Extracellular Matrix-derived Ligand for Selective Integrin Binding to Control Cell Function

  • Timothy A. Petrie
  • Andrés J. García


Integrins are key cell surface receptors that function as the primary bridge between the intracellular and extracellular matrix environments and play a critical role in modulating adhesive cell–material interactions. Over the past decade, several biomimetic material surface modification strategies to actively engage integrins have been employed, including the use of robust integrin-binding sequences (i.e., RGD) and native matrix proteins, with varying levels of success in vivo. This chapter details these aforementioned ligand strategies as well as more recent, next-generation biomaterial surface strategies geared toward specifically engineering integrin selectivity. Building on our expanding knowledge of the functional roles of particular integrin subunit combinations, including α5β1, α4β1, α2β1, and αvβ3, in multiple cell and tissue types, these integrin-specific biointerfaces incorporate unique protein fragments, engineered oligopeptides, multivalent ligands, and exclusive integrin-binding sequences to direct selective integrin binding and activation. This chapter highlights these major integrin-specific ligands and details the varying successes that these designs have achieved as implant biomaterial coatings, therapeutics, in vitro adhesive substrates, and templates for matrix assembly. Collectively, these biomolecular strategies have contributed to the rational engineering of bioactive materials to achieve desired tissue responses.


Bone Marrow Stromal Cell Integrin Binding Focal Adhesion Kinase Activation Multiple Integrins Surface Modification Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Bone sialoprotein




Aspartic acid–glycine–glutamic acid–alanine


Extracellular matrix


Extracellular signal-related kinase


Focal adhesion kinase




Fibronectin fragment encompassing the seventh through tenth type III repeats




Glow discharge plasma


Glycine–phenylalanine–hydroxyproline–glycine–glutamic acid–arginine


Glycine–arginine–glycine–aspartic acid–serine–proline




Mitogen-activated protein kinase




Poly(l-lysine)–poly(ethylene) glycol


Arginine–glutamic acid–aspartic acid–valine


Arginine–glycine–aspartic acid


Self-assembled monolayers


  1. 1.
    Giancotti FG, Ruoslahti E. Integrin signaling. Science 1999;285:1028–1032.CrossRefGoogle Scholar
  2. 2.
    Schwartz MA, Assoian RK. Integrins and cell proliferation: regulation of cyclin-dependent kinases via cytoplasmic signaling pathways. J Cell Sci 2001;114:2553–2560.Google Scholar
  3. 3.
    Temenoff JS, Mikos AG. Biomaterials: The Intersection of Biology and Materials Science. Upper Saddle River, NJ: Pearson Prentice-Hall, 2007, p. 1.Google Scholar
  4. 4.
    Reichardt LF. Introduction: extracellular matrix molecules. In: Kreis T, Vale R, eds. Guidebook to the Extracellular Matrix, Anchor, and Adhesion Proteins. Oxford Press: Oxford, 2nd edition, 1999, pp. 335–344.Google Scholar
  5. 5.
    Prockop DJ, Kivirikko KI. Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem 1995;64:403–434.CrossRefGoogle Scholar
  6. 6.
    Reddi AH. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat Biotechnol 1998;16:247–252.CrossRefGoogle Scholar
  7. 7.
    Hynes RO. Molecular biology of fibronectin. Annu Rev Cell Biol 1985;1:67–90.CrossRefGoogle Scholar
  8. 8.
    De Arcangelis A, Georges-Labouesse E. Integrin and ECM functions: roles in vertebrate development. Trends Genet 2000;16:389–395.CrossRefGoogle Scholar
  9. 9.
    Danen EH, Sonnenberg A. Integrins in regulation of tissue development and function. J Pathol 2003;201:632–641.CrossRefGoogle Scholar
  10. 10.
    Garcia AJ, Reyes CD. Bio-adhesive surfaces to promote osteoblast differentiation and bone formation. J Dent Res 2005;84:407–413.CrossRefGoogle Scholar
  11. 11.
    Khan Y, Yaszemski MJ, Mikos AG, Laurencin CT. Tissue engineering of bone: material and matrix considerations. J Bone Joint Surg Am 2008;90(Suppl 1):36–42.CrossRefGoogle Scholar
  12. 12.
    Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell 2002;110:673–687.CrossRefGoogle Scholar
  13. 13.
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular Biology of the Cell. Garland Science: New York, 4th edition, 2007, Chapter 21.Google Scholar
  14. 14.
    Anderson JM. Biological responses to materials. Annu Rev Mater Res 2001;31:81–110.CrossRefGoogle Scholar
  15. 15.
    Hench LL, Polak JM. Third-generation biomedical materials. Science 2002;295:1014–1017.CrossRefGoogle Scholar
  16. 16.
    Vreeland WN, Barron AE. Functional materials for microscale genomic and proteomic analyses. Curr Opin Biotechnol 2002;13:87–94.CrossRefGoogle Scholar
  17. 17.
    Siebers MC, ter Brugge PJ, Walboomers XF, Jansen JA. Integrins as linker proteins between osteoblasts and bone replacing materials. A critical review. Biomaterials 2005;26:137–146.CrossRefGoogle Scholar
  18. 18.
    Moursi AM, Globus RK, Damsky CH. Interactions between integrin receptors and fibronectin are required for calvarial osteoblast differentiation in vitro. J Cell Sci 1997;110:2187–2196.Google Scholar
  19. 19.
    Gronthos S, Simmons PJ, Graves SE, Robey PG. Integrin-mediated interactions between human bone marrow stromal precursor cells and the extracellular matrix. Bone 2001;28:174–181.CrossRefGoogle Scholar
  20. 20.
    Gronowicz G, McCarthy MB. Response of human osteoblasts to implant materials: integrin-mediated adhesion. J Orthop Res 1996;14:878–887.CrossRefGoogle Scholar
  21. 21.
    Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science 1987;238:491–497.CrossRefGoogle Scholar
  22. 22.
    Geiger B, Bershadsky A, Pankov R, Yamada KM. Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nat Rev Mol Cell Biol 2001;2:793–805.CrossRefGoogle Scholar
  23. 23.
    Petit V, Thiery JP. Focal adhesions: structure and dynamics. Biol Cell 2000;92:477–494.CrossRefGoogle Scholar
  24. 24.
    Anselme K. Osteoblast adhesion on biomaterials. Biomaterials 2000;21:667–681.CrossRefGoogle Scholar
  25. 25.
    Takeuchi Y, Suzawa M, Kikuchi T, Nishida E, Fujita T, Matsumoto T. Differentiation and transforming growth factor-beta receptor down-regulation by collagen-alpha2beta1 integrin interaction is mediated by focal adhesion kinase and its downstream signals in murine osteoblastic cells. J Biol Chem 1997;272:29309–29316.CrossRefGoogle Scholar
  26. 26.
    Nykvist P, Tasanen K, Viitasalo T, Kapyla J, Jokinen J, Bruckner-Tuderman L, Heino J. The cell adhesion domain of type XVII collagen promotes integrin-mediated cell spreading by a novel mechanism. J Biol Chem 2001;276:38673–38679.CrossRefGoogle Scholar
  27. 27.
    Moursi AM, Damsky CH, Lull J, Zimmerman D, Doty SB, Aota S, Globus RK. Fibronectin regulates calvarial osteoblast differentiation. J Cell Sci 1996;109:1369–1380.Google Scholar
  28. 28.
    Lan MA, Gersbach CA, Michael KE, Keselowsky BG, Garcia AJ. Myoblast proliferation and differentiation on fibronectin-coated self assembled monolayers presenting different surface chemistries. Biomaterials 2005;26:4523–4531.CrossRefGoogle Scholar
  29. 29.
    Stephansson SN, Byers BA, García AJ. Enhanced expression of the osteoblastic phenotype on substrates that modulate fibronectin conformation and integrin receptor binding. Biomaterials 2002;23:2527–2534.CrossRefGoogle Scholar
  30. 30.
    Mizuno M, Fujisawa R, Kuboki Y. Type I collagen-induced osteoblastic differentiation of bone-marrow cells mediated by collagen-alpha2beta1 integrin interaction. J Cell Physiol 2000;184:207–213.CrossRefGoogle Scholar
  31. 31.
    Reyes CD, Petrie TA, Burns KL, Schwartz Z, Garcia AJ. Biomolecular surface coating to enhance orthopaedic tissue healing and integration. Biomaterials 2007;28:3228–3235.CrossRefGoogle Scholar
  32. 32.
    Cheng SL, Lai CF, Blystone SD, Avioli LV. Bone mineralization and osteoblast differentiation are negatively modulated by integrin alpha(v)beta3. J Bone Miner Res 2001;16:277–288.CrossRefGoogle Scholar
  33. 33.
    Sung V, Stubbs JT, III, Fisher L, Aaron AD, Thompson EW. Bone sialoprotein supports breast cancer cell adhesion proliferation and migration through differential usage of the alpha(v)beta3 and alpha(v)beta5 integrins. J Cell Physiol 1998;176:482–494.CrossRefGoogle Scholar
  34. 34.
    Niu JX, Zhang WJ, Ye LY, Wu LQ, Zhu GJ, Yang ZH, Grau GE, Lou JN. The role of adhesion molecules, alpha v beta 3, alpha v beta 5 and their ligands in the tumor cell and endothelial cell adhesion. Eur J Cancer Prev 2007;16:517–527.CrossRefGoogle Scholar
  35. 35.
    Zhou X, Murphy FR, Gehdu N, Zhang J, Iredale JP, Benyon RC. Engagement of alphavbeta3 integrin regulates proliferation and apoptosis of hepatic stellate cells. J Biol Chem 2004;279:23996–24006.CrossRefGoogle Scholar
  36. 36.
    Tang L, Ugarova TP, Plow EF, Eaton JW. Molecular determinants of acute inflammatory responses to biomaterials. J Clin Invest 1996;97:1329–1334.CrossRefGoogle Scholar
  37. 37.
    Flick MJ, Du X, Witte DP, Jirouskova M, Soloviev DA, Busuttil SJ, Plow EF, Degen JL. Leukocyte engagement of fibrin(ogen) via the integrin receptor alphaMbeta2/Mac-1 is critical for host inflammatory response in vivo. J Clin Invest 2004;113:1596–1606.Google Scholar
  38. 38.
    Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 2005;23:47–55.CrossRefGoogle Scholar
  39. 39.
    Garcia AJ. Interfaces to Control Cell-Biomaterial Adhesive Interactions. Polymers for Regenerative Medicine 2006;203:171–190.Google Scholar
  40. 40.
    Vogel V, Thomas WE, Craig DW, Krammer A, Baneyx G. Structural insights into the mechanical regulation of molecular recognition sites. Trends Biotechnol 2001;19:416–423.CrossRefGoogle Scholar
  41. 41.
    Xu LC, Siedlecki CA. Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces. Biomaterials 2007;28:3273–3283.CrossRefGoogle Scholar
  42. 42.
    Sinha RK, Tuan RS. Regulation of human osteoblast integrin expression by orthopedic implant materials. Bone 1996;18:451–457.CrossRefGoogle Scholar
  43. 43.
    ter Brugge PJ, Torensma R, de Ruijter JE, Figdor CG, Jansen JA. Modulation of integrin expression on rat bone marrow cells by substrates with different surface characteristics. Tissue Eng 2002;8:615–626.CrossRefGoogle Scholar
  44. 44.
    Ter Brugge PJ, Dieudonne S, Jansen JA. Initial interaction of U2OS cells with noncoated and calcium phosphate coated titanium substrates. J Biomed Mater Res 2002;61:399–407.CrossRefGoogle Scholar
  45. 45.
    Kilpadi KL, Chang PL, Bellis SL. Hydroxylapatite binds more serum proteins, purified integrins, and osteoblast precursor cells than titanium or steel. J Biomed Mater Res 2001;57:258–267.CrossRefGoogle Scholar
  46. 46.
    Yamamoto H, Shibata Y, Miyazaki T. Anode glow discharge plasma treatment of titanium plates facilitates adsorption of extracellular matrix proteins to the plates. J Dent Res 2005;84:668–671.CrossRefGoogle Scholar
  47. 47.
    Brodbeck WG, Shive MS, Colton E, Nakayama Y, Matsuda T, Anderson JM. Influence of biomaterial surface chemistry on the apoptosis of adherent cells. J Biomed Mater Res 2001;55:661–668.CrossRefGoogle Scholar
  48. 48.
    Keselowsky BG, Collard DM, Garcia AJ. Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. J Biomed Mater Res A 2003;66:247–259.CrossRefGoogle Scholar
  49. 49.
    Keselowsky BG, Collard DM, Garcia AJ. Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding. Biomaterials 2004;25:5947–5954.CrossRefGoogle Scholar
  50. 50.
    Michael KE, Vernakar VN, Keselowsky BG, Meredith JC, Latour RA, Garcia AJ. Adsorption-induced conformational changes in fibronectin due to interactions with well-defined surface chemistries. Langmuir 2003;19:8033–8040.CrossRefGoogle Scholar
  51. 51.
    Lee MH, Ducheyne P, Lynch L, Boettiger D, Composto RJ. Effect of biomaterial surface properties on fibronectin-alpha5beta1 integrin interaction and cellular attachment. Biomaterials 2006;27:1907–1916.CrossRefGoogle Scholar
  52. 52.
    Keselowsky BG, Collard DM, Garcia AJ. Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proc Natl Acad Sci U S A 2005;102:5953–5957.CrossRefGoogle Scholar
  53. 53.
    Lange R, Luthen F, Beck U, Rychly J, Baumann A, Nebe B. Cell-extracellular matrix interaction and physico-chemical characteristics of titanium surfaces depend on the roughness of the material. Biomol Eng 2002;19:255–261.CrossRefGoogle Scholar
  54. 54.
    Keselowsky BG, Wang L, Schwartz Z, Garcia AJ, Boyan BD. Integrin alpha(5) controls osteoblastic proliferation and differentiation responses to titanium substrates presenting different roughness characteristics in a roughness independent manner. J Biomed Mater Res A 2006;80A:700–710.Google Scholar
  55. 55.
    Lincks J, Boyan BD, Blanchard CR, Lohmann CH, Liu Y, Cochran DL, Dean DD, Schwartz Z. Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition. Biomaterials 1998;19:2219–2232.CrossRefGoogle Scholar
  56. 56.
    Anselme K, Bigerelle M, Noel B, Dufresne E, Judas D, Iost A, Hardouin P. Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. J Biomed Mater Res 2000;49:155–166.CrossRefGoogle Scholar
  57. 57.
    Rezania A, Healy KE. Biomimetic peptide surfaces that regulate adhesion, spreading, cytoskeletal organization, and mineralization of the matrix deposited by osteoblast-like cells. Biotechnol Prog 1999;15:19–32.CrossRefGoogle Scholar
  58. 58.
    Gronthos S, Stewart K, Graves SE, Hay S, Simmons PJ. Integrin expression and function on human osteoblast-like cells. J Bone Miner Res 1997;12:1189–1197.CrossRefGoogle Scholar
  59. 59.
    Jimbo R, Sawase T, Shibata Y, Hirata K, Hishikawa Y, Tanaka Y, Bessho K, Ikeda T, Atsuta M. Enhanced osseointegration by the chemotactic activity of plasma fibronectin for cellular fibronectin positive cells. Biomaterials 2007;28:3469–3477.CrossRefGoogle Scholar
  60. 60.
    Geissler U, Hempel U, Wolf C, Scharnweber D, Worch H, Wenzel K. Collagen type I-coating of Ti6Al4V promotes adhesion of osteoblasts. J Biomed Mater Res 2000;51:752–760.CrossRefGoogle Scholar
  61. 61.
    Bierbaum S, Hempel U, Geissler U, Hanke T, Scharnweber D, Wenzel KW, Worch H. Modification of Ti6AL4V surfaces using collagen I, III, and fibronectin. II. Influence on osteoblast responses. J Biomed Mater Res A 2003;67:431–438.CrossRefGoogle Scholar
  62. 62.
    Karadag A, Fisher LW. Bone sialoprotein enhances migration of bone marrow stromal cells through matrices by bridging MMP-2 to alpha(v)beta3-integrin. J Bone Miner Res 2006;21:1627–1636.CrossRefGoogle Scholar
  63. 63.
    O’Toole GC, Salih E, Gallagher C, FitzPatrick D, O’Higgins N, O’Rourke SK. Bone sialoprotein-coated femoral implants are osteoinductive but mechanically compromised. J Orthop Res 2004;22:641–646.CrossRefGoogle Scholar
  64. 64.
    Cheng SL, Lai CF, Fausto A, Chellaiah M, Feng X, McHugh KP, Teitelbaum SL, Civitelli R, Hruska KA, Ross FP, Avioli LV. Regulation of alphaVbeta3 and alphaVbeta5 integrins by dexamethasone in normal human osteoblastic cells. J Cell Biochem 2000;77:265–276.CrossRefGoogle Scholar
  65. 65.
    Langer R, Tirrell DA. Designing materials for biology and medicine. Nature 2004;428:487–492.CrossRefGoogle Scholar
  66. 66.
    Humphries MJ. Peptide recognition motifs involved in the binding of integrins to their ligands. Kidney Int 1992;41:645–649.CrossRefGoogle Scholar
  67. 67.
    Merrill EW. Poly(ethylene oxide) and blood contact: a chronicle of one laboratory. In: Harris JM, ed. Poly(Ethylene Glycol) Chemistry: Biotechnology and Biomedical Applications. Plenum Press: New York, 1992, pp. 199–220.Google Scholar
  68. 68.
    Garcia AJ, Vega MD, Boettiger D. Modulation of cell proliferation and differentiation through substrate-dependent changes in fibronectin conformation. Mol Biol Cell 1999;10:785–798.Google Scholar
  69. 69.
    Hodde J, Record R, Tullius R, Badylak S. Fibronectin peptides mediate HMEC adhesion to porcine-derived extracellular matrix. Biomaterials 2002;23:1841–1848.CrossRefGoogle Scholar
  70. 70.
    Reyes CD, Garcia AJ. Alpha2beta1 integrin-specific collagen-mimetic surfaces supporting osteoblastic differentiation. J Biomed Mater Res 2004;69A:591–600.CrossRefGoogle Scholar
  71. 71.
    Gilbert M, Giachelli CM, Stayton PS. Biomimetic peptides that engage specific integrin-dependent signaling pathways and bind to calcium phosphate surfaces. J Biomed Mater Res 2003;67A:69–77.CrossRefGoogle Scholar
  72. 72.
    Sanchez-Aparicio P, Dominguez-Jimenez C, Garcia-Pardo A. Activation of the alpha 4 beta 1 integrin through the beta 1 subunit induces recognition of the RGDS sequence in fibronectin. J Cell Biol 1994;126:271–279.CrossRefGoogle Scholar
  73. 73.
    Horton MA, Nesbit MA, Helfrich MH. Interaction of osteopontin with osteoclast integrins. Ann N Y Acad Sci 1995;760:190–200.CrossRefGoogle Scholar
  74. 74.
    Weber LM, Hayda KN, Haskins K, Anseth KS. The effects of cell-matrix interactions on encapsulated beta-cell function within hydrogels functionalized with matrix-derived adhesive peptides. Biomaterials 2007;28:3004–3011.CrossRefGoogle Scholar
  75. 75.
    Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials 2003;24:4353–4364.CrossRefGoogle Scholar
  76. 76.
    Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 2003;24:4385–4415.CrossRefGoogle Scholar
  77. 77.
    Liu JC, Heilshorn SC, Tirrell DA. Comparative cell response to artificial extracellular matrix proteins containing the RGD and CS5 cell-binding domains. Biomacromolecules 2004;5:497–504.CrossRefGoogle Scholar
  78. 78.
    Harbers GM, Healy KE. The effect of ligand type and density on osteoblast adhesion, proliferation, and matrix mineralization. J Biomed Mater Res A 2005;75:855–869.Google Scholar
  79. 79.
    Schense JC, Hubbell JA. Three-dimensional migration of neurites is mediated by adhesion site density and affinity. J Biol Chem 2000;275:6813–6818.CrossRefGoogle Scholar
  80. 80.
    Takagi J. Structural basis for ligand recognition by RGD (Arg-Gly-Asp)-dependent integrins. Biochem Soc Trans 2004;32:403–406.CrossRefGoogle Scholar
  81. 81.
    Pakalns T, Haverstick KL, Fields GB, McCarthy JB, Mooradian DL, Tirrell M. Cellular recognition of synthetic peptide amphiphiles in self-assembled monolayer films. Biomaterials 1999;20:2265–2279.CrossRefGoogle Scholar
  82. 82.
    Dahmen C, Auernheimer J, Meyer A, Enderle A, Goodman SL, Kessler H. Improving implant materials by coating with nonpeptidic, highly specific integrin ligands. Angew Chem Int Ed Engl 2004;43:6649–6652.CrossRefGoogle Scholar
  83. 83.
    Lieb E, Hacker M, Tessmar J, Kunz-Schughart LA, Fiedler J, Dahmen C, Hersel U, Kessler H, Schulz MB, Gopferich A. Mediating specific cell adhesion to low-adhesive diblock copolymers by instant modification with cyclic RGD peptides. Biomaterials 2005;26:2333–2341.CrossRefGoogle Scholar
  84. 84.
    Marchi-Artzner V, Lorz B, Hellerer U, Kantlehner M, Kessler H, Sackmann E. Selective adhesion of endothelial cells to artificial membranes with a synthetic RGD-lipopeptide. Chemistry 2001;7:1095–1101.CrossRefGoogle Scholar
  85. 85.
    Hennessy KM, Clem WC, Phipps MC, Sawyer AA, Shaikh FM, Bellis SL. The effect of RGD peptides on osseointegration of hydroxyapatite biomaterials. Biomaterials 2008;29:3075–3083.CrossRefGoogle Scholar
  86. 86.
    Barber TA, Ho JE, De Ranieri A, Virdi AS, Sumner DR, Healy KE. Peri-implant bone formation and implant integration strength of peptide-modified p(AAM-co-EG/AAC) interpenetrating polymer network-coated titanium implants. J Biomed Mater Res A 2007;80:306–320.Google Scholar
  87. 87.
    Petrie TA, Raynor JE, Reyes CD, Burns KL, Collard DM, Garcia AJ. The effect of integrin-specific bioactive coatings on tissue healing and implant osseointegration. Biomaterials 2008;29:2849–2857.CrossRefGoogle Scholar
  88. 88.
    Schliephake H, Scharnweber D, Dard M, Rossler S, Sewing A, Meyer J, Hoogestraat D. Effect of RGD peptide coating of titanium implants on periimplant bone formation in the alveolar crest. An experimental pilot study in dogs. Clin Oral Implants Res 2002;13:312–319.CrossRefGoogle Scholar
  89. 89.
    Ferris DM, Moodie GD, Dimond PM, Gioranni CW, Ehrlich MG, Valentini RF. RGD-coated titanium implants stimulate increased bone formation in vivo. Biomaterials 1999;20:2323–2331.CrossRefGoogle Scholar
  90. 90.
    Elmengaard B, Bechtold JE, Soballe K. In vivo study of the effect of RGD treatment on bone ongrowth on press-fit titanium alloy implants. Biomaterials 2005;26:3521–3526.CrossRefGoogle Scholar
  91. 91.
    Elmengaard B, Bechtold JE, Soballe K. In vivo effects of RGD-coated titanium implants inserted in two bone-gap models. J Biomed Mater Res A 2005;75:249–255.Google Scholar
  92. 92.
    Tosatti S, Schwartz Z, Campbell C, Cochran DL, VandeVondele S, Hubbell JA, Denzer A, Simpson J, Wieland M, Lohmann CH, Textor M, Boyan BD. RGD-containing peptide GCRGYGRGDSPG reduces enhancement of osteoblast differentiation by poly(L-lysine)-graft-poly(ethylene glycol)-coated titanium surfaces. J Biomed Mater Res 2004;68A:458–472.CrossRefGoogle Scholar
  93. 93.
    Lee MH, Adams CS, Boettiger D, DeGrado WF, Shapiro IM, Composto RJ, Ducheyne P. Adhesion of MC3T3-E1 cells to RGD peptides of different flanking residues: detachment strength and correlation with long-term cellular function. J Biomed Mater Res A 2007;81:150–160.Google Scholar
  94. 94.
    Aota S, Nomizu M, Yamada KM. The short amino acid sequence Pro-His-Ser-Arg-Asn in human fibronectin enhances cell-adhesive function. J Biol Chem 1994;269:24756–24761.Google Scholar
  95. 95.
    Petrie TA, Reyes CD, Raynor JE, Burns KL, Collard DM, Garcia AJ. Biointerfaces promoting tissue healing. J Musculoskelet Neuronal Interact 2007;7:332.Google Scholar
  96. 96.
    Altroff H, Schlinkert R, van der Walle CF, Bernini A, Campbell ID, Werner JM, Mardon HJ. Interdomain tilt angle determines integrin-dependent function of the ninth and tenth FIII domains of human fibronectin. J Biol Chem 2004;279:55995–56003.CrossRefGoogle Scholar
  97. 97.
    Krammer A, Craig D, Thomas WE, Schulten K, Vogel V. A structural model for force regulated integrin binding to fibronectin’s RGD-synergy site. Matrix Biol 2002;21:139–147.CrossRefGoogle Scholar
  98. 98.
    Kokkoli E, Mardilovich A, Wedekind A, Rexeisen EL, Garg A, Craig JA. Self-assembly and applications of biomimetic and bioactive peptide-amphiphiles. Soft Matter 2006;2:1015–1024.CrossRefGoogle Scholar
  99. 99.
    Dillow AK, Ochsenhirt SE, McCarthy JB, Fields GB, Tirrell M. Adhesion of alpha5beta1 receptors to biomimetic substrates constructed from peptide amphiphiles. Biomaterials 2001;22:1493–1505.CrossRefGoogle Scholar
  100. 100.
    Kokkoli E, Ochsenhirt SE, Tirrell M. Collective and single-molecule interactions of alpha5beta1 integrins. Langmuir 2004;20:2397–2404.CrossRefGoogle Scholar
  101. 101.
    Ochsenhirt SE, Kokkoli E, McCarthy JB, Tirrell M. Effect of RGD secondary structure and the synergy site PHSRN on cell adhesion, spreading and specific integrin engagement. Biomaterials 2006;27:3863–3874.CrossRefGoogle Scholar
  102. 102.
    Mardilovich A, Kokkoli E. Biomimetic peptide-amphiphiles for functional biomaterials: the role of GRGDSP and PHSRN. Biomacromolecules 2004;5:950–957.CrossRefGoogle Scholar
  103. 103.
    Mardilovich A, Craig JA, McCammon MQ, Garg A, Kokkoli E. Design of a novel fibronectin-mimetic peptide-amphiphile for functionalized biomaterials. Langmuir 2006;22:3259–3264.CrossRefGoogle Scholar
  104. 104.
    Benoit DS, Anseth KS. The effect on osteoblast function of colocalized RGD and PHSRN epitopes on PEG surfaces. Biomaterials 2005;26:5209–5220.CrossRefGoogle Scholar
  105. 105.
    Jensen TW, Hu BH, Delatore SM, Garcia AS, Messersmith PB, Miller WM. Lipopeptides incorporated into supported phospholipid monolayers have high specific activity at low incorporation levels. J Am Chem Soc 2004;126:15223–15230.CrossRefGoogle Scholar
  106. 106.
    Petrie TA, Capadona JR, Reyes CD, Garcia AJ. Integrin specificity and enhanced cellular activities associated with surfaces presenting a recombinant fibronectin fragment compared to RGD supports. Biomaterials 2006;27:5459–5470.CrossRefGoogle Scholar
  107. 107.
    Richards J, Miller M, Abend J, Koide A, Koide S, Dewhurst S. Engineered fibronectin type III domain with a RGDWXE sequence binds with enhanced affinity and specificity to human alphavbeta3 integrin. J Mol Biol 2003;326:1475–1488.CrossRefGoogle Scholar
  108. 108.
    Mould AP, Komoriya A, Yamada KM, Humphries MJ. The CS5 peptide is a second site in the IIICS region of fibronectin recognized by the integrin alpha 4 beta 1. Inhibition of alpha 4 beta 1 function by RGD peptide homologues. J Biol Chem 1991;266:3579–3585.Google Scholar
  109. 109.
    Cutler SM, García AJ. Engineering cell adhesive surfaces that direct integrin alpha5beta1 binding using a recombinant fragment of fibronectin. Biomaterials 2003;24:1759–1770.CrossRefGoogle Scholar
  110. 110.
    Raynor JE, Petrie TA, García AJ, Collard DM. Controlling cell adhesion to titanium: functionalization of poly[oligo(ethylene glycol methacrylate] brushes with cell-adhesive peptides. Adv Mater 2007;19:1724–1728.CrossRefGoogle Scholar
  111. 111.
    Petrie TA, Reyes CD, Burns KL, Garcia AJ. Simple application of fibronectin-mimetic coating enhances osseointegration of titanium implants. J Cell Mol Med 2008; Aug. 21.Google Scholar
  112. 112.
    Mizuno M, Kuboki Y. Osteoblast-related gene expression of bone marrow cells during the osteoblastic differentiation induced by type I collagen. J Biochem (Tokyo) 2001;129:133–138.CrossRefGoogle Scholar
  113. 113.
    Knight CG, Morton LF, Peachey AR, Tuckwell DS, Farndale RW, Barnes MJ. The collagen-binding A-domains of integrins alpha(1)beta(1) and alpha(2)beta(1) recognize the same specific amino acid sequence, GFOGER, in native (triple-helical) collagens. J Biol Chem 2000;275:35–40.CrossRefGoogle Scholar
  114. 114.
    Knight CG, Morton LF, Onley DJ, Peachey AR, Messent AJ, Smethurst PA, Tuckwell DS, Farndale RW, Barnes MJ. Identification in collagen type I of an integrin alpha2 beta1-binding site containing an essential GER sequence. J Biol Chem 1998;273:33287–33294.CrossRefGoogle Scholar
  115. 115.
    Morton LF, Peachey AR, Zijenah LS, Goodall AH, Humphries MJ, Barnes MJ. Conformation-dependent platelet adhesion to collagen involving integrin alpha 2 beta 1-mediated and other mechanisms: multiple alpha 2 beta 1-recognition sites in collagen type I. Biochem J 1994;299 (Pt 3):791–797.Google Scholar
  116. 116.
    Emsley J, Knight CG, Farndale RW, Barnes MJ, Liddington RC. Structural basis of collagen recognition by integrin alpha2beta1. Cell 2000;101:47–56.CrossRefGoogle Scholar
  117. 117.
    Reyes CD, Garcia AJ. Engineering integrin-specific surfaces with a triple-helical collagen-mimetic peptide. J Biomed Mater Res A 2003;65:511–523.CrossRefGoogle Scholar
  118. 118.
    Koide T. Triple helical collagen-like peptides: engineering and applications in matrix biology. Connect Tissue Res 2005;46:131–141.CrossRefGoogle Scholar
  119. 119.
    Khew ST, Tong YW. The specific recognition of a cell binding sequence derived from type I collagen by Hep3B and L929 cells. Biomacromolecules 2007;8:3153–3161.CrossRefGoogle Scholar
  120. 120.
    Khew ST, Zhu XH, Tong YW. An integrin-specific collagen-mimetic peptide approach for optimizing Hep3B liver cell adhesion, proliferation, and cellular functions. Tissue Eng 2007;13:2451–2463.CrossRefGoogle Scholar
  121. 121.
    Khew ST, Tong YW. Template-assembled triple-helical peptide molecules: mimicry of collagen by molecular architecture and integrin-specific cell adhesion. Biochemistry 2008;47:585–596.CrossRefGoogle Scholar
  122. 122.
    Baronas-Lowell D, Lauer-Fields JL, Fields GB. Induction of endothelial cell activation by a triple helical alpha2beta integrin ligand, derived from type I collagen alpha1(I)496–507. J Biol Chem 2004;279:952–962.CrossRefGoogle Scholar
  123. 123.
    Baronas-Lowell D, Lauer-Fields JL, Borgia JA, Sferrazza GF, Al-Ghoul M, Minond D, Fields GB. Differential modulation of human melanoma cell metalloproteinase expression by alpha2beta1 integrin and CD44 triple-helical ligands derived from type IV collagen. J Biol Chem 2004;279:43503–43513.CrossRefGoogle Scholar
  124. 124.
    Malkar NB, Lauer-Fields JL, Juska D, Fields GB. Characterization of peptide-amphiphiles possessing cellular activation sequences. Biomacromolecules 2003;4:518–528.CrossRefGoogle Scholar
  125. 125.
    Reyes CD, Petrie TA, Burns KL, Garcia AJ. Mixed ECM ligands synergistically modulate integrin adhesion and signaling. Journal of Cell Physiology 2008;In Press:.Google Scholar
  126. 126.
    Colombi M, Zoppi N, De PG, Marchina E, Gardella R, Tavian D, Ferraboli S, Barlati S. Matrix assembly induction and cell migration and invasion inhibition by a 13-amino acid fibronectin peptide. J Biol Chem 2003;278:14346–14355.CrossRefGoogle Scholar
  127. 127.
    Sechler JL, Schwarzbauer JE. Control of cell cycle progression by fibronectin matrix architecture. J Biol Chem 1998;273:25533–25536.CrossRefGoogle Scholar
  128. 128.
    Schwarzbauer JE, Sechler JL. Fibronectin fibrillogenesis: a paradigm for extracellular matrix assembly. Curr Opin Cell Biol 1999;11:622–627.CrossRefGoogle Scholar
  129. 129.
    Schwarzbauer JE, Sechler JL. Fibronectin fibrillogenesis: a paradigm for extracellular matrix assembly [in process citation]. Curr Opin Cell Biol 1999;11:622–627.CrossRefGoogle Scholar
  130. 130.
    Sechler JL, Corbett SA, Schwarzbauer JE. Modulatory roles for integrin activation and the synergy site of fibronectin during matrix assembly. Mol Biol Cell 1997;8:2563–2573.Google Scholar
  131. 131.
    Takahashi S, Leiss M, Moser M, Ohashi T, Kitao T, Heckmann D, Pfeifer A, Kessler H, Takagi J, Erickson HP, Fassler R. The RGD motif in fibronectin is essential for development but dispensable for fibril assembly. J Cell Biol 2007;178:167–178.CrossRefGoogle Scholar
  132. 132.
    Sechler JL, Takada Y, Schwarzbauer JE. Altered rate of fibronectin matrix assembly by deletion of the first type III repeats. J Cell Biol 1996;134:573–583.CrossRefGoogle Scholar
  133. 133.
    Sechler JL, Cumiskey AM, Gazzola DM, Schwarzbauer JE. A novel RGD-independent fibronectin assembly pathway initiated by alpha4beta1 integrin binding to the alternatively spliced V region. J Cell Sci 2000;113 (Pt 8):1491–1498.Google Scholar
  134. 134.
    Capadona JR, Petrie TA, Fears KP, Latour RA, Collard DM, Garcia AJ. Surface-nucleated assembly of fibrillar extracellular matrices. Adv Mater 2005;17:2604–2608.CrossRefGoogle Scholar
  135. 135.
    Gallant ND, Michael KE, Garcia AJ. Cell adhesion strengthening: contributions of adhesive area, integrin binding, and focal adhesion assembly. Mol Biol Cell 2005;16:4329–4340.CrossRefGoogle Scholar
  136. 136.
    Koo LY, Irvine DJ, Mayes AM, Lauffenburger DA, Griffith LG. Co-regulation of cell adhesion by nanoscale RGD organization and mechanical stimulus. J Cell Sci 2002;115:1423–1433.Google Scholar
  137. 137.
    Maheshwari G, Brown G, Lauffenburger DA, Wells A, Griffith LG. Cell adhesion and motility depend on nanoscale RGD clustering. J Cell Sci 2000;113:1677–1686.Google Scholar
  138. 138.
    Villard V, Kalyuzhniy O, Riccio O, Potekhin S, Melnik TN, Kajava AV, Ruegg C, Corradin G. Synthetic RGD-containing alpha-helical coiled coil peptides promote integrin-dependent cell adhesion. J Pept Sci 2006;12:206–212.CrossRefGoogle Scholar
  139. 139.
    Garanger E, Boturyn D, Dumy P. Tumor targeting with RGD peptide ligands-design of new molecular conjugates for imaging and therapy of cancers. Anticancer Agents Med Chem 2007;7:552–558.Google Scholar
  140. 140.
    Garanger E, Boturyn D, Coll JL, Favrot MC, Dumy P. Multivalent RGD synthetic peptides as potent alphaVbeta3 integrin ligands. Org Biomol Chem 2006;4:1958–1965.CrossRefGoogle Scholar
  141. 141.
    Coussen F, Choquet D, Sheetz MP, Erickson HP. Trimers of the fibronectin cell adhesion domain localize to actin filament bundles and undergo rearward translocation. J Cell Sci 2002;115:2581–2590.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Timothy A. Petrie
    • 1
  • Andrés J. García
    • 1
  1. 1.Woodruff School of Mechanical EngineeringPetit Institute for Bioengineering and Bioscience, Georgia Institute of TechnologyGeorgiaAtlanta

Personalised recommendations