bone morphogenetic protein-2/succinylated type I atelocollagen on cellular activity of ST2 cells. J Biomed Mater Res 2005;75:210–215CrossRefGoogle Scholar
  70. 70.
    Tsujigiwa H, Nagatsuka H, Lee YJ, Han PP, Gunduz M, LeGeros RZ, Inoue M, Yamada M, Nagai N. Immobilized rhBMP-2/succinylated type I atelocollagen gene expression of intracellular signaling molecules on ST2 cells. J Biomed Mater Res 2006;77A:507–511CrossRefGoogle Scholar
  71. 71.
    Han B, Perelman N, Tang B, Hall F, Shors EC, Nimni ME. Collagen-targeted BMP3 fusion proteins arrayed on collagen matrices or porous ceramics impregnated with Type I collagen enhance osteogenesis in a rat cranial defect model. J Orthop Res 2006;20:747–755CrossRefGoogle Scholar
  72. 72.
    Park YJ, Kim KH, Lee JY, Ku Y, Lee SJ, Min BM, Chung CP. Immobilization of bone morphogenetic protein-2 on a nanofibrous chitosan membrane for enhanced guided bone regeneration. Biotechnol Appl Biochem 2006;43:17–24CrossRefGoogle Scholar
  73. 73.
    Liu HW, Chen CH, Tsai CL, Lin IH, Hsiue GH. Heterobifunctional poly(ethylene glycol)-tethered bone morphogenetic protein-2-stimulated bone marrow mesenchymal stromal cell differentiation and osteogenesis. Tissue Eng 2007;13:1113–1124CrossRefGoogle Scholar
  74. 74.
    Edlund U, Danmark S, Albertsson AC. A strategy for the covalent functionalization of resorbable polymers with heparin and osteoinductive growth factor. Biomacromolecules 2008;9:901–905CrossRefGoogle Scholar
  75. 75.
    Taguchi T, Kishida A, Akashi M, Maruyama I. Immobilization of human vascular endothelial growth factor (VEGF165) onto biomaterials: an evaluation of the biological activity of VEGF165. J Bioact Compat Polym 2000;15:309–320CrossRefGoogle Scholar
  76. 76.
    Zisch AH, Schenk U, Schense JC, Sakiyama-Elbert SE, Hubbell JA. Covalently conjugated VEGF--fibrin matrices for endothelialization. J Control Release 2001;72:101–113CrossRefGoogle Scholar
  77. 77.
    Ehrbar M, Djonov VG, Schnell C, Tschanz SA, Martiny-Barton G, Schenk U, Wood J, Burri PH, Hubbell JA, Zisch AH. Cell-demanded liberation of VEGF121 from fibrin implants induces local and controlled blood vessel growth. Circ Res 2004;94:1124–1132CrossRefGoogle Scholar
  78. 78.
    Ehrbar M, Matters A, Zammaretti P, Hubbell JA, Zisch AH. Endothelial cell proliferation and progenitor maturation by fibrin-bound VEGF variants with differential susceptibilities to local cellular activity. J Control Release 2005;101:93–109CrossRefGoogle Scholar
  79. 79.
    Ito Y, Hasuda H, Terai H, Kitajima T. Culture of human umbilical vein endothelial cells on immobilized vascular endothelial growth factor. J Biomed Mater Res 2005;74:659–665CrossRefGoogle Scholar
  80. 80.
    Backer MV, Patel V, Jehning BT, Claffey KP, Backer JM. Surface immobilization of active vascular endothelial growth factor via a cysteine-containing tag. Biomaterials 2006;27:5452–5458CrossRefGoogle Scholar
  81. 81.
    Ehrbar M, Zeisberger SM, Raeber GP, Hubbell JA, Schnell C, Zisch AH. The role of actively released fibrin-conjugated VEGF for VEGF receptor 2 gene activation and the enhancement of angiogenesis. Biomaterials 2008;29:1720–1729CrossRefGoogle Scholar
  82. 82.
    Andrades JA, Santamaria JA, Wu LT, Hall FL, Nimni ME, Becerra J. Production of a recombinant human basic fibroblast growth factor with a collagen binding domain. Protoplasma 2001;218:95–103CrossRefGoogle Scholar
  83. 83.
    Ito Y, Hayashi M, Imanishi Y. Gradient micropattern immobilization of heparin and its interaction with cells. J Biomater Sci Polym Ed 2001;12:367–378CrossRefGoogle Scholar
  84. 84.
    Watanabe K, Miyazaki T, Matsuda R. Growth factor array fabrication using a color ink jet printer. Zoolog Sci 2003:20;429–434CrossRefGoogle Scholar
  85. 85.
    DeLong SA, Moon JJ, West JL. Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration. Biomaterials 2005;26:3227–3234CrossRefGoogle Scholar
  86. 86.
    Inoue S, Tabata Y. Influence of basic fibroblast growth factor in the solution and adsorbed form on the proliferation and differentiation of cells. Inflamm Regen 2006;26:181–184CrossRefGoogle Scholar
  87. 87.
    Ohyama T, Nishide T, Iwata H, Sato H, Toda M, Toma N, Taki W. Immobilization of basic fibroblast growth factor on a platinum microcoil to enhance tissue organization in intracranial aneurysms. J Neurosurg 2005;102:109–115CrossRefGoogle Scholar
  88. 88.
    Mori H, Shukunami C, Furuyama A, Notsu H, Nishizaki Y, Hiraki Y. Immobilization of bioactive fibroblast growth factor-2 into cubic proteinous microcrystals (Bombyx mori cypovirus polyhedra) that are insoluble in a physiological cellular environment. J Biol Chem 2007;282:17289–17296CrossRefGoogle Scholar
  89. 89.
    Brewster LP, Washington C, Brey EM, Gassman A, Subramanian A, Calceterra J, Wolf W, Hall CL, Velander WH, Burgess WH, Greisler HP. Construction and characterization of a thrombin-resistant designer FGF-based collagen binding domain angiogen. Biomaterials 2008;29:327–336CrossRefGoogle Scholar
  90. 90.
    Shen H, Hu X, Bei J, Wang S. The immobilization of basic fibroblast growth factor on plasma-treated poly(lactide-co-glycolide). Biomaterials 2008;29:2388–2399CrossRefGoogle Scholar
  91. 91.
    Andrades JA, Han B, Becerra J, Sorgente N, Hall FL, Nimni ME. A recombinant human TGF-beta1 fusion protein with collagen-binding domain promotes migration, growth, and differentiation of bone marrow mesenchymal cells. Exp Cell Res 1999;250:485–498CrossRefGoogle Scholar
  92. 92.
    Fischer U, Hempel U, Becker D, Bierbaum S, Scharnweber D, Worch H, Wenzel KW. Transforming growth factor beta1 immobilized adsorptively on Ti6Al4V and collagen type I coated Ti6Al4V maintains its biological activity. Biomaterials 2003;24:2631–2641CrossRefGoogle Scholar
  93. 93.
    Merrett K, Griffith CM, Deslandes Y, Pleizier G, Sheardown H. Interactions of corneal epithelial cells with transforming growth factor b2 modified poly dimethyl siloxane surface. J Biomed Mater Res 2003;67A:981–993CrossRefGoogle Scholar
  94. 94.
    Chou CH, Cheng WTK, Lin CC, Chang CH, Tsai CC, Lin FH. TGF-β1 immobilized tri-co-polymer for articular cartilage tissue engineering. J Biomed Mater Res 2006;77B:338–348CrossRefGoogle Scholar
  95. 95.
    Mann BK, Schmedlen RH, West JL. Tethered-TGF-beta increases extracellular matrix production of vascular smooth muscle cells. Biomaterials 2001;22:439–444CrossRefGoogle Scholar
  96. 96.
    Kitajima T, Terai H, Ito Y. A fusion protein of hepatocyte growth factor for immobilization to collagen. Biomaterials 2007;28:1989–1997CrossRefGoogle Scholar
  97. 97.
    Ohkawara N, Ueda H, Shinozaki S, Kitajima T, Ito Y, Asaoka H, Kawakami A, Kaneko E, Shimokado K. Hepatocyte growth factor fusion protein having collagen-binding activity (CBD-HGF) accelerates re-endothelialization and intimal hyperplasia in balloon-injured rat carotid artery. J Atheroscler Thromb 2007;14:185–191CrossRefGoogle Scholar
  98. 98.
    Makino H, Hasuda H, Ito Y. Immobilization of leukemia inhibitory factor (LIF) to culture murine embryonic stem cells. J Biosci Bioeng 2004;98:374–379Google Scholar
  99. 99.
    Cetinkaya G, Torkoglu H, Arat S, Odaman H, Onur MA, Gumusderelioglu M, Tumer A. LIF-immobilized nonwoven polyester fabrics for cultivation of murine embryonic stem cells. J Biomed Mater Res 2007;81A:911–919CrossRefGoogle Scholar
  100. 100.
    Doheny JG, Jervis EJ, Guarna MM, Humphries RK, Warren RA, Kilburn DG. Cellulose as an inert matrix for presenting cytokines to target cells: production and properties of a stem cell factor-cellulose-binding domain fusion protein. Biochem J 1999;339:429–434CrossRefGoogle Scholar
  101. 101.
    Horwitz JI, Toner M, Tompkins RG, Yarmuch ML. Immobilized IL-2 preserves the viability of an IL-2 dependent cell line. Mol Immunol 1993;30:1041–1048CrossRefGoogle Scholar
  102. 102.
    Kim DH, Smith JT, Chilkoti A, Reichert WM. The effect of covalently immobilized rhIL-1ra-ELP fusion protein on the inflammatory profile of LPS-stimulated human monocytes. Biomaterials 2007;28:3369–3377CrossRefGoogle Scholar
  103. 103.
    Guan Y, Zhong H, Wang X, Zhou T. Synthetic and photo-immobilization of photo-active tumor necrosis factor-alpha. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2006;23:346–349Google Scholar
  104. 104.
    Ito Y, Hasuda H, Yamauchi T, Komatsu N, Ikebuchi K. Immobilization of erythropoietin to culture erythropoietin-dependent human leukemia cell line. Biomaterials 2004;25:2293–2298CrossRefGoogle Scholar
  105. 105.
    Liu SQ, Ito Y, Imanishi Y. Cell growth on immobilized cell growth factor: 5. Interaction of immobilized transferrin with fibroblast cells. Int J Biol Macromol 1993;15:221–226CrossRefGoogle Scholar
  106. 106.
    Nagaoka M, Koshimizu U, Yuasa S, Hattori F, Chen H, Tanaka T, Okabe M, Fukuda K, Akaike T. E-cadherin-coated plates maintain pluripotent ES cells without colony formation. PLoS ONE 2006;e15:1–7Google Scholar
  107. 107.
    Martin SM, Ganapathy R, Kim TK, Leach-Scampavia D, Giachelli CM, Ratner BD. Characterization and analysis of osteopontin-immobilized poly(2-hydroxyethyl methacrylate) surfaces. J Biomed Mater Res 2003;67A:334–343CrossRefGoogle Scholar
  108. 108.
    Martin SM, Schwartz JL, Giachelli CM, Ratner BD. Enhancing the biological activity of immobilized osteopontin using a type-1 collagen affinity coating. J Biomed Mater Res 2004;70A:10–19CrossRefGoogle Scholar
  109. 109.
    Koike J, Nagata K, Kudo S, Tsuji T, Irimura T. Density-dependent induction of TNF-alpha release from human monocytes by immobilized P-selectin. FEBS Lett 2000;477:84–88CrossRefGoogle Scholar
  110. 110.
    Kohrgruber N, Groger M, Meraner P, Kriehuber E, Petzelbauer P, Brandt S, Stingl G, Rot A, Maurer D. Plasmacytoid dendritic cell recruitment by immobilized CXCR3 ligands. J Immunol 2004;173:6592–6602Google Scholar
  111. 111.
    Konno T, Sakano S, Higashida S, Ito Y. Notch ligand-conjugated polymeric matrix. Inflamm Regen 2005;25:426–430CrossRefGoogle Scholar
  112. 112.
    Varnum-Finney B, Wu L, Yu M, Brashem-Stain C, Staats S, Flowers D, Griffin JD, Bernstain ID. Immobilization of Notch ligand, Delta-1, is required for induction of notch signaling. J Cell Sci 2000;113:4313–4318Google Scholar
  113. 113.
    Vas V, Szilágyi L, Pálóczi K, Uher F. Soluble Jagged-1 is able to inhibit the function of its multivalent form to induce hematopoietic stem cell self-renewal in a surrogate in vitro assay. J Leukoc Biol 2004;75:714–720CrossRefGoogle Scholar
  114. 114.
    Beckstead BL, Santosa DM, Giachelli CM. Mimicking cell-cell interactions at the biomaterial-cell interface for control of stem cell differentiation. J Biomed Mater Res 2006;79A:94–103CrossRefGoogle Scholar
  115. 115.
    Ho JE, Chung EH, Wall S, Schaffer DV, Healy KE. Immobilized sonic hedgehog N-terminal signaling domain enhances differentiation of bone marrow-derived mesenchymal stem cells. J Biomed Mater Res 2007;83A:1200–1208CrossRefGoogle Scholar
  116. 116.
    Zisch AH, Zeisberger SM, Ehrbar M, Djonov V, Weber CC, Ziemiecki A, Pasquale EB, Hubbell JA. Engineered fibrin matrices for functional display of cell membrane-bound growth factor-like activities: study of angiogenic signaling by ephrin-B2. Biomaterials 2004;25:3245–3257CrossRefGoogle Scholar
  117. 117.
    Sharon JL, Puleo DA. The use of N-terminal immobilization of PTH(1–34) on PLGA to enhance bioactivity. Biomaterials 2008;29:3137–3142CrossRefGoogle Scholar
  118. 118.
    Ito Y, Nogawa M. Preparation of a protein micro-array using a photo-reactive polymer for a cell-adhesion assay. Biomaterials 2003;24:3021–3026CrossRefGoogle Scholar
  119. 119.
    Ito Y. Photoimmobilization for microarrays. Biotechnol Prog 2006;22:924–932CrossRefGoogle Scholar
  120. 120.
    Kiessling LL, Gestwicki JE, Strong LE. Synthetic multivalent ligands as probes of signal transduction. Angew Chem Int Ed 2006;45:2348–2368CrossRefGoogle Scholar
  121. 121.
    Thomas TP, Shukla R, Kotlyar A, Liang B, Ye JY, Norris TB, Baker JR Jr. Dendrimer-epidermal growth factor conjugate displays superagonist activity. Biomacromolecules 2008;9:603–609CrossRefGoogle Scholar
  122. 122.
    Reddy CC, Niyogi SK, Wells A, Wiley HS, Lauffenburger DA. Engineering epidermal growth factor for enhanced mitogenic potency. Nat Biotechnol 1996;14:1696–1699CrossRefGoogle Scholar
  123. 123.
    Rusmini F, Zhong Z, Feijen J. Protein immobilization strategies for protein biochips. Biomacromolecules 2007;8:1775–1789CrossRefGoogle Scholar
  124. 124.
    Ito Y. Microarray Biochips (Japanese), Ito Y. ed. CMC Press, Tokyo, pp. 91–109, 2007Google Scholar
  125. 125.
    Schwarz U. Soft matters in cell adhesion: rigidity sensing on soft elastic substrates. Soft Matter 2007;3:263–266CrossRefGoogle Scholar
  126. 126.
    Levental I, Georges PC, Janmey PA. Fibroblast adaptation and stiffness matching to soft elastic substrates. Soft Matter 2007;3:299–306CrossRefGoogle Scholar
  127. 127.
    Ito, Y. Surface micropatterning to regulate cell functions. Biomaterials 1999;20:2333–2342CrossRefGoogle Scholar
  128. 128.
    Girard PP, Cavalcanti-Adam EA, Kemkemer R, Spatz JP. Cells and proteins at interfaces. Soft Matter 2007;3:307–326CrossRefGoogle Scholar
  129. 129.
    Falconnet D, Csucs G, Grandin HM, Textor M. Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials 2006;27:3044–3063CrossRefGoogle Scholar
  130. 130.
    Khademhosseini A, Langer R, Borenstein J, Vacanti JP. Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci U S A 2006;103:2480–2487CrossRefGoogle Scholar
  131. 131.
    Liu WF, Chen CS. Engineering biomaterials to control cell function. Mater Today 2005;8:28–35CrossRefGoogle Scholar
  132. 132.
    Chen CS, Jiang X, Whitesides GM. Microengineering: the environment of mammalian cells in culture. MRS Bull 2005;30:194–201CrossRefGoogle Scholar
  133. 133.
    Xu T, Jin J, Gregory C, Hickman JJ, Boland T. Inkjet printing of viable mammalian cells. Biomaterials 2005;26:93–99CrossRefGoogle Scholar
  134. 134.
    Curtis ASG. Cell reactions with biomaterials. Eur Cells Mater 2004;8:27–36Google Scholar
  135. 135.
    Park TH, Shuler ML. Integration of cell culture and microfabrication technology. Biotechnol Prog 2003;19:243–253CrossRefGoogle Scholar
  136. 136.
    Jung DR, Kapur R, Adams T, Giuliano KA, Mrksich M, Craighead HG. Taylor DL. Topographical and physicochemical modification of material surface to enable patterning of living cells. Crit Rev Biotechnol 2001;21:111–154CrossRefGoogle Scholar
  137. 137.
    Folch A, Toner M. Microengineering of cellular interactions. Annu Rev Biomed Eng 2000;2:227–256CrossRefGoogle Scholar
  138. 138.
    Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. Geometric control of cell life and death. Science 1997;276:1425–1428CrossRefGoogle Scholar
  139. 139.
    Thomas CH, Collier JH, Sfeir CS, Healy KE. Engineering gene expression and protein synthesis by modulation of nuclear shape. Proc Natl Acad Sci U S A 2002;99:1972–1977CrossRefGoogle Scholar
  140. 140.
    McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Biol 2004;6:483–495Google Scholar
  141. 141.
    Nelson CM, Jean RP, Tan JL, Liu WF, Sniadecki NJ, Spector AA, Chen CS. Emergent patterns of growth controlled by multicellular form and mechanics. Proc Natl Acad Sci U S A 2005;102:11594–11599CrossRefGoogle Scholar
  142. 142.
    Bhatia SN, Yarmush UML, Toner M. Controlling cell interactions by micropatterning in co-cultures: hepatocytes and 3T3 fibroblasts. J Biomed Mater Res 1997;34:189–199CrossRefGoogle Scholar
  143. 143.
    Yamato M, Konno C, Utsumi M, Kikuchi A, Okano T. Thermally responsive polymer-grafted surfaces facilitate patterned cell seeding and co-culture. Biomaterials 2002;23:561–567CrossRefGoogle Scholar
  144. 144.
    Khademhosseini A, Suh KY, Yang JM, Eng G, Yeh J, Levenberg S, Langer R. Layer-by-layer deposition of hyaluronic acid and poly-L-lysine for patterned cell co-cultures. Biomaterials 2004;25:3583–3589CrossRefGoogle Scholar
  145. 145.
    Chiu DT, Jeon NL, Huang S, Kane RS, Wargo CJ, Choi IS, Ingber DE, Whitesides GM. Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems. Proc Natl Acad Sci U S A 2000;97:2408–2413CrossRefGoogle Scholar
  146. 146.
    Tang MD, Golden AP, Tien J. Molding of three-dimensional microstructures of gels. J Am Chem Soc 2003;125:12988–12989CrossRefGoogle Scholar
  147. 147.
    Ito Y, Chen G, Guan Y, Imanishi Y. Patterned immobilization. of thermoresponsive polymer. Langmuir 1997;13:2756–2759CrossRefGoogle Scholar
  148. 148.
    Nakanishi J, Kikuchi Y, Takarada T, Nakayama H, Yamaguchi K, Maeda M. Photoactivation of a substrate for cell adhesion under standard fluorescence microscopes. J Am Chem Soc 2004;126:16314–16315CrossRefGoogle Scholar
  149. 149.
    Nakanishi J, Kikuchi Y, Inoue S, Yamaguchi K, Takarada T, Maeda M. Spatiotemporal control of migration of single cells on a photoactivatable cell microarray. J Am Chem Soc 2007;129:6694–6695CrossRefGoogle Scholar
  150. 150.
    Edahiro J, Sumaru K, Tada Y, Ohi K, Takagi T, Kameda M, Shinbo T, Kanamori T, Yoshimi Y. In situ control of cell adhesion using photoresponsive culture surface. Biomacromolecules 2005;6:970–974CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Yoshihiro Ito
    • 1
  1. 1.Nano Medical Engineering LaboratoryRIKEN Advanced Science InstituteSaitamaJapan

Personalised recommendations