Prevention of Postsurgical Adhesions: A Biomaterials Perspective

  • John M. Medley
  • Thomas D. Dziubla


One of the most common complications following abdominal surgery is the formation of postsurgical adhesions (PSAs). While often asymptomatic, these formations can result in numerous complications, including pain, infertility, and bowel obstructions, and can increase the difficulty of future surgeries. Various strategies have been developed to reduce the incidence of these adhesions, yet the most successful to date have been the use of physical barriers composed of biocompatible materials. Yet, despite the success of these materials, PSAs remain a significant clinical challenge.

This chapter provides a summary of the field from a biomaterials perspective, an overview of the mechanism of PSA formation and a review of the technologies developed in attempting to reduce their occurrences, including the limitations that exist with each of these strategies. At the end of this chapter, a summary of the analytical methods used in assessing adhesion barrier performance and their limitations, and a call for more quantitative analytical materials performance characterization are presented.


Hyaluronic Acid Tissue Adhesion Adhesion Score Quartz Crystal Microbalance With Dissipation Fibrinolytic Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





expanded poly(tetrafluoroethylene)


US Food and Drug Administration


fibrin gel matrix


hyaluronic acid




molecular weight


oxidized regenerated cellulose


poly(ethylene) glycol






postsurgical adhesion




quartz crystal microbalance with dissipation


  1. 1.
    Ellis, H., et al, Adhesion-related hospital readmissions after abdominal and pelvic surgery: a retrospective cohort study. Lancet. 1999. 353(9163): p. 1476–80.CrossRefGoogle Scholar
  2. 2.
    Risberg, B., Adhesions: preventive strategies. Eur J Surg Suppl. 1997. (577): p. 32–9.Google Scholar
  3. 3.
    Kutlay, J., et al, Comparative effectiveness of several agents for preventing postoperative adhesions. World J Surg. 2004. 28(7): p. 662–5.CrossRefGoogle Scholar
  4. 4.
    Matthews, B.D., et al, Assessment of adhesion formation to intra-abdominal polypropylene mesh and polytetrafluoroethylene mesh. J Surg Res. 2003. 114(2): p. 126–32.CrossRefGoogle Scholar
  5. 5.
    Nagelschmidt, M., T. Minor, and S. Saad, Polyethylene glycol 4000 attenuates adhesion formation in rats by suppression of peritoneal inflammation and collagen incorporation. Am J Surg. 1998. 176(1): p. 76–80.CrossRefGoogle Scholar
  6. 6.
    diZerega, G.S., and J.D. Campeau, Peritoneal repair and post-surgical adhesion formation. Hum Reprod Update. 2001. 7(6): p. 547–55.CrossRefGoogle Scholar
  7. 7.
    Boland, G.M., and R.J. Weigel, Formation and prevention of postoperative abdominal adhesions. J Surg Res. 2006. 132(1): p. 3–12.CrossRefGoogle Scholar
  8. 8.
    Weis, C., et al, Poly(vinyl alcohol) membranes for adhesion prevention. J Biomed Mater Res B Appl Biomater. 2004. 70(2): p. 191–202.CrossRefGoogle Scholar
  9. 9.
    diZerega, G.S., Biochemical events in peritoneal tissue repair. Eur J Surg Suppl. 1997. (577): p. 10-6.Google Scholar
  10. 10.
    Practice Committee of the American Society for Reproductive Medicine. Control and prevention of peritoneal adhesions in gynecologic surgery. Fertil Steril. 2006. 86(5 Suppl): p. S1-5.Google Scholar
  11. 11.
    Al-Took, S., R. Platt, and T. Tulandi, Adhesion-related small-bowel obstruction after gynecologic operations. Am J Obstet Gynecol. 1999. 180(2 Pt 1): p. 313–5.CrossRefGoogle Scholar
  12. 12.
    Miller, G., et al, Etiology of small bowel obstruction. Am J Surg. 2000. 180(1): p. 33–6.CrossRefGoogle Scholar
  13. 13.
    Diamond, M.P., and M.L. Freeman, Clinical implications of postsurgical adhesions. Hum Reprod Update. 2001. 7(6): p. 567–76.CrossRefGoogle Scholar
  14. 14.
    Tulandi, T., and A. Al-Shahrani, Adhesion prevention in gynecologic surgery. Curr Opin Obstet Gynecol. 2005. 17(4): p. 395–8.CrossRefGoogle Scholar
  15. 15.
    Kresch, A.J., et al, Laparoscopy in 100 women with chronic pelvic pain. Obstet Gynecol. 1984. 64(5): p. 672–4.Google Scholar
  16. 16.
    Swank, D.J., et al, Laparoscopic adhesiolysis in patients with chronic abdominal pain: a blinded randomised controlled multi-centre trial. Lancet. 2003. 361(9365): p. 1247–51.CrossRefGoogle Scholar
  17. 17.
    Dijkstra, F.R., et al., Recent clinical developments in pathophysiology, epidemiology, diagnosis and treatment of intra-abdominal adhesions. Scand J Gastroenterol Suppl. 2000. (232): p. 52-9.Google Scholar
  18. 18.
    Brill, A.I., et al, The incidence of adhesions after prior laparotomy: a laparoscopic appraisal. Obstet Gynecol. 1995. 85(2): p. 269–72.CrossRefGoogle Scholar
  19. 19.
    Cheong, Y.C., N. Bajekal, and T.C. Li, Peritoneal closure – to close or not to close. Hum Reprod. 2001. 16(8): p. 1548–52.CrossRefGoogle Scholar
  20. 20.
    Lyell, D.J., et al, Peritoneal closure at primary cesarean delivery and adhesions. Obstet Gynecol. 2005. 106(2): p. 275–80.CrossRefGoogle Scholar
  21. 21.
    Roset, E., M. Boulvain, and O. Irion, Nonclosure of the peritoneum during caesarean section: long-term follow-up of a randomised controlled trial. Eur J Obstet Gynecol Reprod Biol. 2003. 108(1): p. 40–4.CrossRefGoogle Scholar
  22. 22.
    Setzen, G., and E.F. Williams, 3rd, Tissue response to suture materials implanted subcutaneously in a rabbit model. Plast Reconstr Surg. 1997. 100(7): p. 1788–95.CrossRefGoogle Scholar
  23. 23.
    Merad, F., et al, Prophylactic abdominal drainage after elective colonic resection and suprapromontory anastomosis: a multicenter study controlled by randomization. French Associations for Surgical Research. Arch Surg. 1998. 133(3): p. 309–14.CrossRefGoogle Scholar
  24. 24.
    Memon, M.A., et al, The uses and abuses of drains in abdominal surgery. Hosp Med. 2002. 63(5): p. 282–8.Google Scholar
  25. 25.
    Memon, M.A., M.I. Memon, and J.H. Donohue, Abdominal drains: a brief historical review. Ir Med J. 2001. 94(6): p. 164–6.Google Scholar
  26. 26.
    Bertram, P., et al, Effects of intra-abdominal drainages on adhesion formation and prevention by phospholipids in a rat model. Drainages and adhesion formation. Eur Surg Res. 2003. 35(2): p. 92–7.CrossRefGoogle Scholar
  27. 27.
    Schein, M., To drain or not to drain? The role of drainage in the contaminated and infected abdomen: an international and personal perspective. World J Surg. 2008. 32(2): p. 312–21.CrossRefGoogle Scholar
  28. 28.
    Matsuzaki, S., et al, Effects of supplemental perioperative oxygen on post-operative abdominal wound adhesions in a mouse laparotomy model with controlled respiratory support. Hum Reprod. 2007. 22(10): p. 2702–6.CrossRefGoogle Scholar
  29. 29.
    Gutt, C.N., et al, Fewer adhesions induced by laparoscopic surgery? Surg Endosc. 2004. 18(6): p. 898–906.CrossRefGoogle Scholar
  30. 30.
    Milingos, S., et al, Adhesions: laparoscopic surgery versus laparotomy. Ann N Y Acad Sci. 2000. 900: p. 272–85.CrossRefGoogle Scholar
  31. 31.
    Pattaras, J.G., et al, Incidence of postoperative adhesion formation after transperitoneal genitourinary laparoscopic surgery. Urology. 2002. 59(1): p. 37–41.CrossRefGoogle Scholar
  32. 32.
    Muller, S.A., et al, Adhesion prevention comparing liquid and solid barriers in the rabbit uterine horn model. Eur J Obstet Gynecol Reprod Biol. 2005. 120(2): p. 222–6.CrossRefGoogle Scholar
  33. 33.
    Cooper, K., et al, Reduction of post-surgical adhesion formation with tranilast. J Surg Res. 2007. 141(2): p. 153–61.CrossRefGoogle Scholar
  34. 34.
    Stramer, B.M., R. Mori, P Martin, and. The inflammation-fibrosis link? A Jekyll and Hyde role for blood cells during wound repair. J Invest Dermatol. 2007. 127(5): p. 1009–17.CrossRefGoogle Scholar
  35. 35.
    Knight, J.A., Review: free radicals, antioxidants, and the immune system. Ann Clin Lab Sci. 2000. 30(2): p. 145–58.Google Scholar
  36. 36.
    Peterhans, E., Oxidants and antioxidants in viral diseases: disease mechanisms and metabolic regulation. J Nutr. 1997. 127(5 Suppl): p. 962S–5S.Google Scholar
  37. 37.
    Prakash Kumar, B., and K. Shivakumar, Alterations in collagen metabolism and increased fibroproliferation in the heart in cerium-treated rats: implications for the pathogenesis of endomyocardial fibrosis. Biol Trace Elem Res. 1998. 63(1): p. 73–9.CrossRefGoogle Scholar
  38. 38.
    Wilgus, T.A., et al, Hydrogen peroxide disrupts scarless fetal wound repair. Wound Repair Regen. 2005. 13(5): p. 513–9.CrossRefGoogle Scholar
  39. 39.
    ten Raa, S., et al, The role of neutrophils and oxygen free radicals in post-operative adhesions. J Surg Res. 2006. 136(1): p. 45–52.CrossRefGoogle Scholar
  40. 40.
    Portilla, F.d.l., et al, Prevention of peritoneal adhesions by intraperitoneal administration of vitamin E: an experimental study in rats. Diseases of the Colon & Rectum. 2004. 47(12): p. 2157–61.CrossRefGoogle Scholar
  41. 41.
    Demirbag, S., et al, Comparison of hyaluronate/carboxymethylcellulose membrane and melatonin for prevention of adhesion formation in a rat model. Hum Reprod. 2005. 20(7): p. 2021–4.CrossRefGoogle Scholar
  42. 42.
    Yuzbasioglu, M.F., et al, The effect of intraperitoneal catalase on prevention of peritoneal adhesion formation in rats. J Invest Surg. 2008. 21(2): p. 65–9.CrossRefGoogle Scholar
  43. 43.
    Johns, A., Evidence-based prevention of post-operative adhesions. Hum Reprod Update. 2001. 7(6): p. 577–9.CrossRefGoogle Scholar
  44. 44.
    Hellebrekers, B.W., et al, A role for the fibrinolytic system in postsurgical adhesion formation. Fertil Steril. 2005. 83(1): p. 122–9.CrossRefGoogle Scholar
  45. 45.
    Hellebrekers, B.W., et al, Short-term effect of surgical trauma on rat peritoneal fibrinolytic activity and its role in adhesion formation. Thromb Haemost. 2000. 84(5): p. 876–81.Google Scholar
  46. 46.
    Hellebrekers, B.W., et al, Use of fibrinolytic agents in the prevention of postoperative adhesion formation. Fertil Steril. 2000. 74(2): p. 203–12.CrossRefGoogle Scholar
  47. 47.
    Whitting, H.W., and B.A. Young, The effect of varidase in carboxymethylcellulose jelly on peritoneal adhesion formation. Virchows Arch Pathol Anat Physiol Klin Med. 1966. 341(2): p. 155–63.CrossRefGoogle Scholar
  48. 48.
    D’Amico, G., Experimental research on the effect of varidase on peritoneal adhesions. Riv Patol Clin. 1954. 9(1): p. 23–36.Google Scholar
  49. 49.
    Schutze, U., et al, Prophylaxis of peritoneal adhesions with streptokinase and streptodornase (Varidase). An experimental study in animals (author’s transl). MMW Munch Med Wochenschr. 1977. 119(4): p. 123–6.Google Scholar
  50. 50.
    Hill-West, J.L., R.C. Dunn, and J.A. Hubbell, Local release of fibrinolytic agents for adhesion prevention. J Surg Res. 1995. 59(6): p. 759–63.CrossRefGoogle Scholar
  51. 51.
    Jewett, T.C., Jr, et al, Effects of fibrinolytic enzymes on experimentally induced peritoneal adhesions. Surgery. 1965. 57: p. 280–4.Google Scholar
  52. 52.
    Okamoto, Y., S. Takai, and M. Miyazaki, Oral administration of a novel chymase inhibitor, NK3201, prevents peritoneal adhesion formation in hamsters. Jpn J Pharmacol. 2002. 90(1): p. 94–6.CrossRefGoogle Scholar
  53. 53.
    David-Raoudi, M., et al, Differential effects of hyaluronan and its fragments on fibroblasts: relation to wound healing. Wound Repair Regen. 2008. 16(2): p. 274–87.CrossRefGoogle Scholar
  54. 54.
    Turley, E.A., Hyaluronan and cell locomotion. Cancer Metastasis Rev. 1992. 11(1): p. 21–30.CrossRefGoogle Scholar
  55. 55.
    Moore, A.R., et al, The chemotactic properties of cartilage glycosaminoglycans for polymorphonuclear neutrophils. Int J Tissue React. 1989. 11(6): p. 301–7.Google Scholar
  56. 56.
    Gao, F., et al, Hyaluronan oligosaccharides are potential stimulators to angiogenesis via RHAMM mediated signal pathway in wound healing. Clin Invest Med. 2008. 31(3): p. E106–16.Google Scholar
  57. 57.
    Sawada, T., et al, Adhesion preventive effect of hyaluronic acid after intraperitoneal surgery in mice. Hum Reprod. 1999. 14(6): p. 1470–2.CrossRefGoogle Scholar
  58. 58.
    Shushan, A., et al, Hyaluronic acid for preventing experimental postoperative intraperitoneal adhesions. J Reprod Med. 1994. 39(5): p. 398–402.Google Scholar
  59. 59.
    Detchev, R., et al, Prevention of de novo adhesion by ferric hyaluronate gel after laparoscopic surgery in an animal model. JSLS. 2004. 8(3): p. 263–8.Google Scholar
  60. 60.
    Johns, D.B., et al, Reduction of postsurgical adhesions with intergel adhesion prevention solution: a multicenter study of safety and efficacy after conservative gynecologic surgery. Fertil Steril. 2001. 76(3): p. 595–604.CrossRefGoogle Scholar
  61. 61.
    Wiseman, D.M., Possible Intergel Reaction Syndrome (pIRS). Ann Surg. 2006. 244(4): p. 630–2.CrossRefGoogle Scholar
  62. 62.
    Yeo, Y., et al, In situ cross-linkable hyaluronic acid hydrogels prevent post-operative abdominal adhesions in a rabbit model. Biomaterials. 2006. 27(27): p. 4698–705.CrossRefGoogle Scholar
  63. 63.
    Guida, M., et al, Effectiveness of auto-crosslinked hyaluronic acid gel in the prevention of intrauterine adhesions after hysteroscopic surgery: a prospective, randomized, controlled study. Hum Reprod. 2004. 19(6): p. 1461–4.CrossRefGoogle Scholar
  64. 64.
    Pellicano, M., et al, Effectiveness of autocrosslinked hyaluronic acid gel after laparoscopic myomectomy in infertile patients: a prospective, randomized, controlled study. Fertil Steril. 2003. 80(2): p. 441–4.CrossRefGoogle Scholar
  65. 65.
    Mazzone, A., et al, Pharmacological effect of hyaluronic acid (HA) on phagocytes: hypothesis for an HA-induced monocyte chemotactic factor for neutrophils. Clin Ther. 1986. 8(5): p. 527–36.Google Scholar
  66. 66.
    Bulpitt, P., and D. Aeschlimann, New strategy for chemical modification of hyaluronic acid: preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels. J Biomed Mater Res. 1999. 47(2): p. 152–69.CrossRefGoogle Scholar
  67. 67.
    Jia, X., et al, Prolongation of sciatic nerve blockade by in situ cross-linked hyaluronic acid. Biomaterials. 2004. 25(19): p. 4797–804.CrossRefGoogle Scholar
  68. 68.
    Ito, T., et al, The prevention of peritoneal adhesions by in situ cross-linking hydrogels of hyaluronic acid and cellulose derivatives. Biomaterials. 2007. 28(6): p. 975–83.CrossRefGoogle Scholar
  69. 69.
    Diamond, M.P., Reduction of adhesions after uterine myomectomy by Seprafilm membrane (HAL-F): a blinded, prospective, randomized, multicenter clinical study. Seprafilm Adhesion Study Group. Fertil Steril. 1996. 66(6): p. 904–10.Google Scholar
  70. 70.
    Kelekci, S., et al, The efficacy of a hyaluronate/carboxymethylcellulose membrane in prevention of postoperative adhesion in a rat uterine horn model. Tohoku J Exp Med. 2004. 204(3): p. 189–94.CrossRefGoogle Scholar
  71. 71.
    FDA Panel Recommends Against Approval of Genzyme General’s Sepracoat 1997 [cited 2008 September 16, 2008]; Available from:
  72. 72.
    Hills, B.A., B.D. Butler, and R.E. Barrow, Boundary lubrication imparted by pleural surfactants and their identification. J Appl Physiol. 1982. 53(2): p. 463–9.Google Scholar
  73. 73.
    Muller, S.A., et al, Efficacy of adhesion prevention and impact on wound healing of intraperitoneal phospholipids. J Surg Res. 2001. 96(1): p. 68–74.CrossRefGoogle Scholar
  74. 74.
    Muller, S.A., et al, Influence of intraperitoneal phospholipid dosage on adhesion formation and wound healing at different intervals after surgery. Langenbecks Arch Surg. 2001. 386(4): p. 278–84.CrossRefGoogle Scholar
  75. 75.
    Treutner, K.H., et al, Prevention of postoperative adhesions by single intraperitoneal medication. J Surg Res. 1995. 59(6): p. 764–71.CrossRefGoogle Scholar
  76. 76.
    Baxter, ADEPT Instructions for Use: Deerfield, IL.Google Scholar
  77. 77.
    Verco, S.J., et al, Development of a novel glucose polymer solution (icodextrin) for adhesion prevention: pre-clinical studies. Hum Reprod. 2000. 15(8): p. 1764–72.CrossRefGoogle Scholar
  78. 78.
    Hosie, K., et al, Fluid dynamics in man of an intraperitoneal drug delivery solution: 4% icodextrin. Drug Delivery. 2001. 8(1): p. 9–12.CrossRefGoogle Scholar
  79. 79.
    Menzies, D., et al, Use of icodextrin 4% solution in the prevention of adhesion formation following general surgery: from the multicentre ARIEL Registry. Ann R Coll Surg Engl. 2006. 88(4): p. 375–82.CrossRefGoogle Scholar
  80. 80.
    van den Tol, P., et al, Icodextrin reduces postoperative adhesion formation in rats without affecting peritoneal metastasis. Surgery. 2005. 137(3): p. 348–54.CrossRefGoogle Scholar
  81. 81.
    Brown, C.B., et al, Adept (icodextrin 4% solution) reduces adhesions after laparoscopic surgery for adhesiolysis: a double-blind, randomized, controlled study. Fertil Steril. 2007. 88(5): p. 1413–26.CrossRefGoogle Scholar
  82. 82.
    Wallwiener, M., et al, Innovative barriers for peritoneal adhesion prevention: liquid or solid? A rat uterine horn model. Fertil Steril. 2006. 86(Suppl 4): p. 1266–76.CrossRefGoogle Scholar
  83. 83.
    Krsko, P., and M. Libera, Biointeractive hydrogels. Materials Today. 2005. 8(12): p. 36–44.CrossRefGoogle Scholar
  84. 84.
    Hildebrand, H.F., et al, Surface coatings for biological activation and functionalization of medical devices. Surface and Coatings Technology. 2006. 200(22–23): p. 6318–24.CrossRefGoogle Scholar
  85. 85.
    Lundorff, P., et al, Clinical evaluation of a viscoelastic gel for reduction of adhesions following gynaecological surgery by laparoscopy in Europe. Hum Reprod. 2005. 20(2): p. 514–20.CrossRefGoogle Scholar
  86. 86.
    Nehez, L., et al, Prevention of postoperative peritoneal adhesions: effects of lysozyme, polylysine and polyglutamate versus hyaluronic acid. Scand J Gastroenterol. 2005. 40(9): p. 1118–23.CrossRefGoogle Scholar
  87. 87.
    Nehez, L., et al, Differently charged polypeptides in the prevention of post-surgical peritoneal adhesions. Scand J Gastroenterol. 2007. 42(4): p. 519–23.CrossRefGoogle Scholar
  88. 88.
    Kapadia, M.R., D.A. Popowich, and M.R. Kibbe, Modified prosthetic vascular conduits. Circulation. 2008. 117(14): p. 1873–82.CrossRefGoogle Scholar
  89. 89.
    Adam, D.J., et al, Antiplatelet and anticoagulant therapy to prevent bypass graft thrombosis in patients with lower extremity arterial occlusive disease. Int Angiol. 2001. 20(1): p. 90–8.Google Scholar
  90. 90.
    Kenny, D.A., et al, Experimental comparison of the thrombogenicity of fibrin and PTFE flow surfaces. Ann Surg. 1980. 191(3): p. 355–61.CrossRefGoogle Scholar
  91. 91.
    Patel, M., et al, Experimental evaluation of ten clinically used arterial prostheses. Ann Vasc Surg. 1992. 6(3): p. 244–51.CrossRefGoogle Scholar
  92. 92.
    Harris, E.S., R.F. Morgan, and G.T. Rodeheaver, Analysis of the kinetics of peritoneal adhesion formation in the rat and evaluation of potential antiadhesive agents. Surgery. 1995. 117(6): p. 663–9.CrossRefGoogle Scholar
  93. 93.
    Hellebrekers, B.W., et al, Effects of five different barrier materials on postsurgical adhesion formation in the rat. Hum Reprod. 2000. 15(6): p. 1358–63.CrossRefGoogle Scholar
  94. 94.
    Montz, F.J., B.J. Monk, and S.M. Lacy, The Gore-Tex Surgical Membrane: effectiveness as a barrier to inhibit postradical pelvic surgery adhesions in a porcine model. Gynecol Oncol. 1992. 45(3): p. 290–3.CrossRefGoogle Scholar
  95. 95.
    Haney, A.F., and E. Doty, A barrier composed of chemically cross-linked hyaluronic acid (Incert) reduces postoperative adhesion formation. Fertil Steril. 1998. 70(1): p. 145–51.CrossRefGoogle Scholar
  96. 96.
    Himeda, Y., et al, Application of biocompatible gel of hyaluronic acid in adhesion prevention. J Gynecol Surg. 2004. 20(2): p. 39–46.CrossRefGoogle Scholar
  97. 97.
    Stuart, M., Breaking the surgical adhesion barrier. Start-Up. 2005. (April): p. 16–22.Google Scholar
  98. 98.
    Ferland, R., D. Mulani, and P.K. Campbell, Evaluation of a sprayable polyethylene glycol adhesion barrier in a porcine efficacy model. Hum Reprod. 2001. 16(12): p. 2718–23.CrossRefGoogle Scholar
  99. 99.
    Dunn, R., et al, Evaluation of the SprayGel adhesion barrier in the rat cecum abrasion and rabbit uterine horn adhesion models. Fertil Steril. 2001. 75(2): p. 411–6.CrossRefGoogle Scholar
  100. 100.
    Rodgers, K., et al, Evaluation of polyethylene glycol/polylactic acid films in the prevention of adhesions in the rabbit adhesion formation and reformation sidewall models. Fertil Steril. 1998. 69(3): p. 403–8.CrossRefGoogle Scholar
  101. 101.
    Zeng, Q., et al, Efficacy and safety of Seprafilm for preventing postoperative abdominal adhesion: systematic review and meta-analysis. World J Surg. 2007. 31(11): p. 2125–31; discussion 2132.CrossRefGoogle Scholar
  102. 102.
    Shinohara, T., et al, A simple and novel technique for the placement of antiadhesive membrane in laparoscopic surgery. Surg Laparosc Endosc Percutan Tech. 2008. 18(2): p. 188–91.CrossRefGoogle Scholar
  103. 103.
    Mettler, L., et al, A randomized, prospective, controlled, multicenter clinical trial of a sprayable, site-specific adhesion barrier system in patients undergoing myomectomy. Fertil Steril. 2004. 82(2): p. 398–404.CrossRefGoogle Scholar
  104. 104.
    Jackson, J.K., et al, Paclitaxel-loaded crosslinked hyaluronic acid films for the prevention of postsurgical adhesions. Pharm Res. 2002. 19(4): p. 411–7.CrossRefGoogle Scholar
  105. 105.
    Yagmurlu, A., et al, Reduction of surgery-induced peritoneal adhesions by continuous release of streptokinase from a drug delivery system. Eur Surg Res. 2003. 35(1): p. 46–9.CrossRefGoogle Scholar
  106. 106.
    Yeo, Y., et al, Prevention of peritoneal adhesions with an in situ cross-linkable hyaluronan hydrogel delivering budesonide. J Control Release. 2007. 120(3): p. 178–85.CrossRefGoogle Scholar
  107. 107.
    Leach, R.E., et al, Reduction of postsurgical adhesion formation in the rabbit uterine horn model with use of hyaluronate/carboxymethylcellulose gel. Fertil Steril. 1998. 69(3): p. 415–8.CrossRefGoogle Scholar
  108. 108.
    Cheung, M., et al., Development of a Swine Model for the Evaluation of Novel Compounds in the Prevention of Pelvic Adhesions. In ISPE Great Lakes Chapter Meeting, 2008, Chicago, IL.Google Scholar
  109. 109.
    Medley, J.M., et al., In vitro, QCM-D evaluation of diblock copolymers for the rational design of self-forming postsurgical adhesion barriers. Biomacromolecules (under review).Google Scholar
  110. 110.
    Jaiswal, A., Introduction to Data Analysis. In Q-Sense Users Meeting, 2007, Stanford, CA.Google Scholar
  111. 111.
    Sauerbrey, G., Zeitschrift für Physik. 1959. 155: p. 206.CrossRefGoogle Scholar
  112. 112.
    Moreira, H., Jr, et al, Use of bioresorbable membrane (sodium hyaluronate + carboxymethylcellulose) after controlled bowel injuries in a rabbit model. Dis Colon Rectum. 2000. 43(2): p. 182–7.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • John M. Medley
    • 1
  • Thomas D. Dziubla
    • 1
  1. 1.Department of Chemical and Materials EngineeringUniversity of KentuckyLexingtonUSA

Personalised recommendations