Ligand-functionalized Biomaterial Surfaces: Controlled Regulation of Signaling Pathways to Direct Cell Differentiation

  • Myung Hee Kim
  • Krishnendu Roy


Appropriate ligand–receptor interactions are critical in triggering signal transduction pathways in cells. This, among other functions, can direct stem cell differentiation into specific lineages. Although many of these ligands act as soluble agents, a significant number are present on surfaces of neighboring cells or as bound components on the extracellular matrix. Recent research has focused on identifying such interactions, quantitatively characterizing them, and incorporating them in synthetic engineered systems to efficiently and intentionally direct differentiation of cells to certain pathways. This chapter presents current research that focuses on directing stem cell differentiation by presenting cell-signaling ligands on biomaterial surfaces. Ligand-directed activation of the Notch signaling pathway is discussed in detail. Additional work in activating the Sonic hedgehog pathway and RhoA signaling are also discussed.


Notch Signaling C2C12 Cell Coculture System Notch Signaling Pathway Interpenetrate Polymer Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



alkaline phosphatase


bone morphogenetic protein


cell adhesion molecule






CBF1, Suppressor of Hairless, LAG-1

DL1, DLL1, Delta1

Delta-like ligand 1

DL4, DLL4, Delta4

Delta-like ligand 4


double negative (CD4− CD8−)


double positive (CD4 + CD8+)


Delta, Serrate/Jagged, Lag-2


extracellular matrix


embryonic stem cell


fetal thymic organ culture


Hairy Enhancer of Split


human mesenchymal stem cell


hematopoietic stem cell


hematopoietic stem cell/progenitor cell


interpenetrating polymer network


natural killer

Notch IC/ICN

Notch intracellular domain


Delta-like ligand 1-transfected OP9 stromal cell




rat esophageal epithelial cell


Sonic hedgehog


single positive (CD4+ CD8− or CD4− CD8+)


very late antigen


  1. 1.
    Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science 1999;284(5415):770.CrossRefGoogle Scholar
  2. 2.
    Rangarajan A, Talora C, Okuyama R, Nicolas M, Mammucari C, Oh H, et al Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. The EMBO Journal 2001;20:3427–3436.CrossRefGoogle Scholar
  3. 3.
    Lowell S, Jones P, Le Roux I, Dunne J, Watt FM. Stimulation of human epidermal differentiation by delta–notch signalling at the boundaries of stem-cell clusters. Current Biology 2000;10(9):491–500.CrossRefGoogle Scholar
  4. 4.
    Noseda M, McLean G, Niessen K, Chang L, Pollet I, Montpetit R, et al. Notch activation results in phenotypic and functional changes consistent with endothelial-to-mesenchymal transformation. American Heart Association 2004:910–917.Google Scholar
  5. 5.
    Radtke F, Wilson A, Mancini SJC, MacDonald HR. Notch regulation of lymphocyte development and function. Nature Immunology 2004;5(3):247–253.CrossRefGoogle Scholar
  6. 6.
    Carlson ME, O’Connor MS, Hsu M, Conboy IM. Notch signaling pathway and tissue engineering. Frontiers in Bioscience 2007;12:5143–5156.CrossRefGoogle Scholar
  7. 7.
    Beckstead BL, Santosa DM, Giachelli CM. Mimicking cell-cell interactions at the biomaterial-cell interface for control of stem cell differentiation. Journal of Biomedical Materials Research. Part A 2006;79(1):94–103.CrossRefGoogle Scholar
  8. 8.
    Zuniga-Pflucker JC. T-cell development made simple. Nature Reviews. Immunology 2004;4(1):67–72.CrossRefGoogle Scholar
  9. 9.
    Ladi E, Yin X, Chtanova T, Robey EA. Thymic microenvironments for T-cell differentiation and selection. Nature Immunology 2006;7:338–343.CrossRefGoogle Scholar
  10. 10.
    Piersma SJ, Welters MJP, van der Burg SH. Tumor-specific regulatory T-cells in cancer patients. Human Immunology 2008;69(4–5):241–249.CrossRefGoogle Scholar
  11. 11.
    Seneviratne SL, Jones L, King AS, Black A, Powell S, McMichael AJ, et al Allergen-specific CD8+ T-cells and atopic disease. Journal of Clinical Investigation 2002;110(9):1283.Google Scholar
  12. 12.
    Jenkinson EJ, Franchi LL, Kingston R, Owen JJ. Effect of deoxyguanosine on lymphopoiesis in the developing thymus rudiment in vitro: application in the production of chimeric thymus rudiments. European Journal of Immunology 1982;12(7):583–587.CrossRefGoogle Scholar
  13. 13.
    Schmitt TM, Zúñiga-Pflücker JC. Induction of T-cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity 2002;17(6):749–756.CrossRefGoogle Scholar
  14. 14.
    Radtke F, Wilson A, MacDonald HR. Notch signaling in T-and B-cell development. Current Opinion in Immunology 2004;16(2):174–179.CrossRefGoogle Scholar
  15. 15.
    Nakano T, Kodama H, Honjo T. Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science 1994;265(5175):1098–1101.CrossRefGoogle Scholar
  16. 16.
    Cho SK, Webber TD, Carlyle JR, Nakano T, Lewis SM, Zuniga-Pflucker JC. Functional characterization of B lymphocytes generated in vitro from embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America 1999;96(17):9797.CrossRefGoogle Scholar
  17. 17.
    Schmitt TM, de Pooter RF, Gronski MA, Cho SK, Ohashi PS, Zuniga-Pfluecker JC. Induction of T-cell development and establishment of T-cell competence from embryonic stem cells differentiated in vitro. Nature Immunology 2004;5(4):410–417.CrossRefGoogle Scholar
  18. 18.
    Zakrzewski JL, Kochman AA, Lu SX, Terwey TH, Kim TD, Hubbard VM, et al Adoptive transfer of T-cell precursors enhances T-cell reconstitution after allogeneic hematopoietic stem cell transplantation. Nature Medicine 2006;12(9):1039–1047.CrossRefGoogle Scholar
  19. 19.
    La Motte-Mohs RN, Herer E, Zuniga-Pflucker JC. Induction of T-cell development from human cord blood hematopoietic stem cells by delta-like 1 in vitro. Blood 2005;105(4):1431–1439.CrossRefGoogle Scholar
  20. 20.
    De Smedt M, Hoebeke I, Plum J. Human bone marrow CD34+ progenitor cells mature to T-cells on OP9-DL1 stromal cell line without thymus microenvironment. Blood Cells, Molecules and Diseases 2004;33(3):227–232.CrossRefGoogle Scholar
  21. 21.
    Lehar SM, Dooley J, Farr AG, Bevan MJ. Notch ligands delta 1 and jagged1 transmit distinct signals to T-cell precursors. Blood 2005;105(4):1440–1447.CrossRefGoogle Scholar
  22. 22.
    Rolink AG, Balciunaite G, Demolière C, Ceredig R. The potential involvement of Notch signaling in NK cell development. Immunology Letters 2006;107(1):50–57.CrossRefGoogle Scholar
  23. 23.
    Carotta S, Brady J, Wu L, Nutt SL. Transient Notch signaling induces NK cell potential in Pax5-deficient pro-B cells. European Journal of Immunology 2006;36(12):3294–3304.CrossRefGoogle Scholar
  24. 24.
    Varnum-Finney B, Wu L, Yu M, Brashem-Stein C, Staats S, Flowers D, et al. Immobilization of Notch ligand, Delta-1, is required for induction of notch signaling. Journal of Cell Science 2000; 4313–4318.Google Scholar
  25. 25.
    Kopan R, Nye JS, Weintraub H. The intracellular domain of mouse Notch: a constitutively activated repressor of myogenesis directed at the basic helix-loop-helix region of MyoD. Development 1994;120(9):2385–2396.Google Scholar
  26. 26.
    Jarriault S, Brou C, Logeat F, Schroeter EH, Kopan R, Israel A. Signalling downstream of activated mammalian Notch. Nature 1995;377(6547):355–358.CrossRefGoogle Scholar
  27. 27.
    Bader D. Immunochemical analysis of myosin heavy chain during avian myogenesis in vivo and in vitro. The Journal of Cell Biology 1982;95(3):763–770.CrossRefGoogle Scholar
  28. 28.
    Taqvi S, Dixit L, Roy K. Biomaterial-based notch signaling for the differentiation of hematopoietic stem cells into T-cells. Journal of Biomedical Materials Research. Part A 2006;79(3):689–697.CrossRefGoogle Scholar
  29. 29.
    Harman BC, Jenkinson EJ, Anderson G. Microenvironmental regulation of Notch signalling in T-cell development. Seminars in Immunology 2003;15(2):91–97.CrossRefGoogle Scholar
  30. 30.
    Parreira L, Neves H, Simoes S. Notch and lymphopoiesis: a view from the microenvironment. Seminars in Immunology 2003;15(2):81–89.CrossRefGoogle Scholar
  31. 31.
    Dorsch M, Zheng G, Yowe D, Rao P, Wang Y, Shen Q, et al Ectopic expression of Delta4 impairs hematopoietic development and leads to lymphoproliferative disease. Blood 2002;100(6):2046.Google Scholar
  32. 32.
    Ho JE, Chung EH, Wall S, Schaffer DV, Healy KE. Immobilized sonic hedgehog N-terminal signaling domain enhances differentiation of bone marrow-derived mesenchymal stem cells. Journal of Biomedical Materials Research. Part A 2007;83(4):1200–1208.CrossRefGoogle Scholar
  33. 33.
    Ingham PW. Hedgehog signaling in animal development: paradigms and principles. Genes & Development 2001;15(23):3059–3087.CrossRefGoogle Scholar
  34. 34.
    Edwards PC, Ruggiero S, Fantasia J, Burakoff R, Moorji SM, Paric E, et al Sonic hedgehog gene-enhanced tissue engineering for bone regeneration. Gene Therapy 2005;12:75–86.CrossRefGoogle Scholar
  35. 35.
    McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Developmental Cell 2004;6(4):483–495.CrossRefGoogle Scholar
  36. 36.
    Watt FM, Jordan PW, O’Neill CH. Cell shape controls terminal differentiation of human epidermal keratinocytes. Proceedings of the National Academy of Sciences of the United States of America 1988;85(15):5576.CrossRefGoogle Scholar
  37. 37.
    Feng Q, Chai.C, Jiang XS, Leong KW, Mao HQ. Expansion of engrafting human hematopoietic stem/progenitor cells in three-dimensional scaffolds with surface-immobilized fibronectin. Journal of Biomedical Materials Research Part A 2006;78(4):781–791.CrossRefGoogle Scholar
  38. 38.
    Jiang XS, Chai C, Zhang Y, Zhuo RX, Mao HQ, Leong KW. Surface-immobilization of adhesion peptides on substrate for ex vivo expansion of cryopreserved umbilical cord blood CD34+ cells. Biomaterials 2006;27(13):2723–2732.CrossRefGoogle Scholar
  39. 39.
    Dao MA, Hashino K, Kato I, Nolta JA. Adhesion to fibronectin maintains regenerative capacity during ex vivo culture and transduction of human hematopoietic stem and progenitor cells. Blood 1998;92(12):4612–4621.Google Scholar
  40. 40.
    Yokota T, Oritani K, Mitsui H, Aoyama K, Ishikawa J, Sugahara H, et al Growth-Supporting activities of fibronectin on hematopoietic stem/progenitor cells in vitro and in vivo: structural requirement for fibronectin activities of CS1 and cell-binding domains. Blood 1998;91(9):3263.Google Scholar
  41. 41.
    Schofield KP, Humphries MJ, de Wynter E, Testa N, Gallagher JT. The effect of alpha4 beta1-integrin binding sequences of fibronectin on growth of cells from human hematopoietic progenitors. Blood 1998;91(9):3230–3238.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Myung Hee Kim
    • 1
  • Krishnendu Roy
    • 1
  1. 1.Department of Biomedical EngineeringThe University of Texas at AustinAustinUSA

Personalised recommendations