Advertisement

Phage Display as a Strategy for Designing Organic/Inorganic Biomaterials

  • Sharon Segvich
  • David H. Kohn
Chapter

Abstract

To extend and optimize the performance of biomaterials, better control of biofunctionality is needed. In this chapter, we focus on the integration of peptides into biomaterials as a strategy for providing a biomaterial with greater ability to control subsequent protein, cell, and tissue responses. The focus of this chapter is on phage display, a high-throughput selection technique used to identify peptides that have preferential affinity to a specific material or cell type. The use of phage display provides a genetic engineering platform for designing new materials at the nanoscale. The basics of the phage display technique are presented, and postprocessing approaches to analyze the combinatorial data derived from phage display are discussed. Specific examples of the use of phage display with calcium phosphate biomaterials are presented, as are examples from the use of phage display to define amino acid sequences that preferentially bind to specific cell types. Data from multiple phage pannings can be used to create dual-functioning peptides that serve as linkers between the organic and inorganic worlds.

Keywords

Phage Display Phage Display Library Phage Display Technology Initial Cell Attachment Phage Display Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

BLM

bone-like mineral

CN

carbon nanotubes

DNT

2,4-dinitrotoluene

ECM

extracellular matrix

ELISA

enzyme-linked immunosorbent assay

FASTA

DNA and protein alignment software

PEG

polyethylene glycol

PPyCl

chlorine-doped polypyrrole

RELIC

REceptor Ligand Contacts

Notes

Acknowledgments

Parts of the authors’ work discussed in this chapter were supported by the National Institutes of Heath: R01 DE 013380, R01 DE 015411, and T32 DE07057.

References

  1. 1.
    Kohn DH. “Bioceramics,” Chapter 15, In: Biomedical Engineering and Design Handbook, Volume 1, M. Kutz, Ed., McGraw-Hill, New York, 2009.Google Scholar
  2. 2.
    Yaszemski MJ, Payne RG, Hayes WC, Langer R, Mikos AG. Evolution of bone transplantation: molecular, cellular and tissue strategies to engineer human bone. Biomaterials 1996;17(2):175–185.Google Scholar
  3. 3.
    Ishaug-Riley SL, Crane GM, Gurlek A, Miller MJ, Yasko AW, Yaszemski MJet al, Ectopic bone formation by marrow stromal osteoblast transplantation using poly(DL-lactic-co-glycolic acid) foams implanted into the rat mesentery. Journal of Biomedical Materials Research 1997;36(1):1–8.Google Scholar
  4. 4.
    Krebsbach PH, Kuznetsov SA, Satomura K, Emmons RV, Rowe DW, Robey PG. Bone formation in vivo: comparison of osteogenesis by transplanted mouse and human marrow stromal fibroblasts. Transplantation 1997;63(8):1059–1069.Google Scholar
  5. 5.
    Laurencin CT, ElAmin SF, Ibim SE, Willoughby DA, Attawia M, Allcock HRet al, A highly porous 3-dimensional polyphosphazene polymer matrix for skeletal tissue regeneration. Journal of Biomedical Materials Research 1996;30(2):133–138.Google Scholar
  6. 6.
    Gorna K, Gogolewski S. Preparation, degradation, and calcification of biodegradable polyurethane foams for bone graft substitutes. Journal of Biomedical Materials Research Part A 2003;67A(3):813–827.Google Scholar
  7. 7.
    Li WJ, Tuli R, Huang X, Laquerriere P, Tuan RS. Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials 2005;26(25):5158–5166.Google Scholar
  8. 8.
    Nuttelman CR, Tripodi MC, Anseth KS. In vitro osteogenic differentiation of human mesenchymal stem cells photoencapsulated in PEG hydrogels. Journal of Biomedical Materials Research Part A 2004;68A(4):773–782.Google Scholar
  9. 9.
    Payne RG, McGonigle JS, Yaszemski MJ, Yasko AW, Mikos AG. Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 3. Proliferation and differentiation of encapsulated marrow stromal osteoblasts cultured on crosslinking poly(propylene fumarate). Biomaterials 2002;23(22):4381–4387.Google Scholar
  10. 10.
    Marques AP, Cruz HR, Coutinho OP, Reis RL. Effect of starch-based biomaterials on the in vitro proliferation and viability of osteoblast-like cells. Journal of Materials Science. Materials in Medicine 2005;16(9):833–842.Google Scholar
  11. 11.
    Alsberg E, Anderson KW, Albeiruti A, Franceschi RT, Mooney DJ. Cell-interactive alginate hydrogels for bone tissue engineering. Journal of Dental Research 2001;80(11):2025–2029.Google Scholar
  12. 12.
    Kim HJ, Kim UJ, Vunjak-Novakovic G, Min BH, Kaplan DL. Influence of macroporous protein scaffolds on bone tissue engineering from bone marrow stem cells. Biomaterials 2005;26(21):4442–4452.Google Scholar
  13. 13.
    Ducheyne P, el-Ghannam A, Shapiro I. Effect of bioactive glass templates on osteoblast proliferation and in vitro synthesis of bone-like tissue. Journal of Cellular Biochemistry 1994;56(2):162–167.Google Scholar
  14. 14.
    El-Ghannam A, Ducheyne P, Shapiro IM. Porous bioactive glass and hydroxyapatite ceramic affect bone cell function in vitro along different time lines. Journal of Biomedical Materials Research 1997;36(2):167–180.Google Scholar
  15. 15.
    Yoshikawa T, Ohgushi H, Tamai S. Immediate bone forming capability of prefabricated osteogenic hydroxyapatite. Journal of Biomedical Materials Research 1996;32(3):481–492.Google Scholar
  16. 16.
    Ohgushi H, Okumura M, Tamai S, Shors EC, Caplan AI. Marrow cell induced osteogenesis in porous hydroxyapatite and tricalcium phosphate – a comparative histomorphometric study of ectopic bone-formation. Journal of Biomedical Materials Research 1990;24(12):1563–1570.Google Scholar
  17. 17.
    Kruyt MC, Dhert WJ, Yuan H, Wilson CE, van Blitterswijk CA, Verbout AJet al, Bone tissue engineering in a critical size defect compared to ectopic implantations in the goat. Journal of Orthopaedic Research 2004;22(3):544–551.Google Scholar
  18. 18.
    Murphy WL, Kohn DH, Mooney DJ. Growth of continuous bonelike mineral within porous poly(lactide-co-glycolide) scaffolds in vitro. Journal of Biomedical Materials Research 2000;50(1):50–58.Google Scholar
  19. 19.
    Shin K, Jayasuriya AC, Kohn DH. Effect of ionic activity products on the structure and composition of mineral self assembled on three-dimensional poly(lactide-co-glycolide) scaffolds. Journal of Biomedical Materials Research Part A 2007;83(4):1076–1086.Google Scholar
  20. 20.
    Thomson RC, Yaszemski MJ, Powers JM, Mikos AG. Hydroxyapatite fiber reinforced poly(alpha-hydroxy ester) foams for bone regeneration. Biomaterials 1998;19(21):1935–1943.Google Scholar
  21. 21.
    Kretlow JD, Mikos AG. Review: mineralization of synthetic polymer scaffolds for bone tissue engineering. Tissue Engineering 2007;13(5):927–938.Google Scholar
  22. 22.
    James K, Levene H, Parsons JR, Kohn J. Small changes in polymer chemistry have a large effect on the bone-implant interface: evaluation of a series of degradable tyrosine-derived polycarbonates in bone defects. Biomaterials 1999;20(23–24):2203–2212.Google Scholar
  23. 23.
    Rouahi M, Champion E, Hardouin P, Anselme K. Quantitative kinetic analysis of gene expression during human osteoblastic adhesion on orthopaedic materials. Biomaterials 2006;27(14):2829–2844.Google Scholar
  24. 24.
    Leonova EV, Pennington KE, Krebsbach PH, Kohn DH. Substrate mineralization stimulates focal adhesion contact redistribution and cell motility of bone marrow stromal cells. Journal of Biomedical Materials Research Part A 2006;79(2):263–270.Google Scholar
  25. 25.
    Kohn DH, Shin K, Hong SI, Jayasuriya AC, Leonova EV, Rossello RA, et al. Self-assembled mineral scaffolds as model systems for biomineralization and tissue engineering. Proceedings of the Eighth International Conference on the Chemistry and Biology of Mineralized Tissues 2005:216–219.Google Scholar
  26. 26.
    Puleo DA, Holleran LA, Doremus RH, Bizios R. Osteoblast responses to orthopedic implant materials in-vitro. Journal of Biomedical Materials Research 1991;25(6):711–723.Google Scholar
  27. 27.
    Zreiqat H, Evans P, Howlett CR. Effect of surface chemical modification of bioceramic on phenotype of human bone-derived cells. Journal of Biomedical Materials Research 1999;44(4):389–396.Google Scholar
  28. 28.
    Simon CG, Jr, Eidelman N, Kennedy SB, Sehgal A, Khatri CA, Washburn NR. Combinatorial screening of cell proliferation on poly(L-lactic acid)/poly(D,L-lactic acid) blends. Biomaterials 2005;26(34):6906–6915.Google Scholar
  29. 29.
    Krebsbach PH, Kuznetsov SA, Bianco P, Robey PG. Bone marrow stromal cells: characterization and clinical application. Critical Reviews in Oral Biology and Medicine 1999;10(2):165–181.Google Scholar
  30. 30.
    Hartman EHM, Vehof JWM, Spauwen PHM, Jansen JA. Ectopic bone formation in rats: the importance of the carrier. Biomaterials 2005;26(14):1829–1835.Google Scholar
  31. 31.
    Buttafoco L, Kolkman NG, Engbers-Buijtenhuijs P, Poot AA, Dijkstra PJ, Vermes Iet al, Electrospinning of collagen and elastin for tissue engineering applications. Biomaterials 2006;27(5):724–734.Google Scholar
  32. 32.
    Ji Y, Ghosh K, Li B, Sokolov JC, Clark RA, Rafailovich MH. Dual-syringe reactive electrospinning of cross-linked hyaluronic acid hydrogel nanofibers for tissue engineering applications. Macromolecular Bioscience 2006;6(10):811–817.Google Scholar
  33. 33.
    Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature Biotechnology 2005;23(1):47–55.Google Scholar
  34. 34.
    Stevens MM. Biomaterials for bone tissue engineering. Materials Today 2008;11(5):18–25.Google Scholar
  35. 35.
    Zhang S. Fabrication of novel biomaterials through molecular self-assembly. Nature Biotechnology 2003;21(10):1171–1178.Google Scholar
  36. 36.
    Menger FM. Supramolecular chemistry and self-assembly. Proceedings of the National Academy of Sciences of the United States of America 2002;99(8):4818–4822.Google Scholar
  37. 37.
    Kisiday J, Jin M, Kurz B, Hung H, Semino C, Zhang Set al, Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proceedings of the National Academy of Sciences of the United States of America 2002;99(15):9996–10001.Google Scholar
  38. 38.
    Niece KL, Hartgerink JD, Donners JJ, Stupp SI. Self-assembly combining two bioactive peptide-amphiphile molecules into nanofibers by electrostatic attraction. Journal of American Chemical Society 2003;125(24):7146–7147.Google Scholar
  39. 39.
    Segvich S, Smith HC, Luong LN, Kohn DH. Uniform deposition of protein incorporated mineral layer on three-dimensional porous polymer scaffolds. Journal of Biomedical Materials Research Part B. Applied Biomaterials 2008;84(2):340–349.Google Scholar
  40. 40.
    Whang K, Tsai DC, Nam EK, Aitken M, Sprague SM, Patel PKet al, Ectopic bone formation via rhBMP-2 delivery from porous bioabsorbable polymer scaffolds. Journal of Biomedical Materials Research 1998;42(4):491–499.Google Scholar
  41. 41.
    Shea LD, Smiley E, Bonadio J, Mooney DJ. DNA delivery from polymer matrices for tissue engineering. Nature Biotechnology 1999;17(6):551–554.Google Scholar
  42. 42.
    Murphy WL, Peters MC, Kohn DH, Mooney DJ. Sustained release of vascular endothelial growth factor from mineralized poly(lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 2000;21(24):2521–2527.Google Scholar
  43. 43.
    Luong LN, Hong SI, Patel RJ, Outslay ME, Kohn DH. Spatial control of protein within biomimetically nucleated mineral. Biomaterials 2006;27(7):1175–1186.Google Scholar
  44. 44.
    Massia SP, Hubbell JA. Covalent surface immobilization of Arg-Gly-Asp- and Tyr-Ile-Gly-Ser-Arg-containing peptides to obtain well-defined cell-adhesive substrates. Analytical Biochemistry 1990;187(2):292–301.Google Scholar
  45. 45.
    Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials 2003;24(24):4353–4364.Google Scholar
  46. 46.
    Garcia AJ. Get a grip: integrins in cell-biomaterial interactions. Biomaterials 2005;26(36):7525–7529.Google Scholar
  47. 47.
    Segvich S, Biswas S, Becker U, Kohn D. Identification of peptides with targeted adhesion to bone-like mineral via phage display and computational modeling. Cells, Tissues, Organs 2009;189(1–4):245–251.Google Scholar
  48. 48.
    Stevens MM, George JH. Exploring and engineering the cell surface interface. Science 2005;310(5751):1135–1138.Google Scholar
  49. 49.
    Guilak F, Butler D, Goldstein SA, Mooney D (eds). Functional Tissue Engineering. New York: Springer, 2003.Google Scholar
  50. 50.
    Reyes CD, Petrie TA, Burns KL, Schwartz Z, Garcia AJ. Biomolecular surface coating to enhance orthopaedic tissue healing and integration. Biomaterials 2007;28(21):3228–3235.Google Scholar
  51. 51.
    Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 2003;24(24):4385–4415.Google Scholar
  52. 52.
    Ladner RC, Sato AK, Gorzelany J, de Souza M. Phage display-derived peptides as therapeutic alternatives to antibodies. Drug Discovery Today 2004;9(12):525–529.Google Scholar
  53. 53.
    Dee KC, Andersen TT, Bizios R. Design and function of novel osteoblast-adhesive peptides for chemical modification of biomaterials. Journal of Biomedical Materials Research 1998;40(3):371–377.Google Scholar
  54. 54.
    Rezania A, Healy KE. The effect of peptide surface density on mineralization of a matrix deposited by osteogenic cells. Journal of Biomedical Materials Research 2000;52(4):595–600.Google Scholar
  55. 55.
    Itoh D, Yoneda S, Kuroda S, Kondo H, Umezawa A, Ohya Ket al, Enhancement of osteogenesis on hydroxyapatite surface coated with synthetic peptide (EEEEEEEPRGDT) in vitro. Journal of Biomedical Materials Research 2002;62(2):292–298.Google Scholar
  56. 56.
    Hwang NS, Varghese S, Zhang Z, Elisseeff J. Chondrogenic differentiation of human embryonic stem cell-derived cells in arginine-glycine-aspartate-modified hydrogels. Tissue Engineering 2006;12(9):2695–2706.Google Scholar
  57. 57.
    Salinas CN, Cole BB, Kasko AM, Anseth KS. Chondrogenic differentiation potential of human mesenchymal stem cells photoencapsulated within poly(ethylene glycol)-arginine-glycine-aspartic acid-serine thiol-methacrylate mixed-mode networks. Tissue Engineering 2007;13(5):1025–1034.Google Scholar
  58. 58.
    Gunn JW, Turner SD, Mann BK. Adhesive and mechanical properties of hydrogels influence neurite extension. Journal of Biomedical Materials Research Part A 2005;72A(1):91–97.Google Scholar
  59. 59.
    Patel S, Tsang J, Harbers GM, Healy KE, Li S. Regulation of endothelial cell function by GRGDSP peptide grafted on interpenetrating polymers. Journal of Biomedical Materials Research Part A 2007;83(2):423–433.Google Scholar
  60. 60.
    Rezania A, Healy KE. Biomimetic peptide surfaces that regulate adhesion, spreading, cytoskeletal organization, and mineralization of the matrix deposited by osteoblast-like cells. Biotechnology Progress 1999;15(1):19–32.Google Scholar
  61. 61.
    Schense JC, Hubbell JA. Three-dimensional migration of neurites is mediated by adhesion site density and affinity. Journal of Biological Chemistry 2000;275(10):6813–6818.Google Scholar
  62. 62.
    Fujisawa R, Mizuno M, Nodasaka Y, Kuboki Y. Attachment of osteoblastic cells to hydroxyapatite crystals by a synthetic peptide (Glu7-Pro-Arg-Gly-Asp-Thr) containing two functional sequences of bone sialoprotein. Matrix Biology 1997;16(1):21–28.Google Scholar
  63. 63.
    Gilbert M, Shaw WJ, Long JR, Nelson K, Drobny GP, Giachelli CMet al, Chimeric peptides of statherin and osteopontin that bind hydroxyapatite and mediate cell adhesion. Journal of Biological Chemistry 2000;275(21):16213–16218.Google Scholar
  64. 64.
    Panitch A, Yamaoka T, Fournier MJ, Mason TL, Tirrell DA. Design and biosynthesis of elastin-like artificial extracellular matrix proteins containing periodically spaced fibronectin CS5 domains. Macromolecules 1999;32(5):1701–1703.Google Scholar
  65. 65.
    Fujisawa R, Wada Y, Nodasaka Y, Kuboki Y. Acidic amino acid-rich sequences as binding sites of osteonectin to hydroxyapatite crystals. Biochimica et Biophysica Acta 1996;1292(1):53–60.Google Scholar
  66. 66.
    Massia SP, Hubbell JA. Covalent surface immobilization of Arg-Gly-Asp- and Tyr-Ile-Gly-Ser-Arg-containing peptides to obtain well-defined cell-adhesive substrates. Analytical Biochemistry 1990;187(2):292–301.Google Scholar
  67. 67.
    Hubbell JA, Massia SP, Desai NP, Drumheller PD. Endothelial cell-selective materials for tissue engineering in the vascular graft via a new receptor. Biotechnology 1991;9(6):568–572.Google Scholar
  68. 68.
    Kam L, Shain W, Turner JN, Bizios R. Selective adhesion of astrocytes to surfaces modified with immobilized peptides. Biomaterials 2002;23(2):511–515.Google Scholar
  69. 69.
    Ahmad G, Dickerson MB, Cai Y, Jones SE, Ernst EM, Vernon JPet al, Rapid bioenabled formation of ferroelectric BaTiO3 at room temperature from an aqueous salt solution at near neutral pH. Journal of American Chemical Soceity 2008;130(1):4–5.Google Scholar
  70. 70.
    Chen H, Su X, Neoh KG, Choe WS. QCM-D analysis of binding mechanism of phage particles displaying a constrained heptapeptide with specific affinity to SiO2 and TiO2. Analytical Chemistry 2006;78(14):4872–4879.Google Scholar
  71. 71.
    Zuo R, Ornek D, Wood TK. Aluminum- and mild steel-binding peptides from phage display. Applied Microbiology & Biotechnology 2005;68(4):505–509.Google Scholar
  72. 72.
    Mao C, Flynn CE, Hayhurst A, Sweeney R, Qi J, Georgiou Get al, Viral assembly of oriented quantum dot nanowires. Proceedings of the National Academy of Sciences of the United States of America 2003;100(12):6946–6951.Google Scholar
  73. 73.
    Lee SW, Mao C, Flynn CE, Belcher AM. Ordering of quantum dots using genetically engineered viruses. Science 2002;296(5569):892–895.Google Scholar
  74. 74.
    Whaley SR, English DS, Hu EL, Barbara PF, Belcher AM. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 2000;405(6787):665–668.Google Scholar
  75. 75.
    Seker UO, Wilson B, Dincer S, Kim IW, Oren EE, Evans JSet al, Adsorption behavior of linear and cyclic genetically engineered platinum binding peptides. Langmuir 2007;23(15):7895–7900.Google Scholar
  76. 76.
    Zhang X, Chen J, Yang P, Yang W. Biomimetic synthesis silver crystallite by peptide AYSSGAPPMPPF immobilized on PET film in vitro. Journal of Inorganic Biochemistry 2005;99(8):1692–1697.Google Scholar
  77. 77.
    Naik RR, Stringer SJ, Agarwal G, Jones SE, Stone MO. Biomimetic synthesis and patterning of silver nanoparticles. Nature Materials 2002;1(3):169–172.Google Scholar
  78. 78.
    Qi M, O’Brien JP, Yang J. A recombinant triblock protein polymer with dispersant and binding properties for digital printing. Biopolymers 2008;90(1):28–36.Google Scholar
  79. 79.
    Wang S, Humphreys ES, Chung SY, Delduco DF, Lustig SR, Wang Het al, Peptides with selective affinity for carbon nanotubes. Nature Materials 2003;2(3):196–200.Google Scholar
  80. 80.
    Gigliotti B, Sakizzie B, Bethune DS, Shelby RM, Cha JN. Sequence-independent helical wrapping of single-walled carbon nanotubes by long genomic DNA. Nano Letters 2006;6(2):159–164.Google Scholar
  81. 81.
    Sanghvi AB, Miller KP, Belcher AM, Schmidt CE. Biomaterials functionalization using a novel peptide that selectively binds to a conducting polymer. Nature Materials 2005;4(6):496–502.Google Scholar
  82. 82.
    Adey NB, Mataragnon AH, Rider JE, Carter JM, Kay BK. Characterization of phage that bind plastic from phage-displayed random peptide libraries. Gene 1995;156(1):27–31.Google Scholar
  83. 83.
    Serizawa T, Sawada T, Matsuno H, Matsubara T, Sato T. A peptide motif recognizing a polymer stereoregularity. Journal of American Chemical Society 2005;127(40):13780–13781.Google Scholar
  84. 84.
    Jaworski JW, Raorane D, Huh JH, Majumdar A, Lee SW. Evolutionary screening of biomimetic coatings for selective detection of explosives. Langmuir 2008;24(9):4938–4943.Google Scholar
  85. 85.
    Mao C, Solis DJ, Reiss BD, Kottmann ST, Sweeney RY, Hayhurst Aet al, Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science 2004;303(5655):213–217.Google Scholar
  86. 86.
    Flynn CE, Lee S, Peelle BR, Belcher AM. Viruses as vehicles for growth, organization and assembly of materials. Acta Materialia 2003;51(19):5867–5880.Google Scholar
  87. 87.
    Merzlyak A, Lee SW. Phage as templates for hybrid materials and mediators for nanomaterial synthesis. Current Opinion in Chemical Biology 2006;10(3):246–252.Google Scholar
  88. 88.
    Lee S, Belcher AM. Virus-based fabrication of micro- and nanofibers using electrospinning. Nano Letters 2004;4(3):387–390.Google Scholar
  89. 89.
    Mortensen HD, Dupont K, Jespersen L, Willats WG, Arneborg N. Identification of amino acids involved in the Flo11p-mediated adhesion of Saccharomyces cerevisiae to a polystyrene surface using phage display with competitive elution. Journal of Application Microbiology 2007;103(4):1041–1047.Google Scholar
  90. 90.
    Watanabe H, Tsumoto K, Taguchi S, Yamashita K, Doi Y, Nishimiya Yet al, A human antibody fragment with high affinity for biodegradable polymer film. Bioconjugate Chemistry 2007;18(3):645–651.Google Scholar
  91. 91.
    Bjerketorp J, Rosander A, Nilsson M, Jacobsson K, Frykberg L. Sorting a Staphylococcus aureus phage display library against ex vivo biomaterial. Journal of Medical Microbiology 2004;53(Pt 10):945–951.Google Scholar
  92. 92.
    Shiba K. Functionalization of carbon nanomaterials by evolutionary molecular engineering: potential application in drug delivery systems. Journal of Drug Targeting 2006;14(7):512–518.Google Scholar
  93. 93.
    Rothenfluh DA, Bermudez H, O’Neil CP, Hubbell JA. Biofunctional polymer nanoparticles for intra-articular targeting and retention in cartilage. Nature Materials 2008;7(3):248–254.Google Scholar
  94. 94.
    Fan X, Venegas R, Fey R, van der Heyde H, Bernard MA, Lazarides Eet al, An in vivo approach to structure activity relationship analysis of peptide ligands. Pharmaceutical Research 2007;24(5):868–879.Google Scholar
  95. 95.
    Odermatt A, Audige A, Frick C, Vogt B, Frey BM, Frey FJet al, Identification of receptor ligands by screening phage-display peptide libraries ex vivo on microdissected kidney tubules. Journal of the American Society of Nephrology 2001;12(2):308–316.Google Scholar
  96. 96.
    Essler M, Ruoslahti E. Molecular specialization of breast vasculature: a breast-homing phage-displayed peptide binds to aminopeptidase P in breast vasculature. Proceedings of the National Academy of Sciences of the United States of America 2002;99(4):2252–2257.Google Scholar
  97. 97.
    Samoylova TI, Smith BF. Elucidation of muscle-binding peptides by phage display screening. Muscle and Nerve 1999;22(4):460–466.Google Scholar
  98. 98.
    Nowakowski GS, Dooner MS, Valinski HM, Mihaliak AM, Quesenberry PJ, Becker PS. A specific heptapeptide from a phage display peptide library homes to bone marrow and binds to primitive hematopoietic stem cells. Stem Cells 2004;22(6):1030–1038.Google Scholar
  99. 99.
    Pasqualini R, Koivunen E, Ruoslahti E. A peptide isolated from phage display libraries is a structural and functional mimic of an RGD-binding site on integrins. The Journal of Cell Biology 1995;130(5):1189–1196.Google Scholar
  100. 100.
    Samoylova TI, Petrenko VA, Morrison NE, Globa LP, Baker HJ, Cox NR. Phage probes for malignant glial cells. Molecular Cancer Therapeutics 2003;2(11):1129–1137.Google Scholar
  101. 101.
    Morita Y, Mamiya K, Yamamura S, Tamiya E. Selection and properties for the recognition of P19 embryonic carcinoma stem cells. Biotechnology Progress 2006;22(4):974–978.Google Scholar
  102. 102.
    Wu M, Sherwin T, Brown WL, Stockley PG. Delivery of antisense oligonucleotides to leukemia cells by RNA bacteriophage capsids. Nanomedicine 2005;1(1):67–76.Google Scholar
  103. 103.
    Frenkel D, Solomon B. Filamentous phage as vector-mediated antibody delivery to the brain. roceedings of the National Academy of Sciences of the United States of America 2002;99(8):5675–5679.Google Scholar
  104. 104.
    Samoylova TI, Ahmed BY, Vodyanoy V, Morrison NE, Samoylov AM, Globa LPet al, Targeting peptides for microglia identified via phage display. Journal of Neuroimmunology 2002;127(1–2):13–21.Google Scholar
  105. 105.
    Zhang J, Spring H, Schwab M. Neuroblastoma tumor cell-binding peptides identified through random peptide phage display. Cancer Letters 2001;171(2):153–164.Google Scholar
  106. 106.
    Uchiyama F, Tanaka Y, Minari Y, Toku N. Designing scaffolds of peptides for phage display libraries. Journal of Bioscience and Bioengineering 2005;99(5):448–456.Google Scholar
  107. 107.
    Marks C, Marks JD. Phage libraries – a new route to clinically useful antibodies. The New England Journal of Medicine 1996;335(10):730–733.Google Scholar
  108. 108.
    Scott JK, Smith GP. Searching for peptide ligands with an epitope library. Science 1990;249(4967):386–390.Google Scholar
  109. 109.
    Rodi DJ, Makowski L. Phage-display technology – finding a needle in a vast molecular haystack. Current Opinion in Biotechnology 1999;10(1):87–93.Google Scholar
  110. 110.
    Sergeeva A, Kolonin MG, Molldrem JJ, Pasqualini R, Arap W. Display technologies: application for the ­discovery of drug and gene delivery agents. Advanced Drug Delivery Reviews 2006;58(15):1622–1654.Google Scholar
  111. 111.
    Scott JK, Craig L. Random peptide libraries. Current Opinion in Biotechnology 1994;5(1):40–48.Google Scholar
  112. 112.
    Mandava S, Makowski L, Devarapalli S, Uzubell J, Rodi DJ. RELIC – a bioinformatics server for combinatorial peptide analysis and identification of protein-ligand interaction sites. Proteomics 2004;4(5):1439–1460.Google Scholar
  113. 113.
    Patrick WM, Firth AE. Strategies and computational tools for improving randomized protein libraries. Biomolecular Engineering 2005;22(4):105–112.Google Scholar
  114. 114.
    Tamerler C, Sarikaya M. Molecular biomimetics: utilizing nature’s molecular ways in practical engineering. Acta Biomaterialia 2007;3(3):289–299.Google Scholar
  115. 115.
    Tompa M, Li N, Bailey TL, Church GM, De Moor B, Eskin Eet al, Assessing computational tools for the discovery of transcription factor binding sites. Nature Biotechnology 2005;23(1):137–144.Google Scholar
  116. 116.
    Kenan DJ, Walsh EB, Meyers SR, O’Toole GA, Carruthers EG, Lee WKet al, Peptide-PEG amphiphiles as cytophobic coatings for mammalian and bacterial cells. Chemistry and Biology 2006;13(7):695–700.Google Scholar
  117. 117.
    Roy MD, Stanley SK, Amis EJ, Becker ML. Identification of a highly specific hydroxyapatite-binding peptide using phage display. Advanced Materials 2008;20(10):1830–1836.Google Scholar
  118. 118.
    Lu H, Jin D, Kapila YL. Application of laser capture microdissection to phage display peptide library screening. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics 2004;98(6):692–697.Google Scholar
  119. 119.
    Hern DL, Hubbell JA. Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. Journal of Biomedical Materials Research 1998;39(2):266–276.Google Scholar
  120. 120.
    Rezania A, Thomas CH, Branger AB, Waters CM, Healy KE. The detachment strength and morphology of bone cells contacting materials modified with a peptide sequence found within bone sialoprotein. Journal of Biomedical Materials Research 1997;37(1):9–19.Google Scholar
  121. 121.
    Garcia AJ, Gallant ND. Stick and grip: measurement systems and quantitative analyses of integrin-mediated cell adhesion strength. Cell Biochemistry and Biophysics 2003;39(1):61–73.Google Scholar
  122. 122.
    Koivunen E, Gay DA, Ruoslahti E. Selection of peptides binding to the alpha 5 beta 1 integrin from phage display library. Journal of Biological Chemistry 1993;268(27):20205–20210.Google Scholar
  123. 123.
    Okochi M, Nomura S, Kaga C, Honda H. Peptide array-based screening of human mesenchymal stem cell-adhesive peptides derived from fibronectin type III domain. Biochemical and Biophysical Research Communications 2008;371(1):85–89.Google Scholar
  124. 124.
    Sheu TJ, Schwarz EM, O’Keefe RJ, Rosier RN, Puzas JE. Use of a phage display technique to identify potential osteoblast binding sites within osteoclast lacunae. Journal of Bone and Mineral Research 2002;17(5):915–922.Google Scholar
  125. 125.
    Ehrlich GK, Bailon P. Identification of peptides that bind to the constant region of a humanized IgG(1) monoclonal antibody using phage display. Journal of Molecular Recognition 1998;11(1–6):121–125.Google Scholar
  126. 126.
    Kantarci N, Tamerler C, Sarikaya M, Haliloglu T, Doruker P. Molecular dynamics simulations on constraint metal binding peptides. Polymer 2005;46(12):4307–4313.Google Scholar
  127. 127.
    Abe Y, Kokubo T, Yamamuro T. Apatite coating on ceramics, metals and polymers utilizing a biological process. Journal of Materials Science. Materials In Medicine 1990;1(4):233–238.Google Scholar
  128. 128.
    Sarikaya M, Tamerler C, Jen AK, Schulten K, Baneyx F. Molecular biomimetics: nanotechnology through biology. Nature Materials 2003;2(9):577–585.Google Scholar
  129. 129.
    Tamerler C, Dincer S, Heidel D, Zareie MH, Sarikaya M. Biomimetic multifunctional molecular coatings using engineered proteins. Progress in Organic Coatings 2003;47(3–4):267–274.Google Scholar
  130. 130.
    Fujisawa R, Kuboki Y. Preferential adsorption of dentin and bone acidic proteins on the (100) face of hydroxyapatite crystals. Biochimica et Biophysica Acta 1991;1075(1):56–60.Google Scholar
  131. 131.
    Park K, Hong HY, Moon HJ, Lee BH, Kim IS, Kwon ICet al, A new atherosclerotic lesion probe based on hydrophobically modified chitosan nanoparticles functionalized by the atherosclerotic plaque targeted peptides. Journal of Controlled Release 2008;128(3):217–223.Google Scholar
  132. 132.
    LeBaron RG, Athanasiou KA. Extracellular matrix cell adhesion peptides: functional applications in orthopedic materials. Tissue Engineering 2000;6(2):85–103.Google Scholar
  133. 133.
    Menko AS, Boettiger D. Occupation of the extracellular matrix receptor, integrin, is a control point for myogenic differentiation. Cell 1987;51(1):51–57.Google Scholar
  134. 134.
    Adams JC, Watt FM. Changes in keratinocyte adhesion during terminal differentiation: reduction in fibronectin binding precedes alpha 5 beta 1 integrin loss from the cell surface. Cell 1990;63(2):425–435.Google Scholar
  135. 135.
    Streuli CH, Bailey N, Bissell MJ. Control of mammary epithelial differentiation: basement membrane induces tissue-specific gene expression in the absence of cell-cell interaction and morphological polarity. The Journal of Cell Biology 1991;115(5):1383–1395.Google Scholar
  136. 136.
    Damsky CH. Extracellular matrix-integrin interactions in osteoblast function and tissue remodeling. Bone 1999;25(1):95–96.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Sharon Segvich
    • 1
  • David H. Kohn
    • 1
  1. 1.Department of Biomedical EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations