Advertisement

Investigating Protein Adsorption via Spectroscopic Ellipsometry

  • Maria F. Mora
  • Jennifer L. Wehmeyer
  • Ron Synowicki
  • Carlos D. Garcia
Chapter

Abstract

In this chapter, the basic concepts behind ellipsometry and spectroscopic ellipsometry are discussed along with some instrument details. Ellipsometry is an optical technique that measures changes in the reflectance and phase difference between the parallel (R P) and perpendicular (R S) components of a polarized light beam upon reflection from a surface. Aside from providing a simple, sensitive, and nondestructive way to analyze thin films, ellipsometry allows dynamic studies of film growth (thickness and optical constants) with a time resolution that is relevant to biomedical research. The present chapter intends to introduce ellipsometry as an emerging but highly promising technique, that is useful to elucidate the interactions of proteins with solid surfaces. In this regard, particular emphasis is placed on experimental details related to the development of biomedically relevant conjugated surfaces. Results from our group related to adsorption of proteins to nanostructured materials, as well as results published by other research groups, are discussed to illustrate the advantages and limitations of the technique.

Keywords

Optical Constant Optical Model Spectroscopic Ellipsometry Severe Acute Respiratory Syndrome Protein Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations and Symbols

Γ

Adsorbed amount

\({\rm d}\Gamma /{\rm dt}\)

Adsorption rate

D

Phase difference

λ

Wavelength

ψ

Amplitude

AFM

Atomic force microscopy

BSA

Bovine serum albumin

CNT

Carbon nanotubes

d

Thickness

DAAO

d-amino acid oxidase

DC

Direct current

DNA

Deoxyribonucleic acid

EMA

Effective medium approximation

Fib

Fibrinogen

HSA

Human serum albumin

IEP

Isoelectric point

k

Extinction coefficient

n

Refractive index

RP

Parallel component of polarized light beam

RS

Perpendicular component of polarized light beam

SDS

Sodium dodecyl sulfate

SE

Spectroscopic ellipsometry

t

Time

Notes

Acknowledgments

The authors would like to thank the Southwest Research Institute for proving access to their atomic force microscope. Financial support for this project was provided in part by The University of Texas at San Antonio, the National Institute of General Medical Sciences (NIGMS)/National Institutes of Health (1SC3GM081085), and the Morrison Trust.

References

  1. 1.
    Nakanishi K, Sakiyama T, Imamura K. On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon. J. Biosci. Bioeng. 2001;91:233–244.Google Scholar
  2. 2.
    Lynch I, Dawson KA. Protein-nanoparticle interactions. Nano Today 2008;3:40–47.Google Scholar
  3. 3.
    Cheng M-D. Effects of nanophase materials (<20 nm) on biological responses. J. Environ. Sci. Health 2005;39:2691–2705.Google Scholar
  4. 4.
    Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J. Biomed. Mater. Res. 2000;51:475–483.Google Scholar
  5. 5.
    Cheng F-Y, Wang SP-H, Su C-H, Tsai T-L, Wu P-C, Shieh D-B, et al Stabilizer-free poly(lactide-co-glycolide) nanoparticles for multimodal biomedical probes. Biomaterials 2008;29:2104–2112.Google Scholar
  6. 6.
    Chung Y-C, Chen IH, Chen C-J. The surface modification of silver nanoparticles by phosphoryl disulfides for improved biocompatibility and intracellular uptake. Biomaterials 2008;29:1807–1816.Google Scholar
  7. 7.
    Deng C, Chen J, Chen X, Xiao C, Nie L, Yao S. Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode. Biosens. Bioelectron. 2008;23:1272–1277.Google Scholar
  8. 8.
    Engel E, Michiardi A, Navarro M, Lacroix D, Planell JA. Nanotechnology in regenerative medicine: the materials side. Trends Biotechnol. 2008;26:39–47.Google Scholar
  9. 9.
    Liu H, Webster TJ. Nanomedicine for implants: a review of studies and necessary experimental tools. Biomaterials 2007;28:354–369.Google Scholar
  10. 10.
    Norde W. Driving forces for protein adsorption at solid surfaces. In: Malmsten M, (ed.) Biopolymers at Interfaces. New York: Marcel Dekker; 2003.Google Scholar
  11. 11.
    Norde W. My voyage of discovery to proteins in flatland and beyond. Colloids Surf. B Biointerfaces 2008;61:1–9.Google Scholar
  12. 12.
    Larsericsdotter H, Oscarsson S, Buijs J. Thermodynamic analysis of lysozyme adsorbed to silica. J. Colloid Interface Sci. 2004;276:261–268.Google Scholar
  13. 13.
    Giacomelli CE, Norde W. The adsorption-desorption cycle. Reversibility of the BSA-Silica system. J. Colloid Interface Sci. 2001;233:234–240.Google Scholar
  14. 14.
    Norde W, Zoungrana T. Surface-induced changes in the structure and activity of enzyme physically immobilized at solid/liquid interfaces. Biotechnol. Appl. Biochem. 1998;28:133–143.Google Scholar
  15. 15.
    Giacomelli CE, Norde W. Structural changes in proteins resulting from homomolecular exchange at solid surfaces. In: Hubbard AT, (ed.) Encyclopedia of Surface and Colloid Science. New York: Marcel Dekker; 2003.Google Scholar
  16. 16.
    van der Veen M, Stuart MC, Norde W. Spreading of proteins and its effect on adsorption and desorption kinetics. Colloids Surf. B Biointerfaces 2007;54:136–142.Google Scholar
  17. 17.
    Bernabeu P, Tamisier L, De Cesare A, Caprani A. Study of the adsorption of albumin on a platinum rotating disk electrode using impedance measurements. Electrochim. Acta 1988;33:1129–1136.Google Scholar
  18. 18.
    Zhang Y, Fung Y, Sun H, Zhu D, Yao S. Study of protein adsorption on polymer coatings surface by combining quartz crystal microbalance with electrochemical impedance methods. Sens. Actuators B Chem 2005;108:933–942Google Scholar
  19. 19.
    Gray JJ. The interaction of proteins with solid surfaces. Curr. Opin. Struct. Biol. 2004;14:110–115.Google Scholar
  20. 20.
    Sapsford KE, Ligler FS. Real-time analysis of protein adsorption to a variety of thin films. Biosens. Bioelectron. 2004;19:1045–1055.Google Scholar
  21. 21.
    Baszkim A, Norde W, (eds.). Physical Chemistry of Biological Interfaces. New York, NY: Marcel Dekker; 2000.Google Scholar
  22. 22.
    Griesser HJ, Kingshott P, McArthur SL, McLean KM, Kinsel GR, Timmons RBRB. Surface-MALDI mass spectrometry in biomaterials research. Biomaterials 2004;25:4861–4875.Google Scholar
  23. 23.
    Yang K, Sun Y. Optics-intrinsic double-circle phenomenon in protein adsorption visualized by confocal laser scanning microscopy. Biochem. Eng. J. 2008;39:258–266.Google Scholar
  24. 24.
    Lu JR, Zhao X, Yaseen M. Protein adsorption studied by neutron reflection. Curr. Opin. Colloid Interface Sci. 2007;12:9–16.Google Scholar
  25. 25.
    Reich Z, Kapon R, Nevo R, Pilpel Y, Zmora S, Scolnik Y. Scanning force microscopy in the applied biological sciences. Biotechnol. Adv. 2001;19:451–485.Google Scholar
  26. 26.
    Teichroeb JH, Forrest JA, Jones LW, Chan J, Dalton K. Quartz crystal microbalance study of protein adsorption kinetics on poly(2-hydroxyethyl methacrylate). J. Colloid Interface Sci. 2008;325:157–164.Google Scholar
  27. 27.
    Dolatshahi-Pirouz A, Rechendorff K, Hovgaard MB, Foss M, Chevallier J, Besenbacher F. Bovine serum albumin adsorption on nano-rough platinum surfaces studied by QCM-D. Colloids Surf. B Biointerfaces 2008;66:53–59.Google Scholar
  28. 28.
    Wertz CF, Santore MM. Adsorption and relaxation kinetics of albumin and fibrinogen on hydrophobic surfaces: single-species and competitive behavior. Langmuir 1999;15:8884–8894.Google Scholar
  29. 29.
    Wertz CF, Santore MM. Effect of surface hydrophobicity on adsorption and relaxation kinetics of albumin and fibrinogen: single-species and competitive behavior. Langmuir 2001;17:3006–3016.Google Scholar
  30. 30.
    Righetti PG, Gelfi C, Verzola B, Castelletti L. The state of the art of dynamic coatings. Electrophoresis 2001;22:603–611.Google Scholar
  31. 31.
    Verzola B, Gelfi C, Righetti PG. Quantitative studies on the adsorption of proteins to the bare silica wall in capillary electrophoresis: II. Effects of adsorbed, neutral polymers on quenching the interaction. J. Chromatogr. A 2000;874:293.Google Scholar
  32. 32.
    Castelletti L, Verzola B, Gelfi C, Stoyanov A, Righetti PG. Quantitative studies on the adsorption of proteins to the bare silica wall in capillary electrophoresis: III: effects of adsorbed surfactants on quenching the interaction. J. Chromatogr. A 2000;894:281–289.Google Scholar
  33. 33.
    Olivier JC, Taverna M, Vauthier C, Couvreur P, Baylocq-Ferrier D. Capillary electrophoresis monitoring of the competitive adsorption of albumin onto the orosomucoid-coated polyisobutylcyanoacrylate nanoparticles. Electrophoresis 1994;15:234–239.Google Scholar
  34. 34.
    Fujiwara H. Spectroscopic Ellipsometry. Principles and Applications. West Sussex, England: Wiley; 2007.Google Scholar
  35. 35.
    Arwin H. Spectroscopic ellipsometry and biology: recent developments and challenges. Thin Solid Films 1998;313–314:764–774.Google Scholar
  36. 36.
    Höök F, Vörös J, Rodahl M, Kurrat R, Böni P, Ramsden JJ, et al A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation. Colloids Surf. B 2002;24:155–170.Google Scholar
  37. 37.
    Pak HK, LawBM. 2D imaging ellipsometric microscope. Rev. Sci. Instrum. 1995;66:4972–4976.Google Scholar
  38. 38.
    Jin G, Jansson R, Arwin H. Imaging ellipsometry revisited: developments for visualization of thin transparent layers on silicon substrates. Rev. Sci. Instrum. 1996;67:2930.Google Scholar
  39. 39.
    Linke F, Merkel R. Ellipsometric microscopy: developments towards biophysics. IEE Proc Nanobiotechnol 2004;151:95.Google Scholar
  40. 40.
    Linke F, Merkel R. Quantitative ellipsometric microscopy at the silicon–air interface. Rev. Sci. Instrum. 2005;76:063701.Google Scholar
  41. 41.
    Tompkins HG. A User’s Guide to Ellipsometry. San Diego, CA: Academic Press; 1993.Google Scholar
  42. 42.
    Greef R. Ellipsometry in electrochemistry: a spectrum of applications. Thin Solid Films 1993;233:32–39.Google Scholar
  43. 43.
    Aspnes DE. Expanding horizons: new developments in ellipsometry and polarimetry. Thin Solid Films 2004;455–456:3–13.Google Scholar
  44. 44.
    Tompkins HG, Irene EA, (eds.). Handbook of Ellipsometry. Norwich, NY: W’ Andrew; 2005.Google Scholar
  45. 45.
    Spaeth K, Brecht A, Gauglitz G. Studies on the biotin-avidin multilayer adsorption by spectroscopic ellipsometry. J. Colloid Interface Sci. 1997;196:128–135.Google Scholar
  46. 46.
    Karlsson LM, Schubert M, Ashkenov N, Arwin H. Protein adsorption in porous silicon gradients monitored by spatially-resolved spectroscopic ellipsometry. Thin Solid Films 2004;455–456:726–730.Google Scholar
  47. 47.
    Poksinski M, Arwin H. Protein monolayers monitored by internal reflection ellipsometry. Thin Solid Films 2004;455–456:716–721.Google Scholar
  48. 48.
    Feller L, Bearinger JP, Wu L, Hubbell JA, Textor M, Tosatti S. Micropatterning of gold substrates based on poly(propylene sulfide-bl-ethylene glycol), (PPS-PEG) background passivation and the molecular-assembly patterning by lift-off (MAPL) technique. Surf. Sci. 2008;602:2305–2310.Google Scholar
  49. 49.
    Goyal DK, Pribil GK, Woollam JA, Subramanian A. Detection of ultrathin biological films using vacuum ultraviolet spectroscopic ellipsometry. Mater. Sci. Eng. B 2008;149:26–33.Google Scholar
  50. 50.
    Nabok AV, Tsargorodskaya A, Holloway A, Starodub NF, Gojster O. Registration of T-2 mycotoxin with total internal reflection ellipsometry and QCM impedance methods. Biosens. Bioelectron. 2007;22:885–890.Google Scholar
  51. 51.
    Aroulmoji V, Aguié-Béghin V, Mathlouthi M, Douillard R. Effect of sucrose on the properties of caffeine adsorption layers at the air/solution interface. J. Colloid Interface Sci. 2004;276:269–276.Google Scholar
  52. 52.
    Nabok AV, Tsargorodskaya A, Hassan AK, Starodub NF. Total internal reflection ellipsometry and SPR detection of low molecular weight environmental toxins. Appl. Surf. Sci. 2005;246:381–386.Google Scholar
  53. 53.
    Logothetidis S, Gioti M, Lousinian S, Fotiadou S. Haemocompatibility studies on carbon-based thin films by ellipsometry. Thin Solid Films 2005;482:126–132.Google Scholar
  54. 54.
    Liu Y, Li Z, He Z, Chen D, Pan S. Structure and blood compatibility of tetrahedral amorphous hydrogenated carbon formed by a magnetic-field-filter plasma stream. Surf. Coat. Technol. 2007;201:6851–6856.Google Scholar
  55. 55.
    Lousinian S, Logothetidis S. Optical properties of proteins and protein adsorption study. Microelectron. Eng. 2007;84:479–485.Google Scholar
  56. 56.
    Lousinian S, Logothetidis S, Laskarakis A, Gioti M. Haemocompatibility of amorphous hydrogenated carbon thin films, optical properties and adsorption mechanisms of blood plasma proteins. Biomol. Eng. 2007;24:107–112.Google Scholar
  57. 57.
    Lousinian S, Kassavetis S, Logothetidis S. Surface and temperature effect on fibrinogen adsorption to amorphous hydrogenated carbon thin films. Diamond Relat. Mater. 2007;16:1868–1874.Google Scholar
  58. 58.
    Keuren JFW, Wielders SJH, Willems GM, Morra M, Cahalan L, Cahalan P, et al Thrombogenicity of polysaccharide-coated surfaces. Biomaterials 2003;24:1917–1924.Google Scholar
  59. 59.
    Arwin H. Ellipsometry on thin organic layers of biological interest: characterization and applications. Thin Solid Films 2000;377–378:48–56.Google Scholar
  60. 60.
    Russev SC, Arguirov TV, Gurkov TD. β-Casein adsorption kinetics on air-water and oil-water interfaces studied by ellipsometry. Colloids Surf. B 2000;19:89–100.Google Scholar
  61. 61.
    Bae YM, Oh B-K, Lee W, Lee WH, Choi J-W. Study on orientation of immunoglobulin G on protein G layer. Biosens. Bioelectron. 2005;21:103–110.Google Scholar
  62. 62.
    Vinnichenko M, Gago R, Huang N, Leng YX, Sun H, Kreissig U, et al Spectroscopic ellipsometry investigation of amorphous carbon films with different sp3 content: relation with protein adsorption. Thin Solid Films 2004;455–456:530–534.Google Scholar
  63. 63.
    Karlsson LM, Tengvall P, Lundström I, Arwin H. Penetration and loading of human serum albumin in porous silicon layers with different pore sizes and thicknesses. J. Colloid Interface Sci. 2003;266:40–47.Google Scholar
  64. 64.
    Tsargorodskaya A, Nabok AV, Ray AK. Ellipsometric study of the adsorption of bovine serum albumin into porous silicon. Nanotechnology 2004;15:703–709.Google Scholar
  65. 65.
    De Feijter JA, Benjamins J, Veer FA. Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air-water interface. Biopolymers 1978;17:1759–1772.Google Scholar
  66. 66.
    Lassen B, Malmsten M. Competitive protein adsorption studied with TIRF and ellipsometry. J. Colloid Interface Sci. 1996;179:470–477.Google Scholar
  67. 67.
    Kurrat R, Prenosil JE, Ramsden JJ. Kinetics of human and bovine serum albumin adsorption at silica-titania surfaces. J. Colloid Interface Sci. 1997;185:1–8.Google Scholar
  68. 68.
    Giacomelli CE, Esplandiu MJ, Ortiz PI, Avena MJ, De Pauli CP. Ellipsometric study of bovine serum albumin adsorbed onto Ti/TiO2 electrodes. J. Colloid Interface Sci. 1999;218:404–411.Google Scholar
  69. 69.
    Vinnichenko M, Gago R, Huang N, Leng YX, Sun H, Kreissig U, et al. Spectroscopic ellipsometry investigation of amorphous carbon films with different sp3 content: relation with protein adsorption. Thin Solid Films 2004;455–456:530–534.Google Scholar
  70. 70.
    Foose LL, Blanch HW, Radke CJ. Immobilized protein films for assessing surface proteolysis kinetics. J. Biotechnol. 2007;132:32–37.Google Scholar
  71. 71.
    Brétagnol F, Kylián O, Hasiwa M, Ceriotti L, Rauscher H, Ceccone G, et al Micro-patterned surfaces based on plasma modification of PEO-like coating for biological applications. Sens. Actuators B 2007;123:283–292.Google Scholar
  72. 72.
    Riquelme BD, Valverde JR, Rasia RJ. Kinetic study of antibody adhesion on a silicon wafer by laser reflectometry. Optic. Laser Eng. 2003;39:589–598.Google Scholar
  73. 73.
    Elgersma AV, Zsom RLJ, Lyklema J, Norde W. Kinetics of single and competitive protein adsorption studied by reflectometry and streaming potential measurements. Colloids Surf. A 1992;65:17–28.Google Scholar
  74. 74.
    Valenti LE, Fiorito PA, Garcia CD, Giacomelli CE. The adsorption-desorption process of bovine serum albumin on carbon nanotubes. J. Colloid Interface Sci. 2007;307:349–356.Google Scholar
  75. 75.
    de Vos WM, Biesheuvel PM, de Keizer A, Kleijn JM, Cohen Stuart MA. Adsorption of the protein bovine serum albumin in a planar poly(acrylic acid) brush layer as measured by optical reflectometry. Langmuir 2008;24:6575–6584.Google Scholar
  76. 76.
    Hofs B, Brzozowska A, de Keizer A, Norde W, Cohen Stuart MA. Reduction of protein adsorption to a solid surface by a coating composed of polymeric micelles with a glass-like core. J. Colloid Interface Sci. 2008;325:309–315.Google Scholar
  77. 77.
    Atkin R, Craig VS, Wanless EJ, Biggs S. The influence of chain length and electrolyte on the adsorption kinetics of cationic surfactants at the silica-aqueous solution interface. J. Colloid Interface Sci. 2003;266:236–244.Google Scholar
  78. 78.
    Dijt JC, Stuart MAC, Fleer GJ. Reflectometry as a tool for adsorption studies. Adv. Colloid Interface Sci. 1994;50:79–101.Google Scholar
  79. 79.
    Yu Y, Jin G. Influence of electrostatic interaction on fibrinogen adsorption on gold studied by imaging ellipsometry combined with electrochemical methods. J. Colloid Interface Sci. 2005;283:477–481.Google Scholar
  80. 80.
    Logothetidis S. Haemocompatibility of carbon based thin films. Diamond Relat. Mater. 2007;16:1847–1857.Google Scholar
  81. 81.
    Cardenas M, Arnebrant T, Rennie A, Fragneto G, Thomas RK, Lindh L. Human saliva forms a complex film structure on alumina surfaces. Biomacromolecules 2007;8:65–69.Google Scholar
  82. 82.
    Vinnichenko M, Chevolleau T, Pham MT, Poperenko L, Maitz MF. Spectroellipsometric, AFM and XPS probing of stainless steel surfaces subjected to biological influences. Appl. Surf. Sci. 2002;201:41–50.Google Scholar
  83. 83.
    Advincula M, Fan X, Lemons J, Advincula R. Surface modification of surface sol-gel derived titanium oxide films by self-assembled monolayers (SAMs) and non-specific protein adsorption studies. Colloids Surf. B 2005;42:29–43.Google Scholar
  84. 84.
    Jihua Y, David SW, Keith CG, McQuillan AJ. Electronic states and photoexcitation processes of titanium dioxide nanoparticle films dip coated from aqueous Degussa P25 photocatalyst suspension. J. Appl. Phys. 2007;101:023714.Google Scholar
  85. 85.
    Besra L, Liu M. A review on fundamentals and applications of electrophoretic deposition (EPD). Prog. Mater Sci. 2007;52:1–61.Google Scholar
  86. 86.
    Vahlas C, Caussat B, Serp P, Angelopoulos GN. Principles and applications of CVD powder technology. Mater. Sci. Eng. R 2006;53:1–72.Google Scholar
  87. 87.
    Tanemura S, Miao L, Wunderlich W, Tanemura M, Mori Y, Toh S, et al. Fabrication and characterization of anatase/rutile-TiO2 thin films by magnetron sputtering: a review. Sci. Technol. Adv. Mater. 2005;6:11–17.Google Scholar
  88. 88.
    Losurdo M, Bruno G, Irene EA. Anisotropy of optical properties of conjugated polymer thin films by spectroscopic ellipsometry. J. Appl. Phys. 2003;94:4923–4929.Google Scholar
  89. 89.
    Winfield JM, Donley CL, Ji-Seon K. Anisotropic optical constants of electroluminescent conjugated polymer thin films determined by variable-angle spectroscopic ellipsometry. J. Appl. Phys. 2007;102:063505.Google Scholar
  90. 90.
    Styrkas DA, Keddie JL, Lu JR, Su TJ, Zhdan PA. Structure of self-assembled layers on silicon: combined use of spectroscopic variable angle ellipsometry, neutron reflection, and atomic force microscopy. J. Appl. Phys. 1999;85:868.Google Scholar
  91. 91.
    Lecourt B, Blaudez D, Turlet JM. Anisotropy in Langmuir–Blodgett films studied by generalized spectroscopic ellipsometry. Thin Solid Films 1998;313–314:790–794.Google Scholar
  92. 92.
    Fan Q, McQuillin B, Ray AK, Turner ML, Seddon AB. High density, non-porous anatase titania thin films for device applications. J. Phys. D Appl. Phys. 2000;33:2683–2686.Google Scholar
  93. 93.
    Biju KP, Jain MK. Sol-gel derived TiO2:ZrO2 multilayer thin films for humidity sensing application. Sens. Actuators B 2008;128:407–413.Google Scholar
  94. 94.
    Radha G, Ashok K. Bioactive materials for biomedical applications using sol-gel technology. Biomed. Mater. 2008:034005.Google Scholar
  95. 95.
    Jung HY, Jung SM, Suh JS. Horizontally aligned single-walled carbon nanotube field emitters fabricated on vertically aligned multi-walled carbon nanotube electrode arrays. Carbon 2008;46:1345–1349.Google Scholar
  96. 96.
    Barnes TM, van de Lagemaat J, Levi D, Rumbles G, Coutts TJ, Weeks CL, et al Optical characterization of highly conductive single-wall carbon-nanotube transparent electrodes. Phys. Rev. B 2007;75:23541001–2354110.Google Scholar
  97. 97.
    Elim HI, Ji W, Ma GH, Lim KY, Sow CH, Huan CHA. Ultrafast absorptive and refractive nonlinearities in multi-walled carbon nanotube film. Appl. Phys. Lett. 2004;85:1799–1801.Google Scholar
  98. 98.
    Fanchini G, Miller S, Parekh BB, Chhowalla M. Optical anisotropy in single-walled carbon nanotube thin films: implications for transparent and conducting electrodes in organic photovoltaics. Nano Lett. 2008;8:2176–2179.Google Scholar
  99. 99.
    Wakita K, Abe K, Shim Y, Mamedov N. Spectroscopic ellipsometry of powdered CuInS2 with nanowires. Thin Solid Films 2006;499:285–288.Google Scholar
  100. 100.
    Gilliot M, En Naciri A, Johann L, d’Orleans C, Muller D, Stoquert JP, et al Application of spectroscopic ellipsometry to the investigation of the optical properties of cobalt-nanostructured silica thin layers. Appl. Surf. Sci. 2006;253:389–394.Google Scholar
  101. 101.
    Bhat RR, Genzer J. Using spectroscopic ellipsometry for quick prediction of number density of nanoparticles bound to non-transparent solid surfaces. Surf. Sci. 2005;596:187–196.Google Scholar
  102. 102.
    Losurdo M. Relationships among surface processing at the nanometer scale, nanostructure and optical properties of thin oxide films. Thin Solid Films 2004;455–456:301–312.Google Scholar
  103. 103.
    Takeda Y, Plaksin OA, Wang H, Kishimoto N. Optical nonlinearity of Au nanoparticles fabricated by negative ion implantation. Nucl. Instrum. Methods Phys. Res. B 2007;257:47–50.Google Scholar
  104. 104.
    Mora MF, Giacomelli CE, Garcia CD. Interaction of D-amino acid oxidase to carbon nanotubes: implications in the design of biosensors. Anal. Chem. 2009;81:1016–1022.Google Scholar
  105. 105.
    Williams DF. On the mechanisms of biocompatibility. Biomaterials 2008;29:2941–2953.Google Scholar
  106. 106.
    Giacomelli CE, Avena MJ, De Pauli CP. Adsorption of bovine serum albumin onto TiO2 particles. J. Colloid Interface Sci. 1997;188:387–395.Google Scholar
  107. 107.
    Sousa SR, Bras MM, Moradas-Ferreira P, Barbosa MA. Dynamics of fibronectin adsorption on TiO2 surfaces. Langmuir 2007;23:7046–7054.Google Scholar
  108. 108.
    Aubin-Tam ME, Hamad-Schifferli K. Structure and function of nanoparticle–protein conjugates. Biomed. Mater. 2008:034001.Google Scholar
  109. 109.
    McClellan SJ, Franses EI. Exclusion of bovine serum albumin from the air/water interface by sodium myristate. Colloids Surf. B 2003;30:1–11.Google Scholar
  110. 110.
    Kang F, Singh J. Conformational stability of a model protein (bovine serum albumin) during primary emulsification process of PLGA microspheres synthesis. Int. J. Pharm. 2003;260:149–156.Google Scholar
  111. 111.
    Aleksic M, Pease CK, Basketter DA, Panico M, Morris HR, Dell A. Investigating protein haptenation mechanisms of skin sensitisers using human serum albumin as a model protein. Toxicol. In Vitro 2007;21:723–733.Google Scholar
  112. 112.
    Boonsongrit Y, Abe H, Sato K, Naito M, Yoshimura M, Ichikawa H, et al Controlled release of bovine serum albumin from hydroxyapatite microspheres for protein delivery system. Mater. Sci. Eng. B 2008;148:162–165.Google Scholar
  113. 113.
    Wehmeyer J, Bizios R, Garcia CD. Adsorption of BSA to nanostructured TiO2. 2008:submitted.Google Scholar
  114. 114.
    van der Veen M, Norde W, Stuart MC. Electrostatic interactions in protein adsorption probed by comparing lysozyme and succinylated lysozyme. Colloids Surf. B Biointerfaces 2004;35:33–40.Google Scholar
  115. 115.
    Haynes CA, Norde W. Globular proteins at solid/liquid interfaces. Colloids Surf. B Biointerfaces 1994;2:517–566.Google Scholar
  116. 116.
    D’Orazio P. Biosensors in clinical chemistry. Clin. Chim. Acta 2003;334:41–69.Google Scholar
  117. 117.
    Alaejos MS, Garcia Montelongo FJ. Application of amperometric biosensors to the determination of vitamins and alpha-amino acids. Chem. Rev. 2004;104:3239–3266.Google Scholar
  118. 118.
    Wang J. Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens. Bioelectron. 2006;21:1887–1892.Google Scholar
  119. 119.
    Rogers KR. Recent advances in biosensor techniques for environmental monitoring. Anal. Chim. Acta 2006;568:222–231.Google Scholar
  120. 120.
    Gooding JJ. Biosensor technology for detecting biological warfare agents: recent progress and future trends. Anal. Chim. Acta 2006;559:137–151.Google Scholar
  121. 121.
    Gómez-Hens A, Fernández-Romero JM, Aguilar-Caballos MP. Nanostructures as analytical tools in bioassays. Trends Anal. Chem. 2008;27:394–406.Google Scholar
  122. 122.
    Cai C, Chen J. Direct electron transfer of glucose oxidase promoted by carbon nanotubes. Anal. Biochem. 2004;332:75–83.Google Scholar
  123. 123.
    Zhang M, Smith A, Gorski W. Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Anal. Chem. 2004;76:5045–50.Google Scholar
  124. 124.
    Lenihan JS, Gavalas VG, Wang J, Andrews R, Bachas LG. Protein immobilization on carbon nanotubes through a molecular adapter. J. Nanosci. Nanotechnol. 2004;4:600–604.Google Scholar
  125. 125.
    Lin Y, Taylor S, Li H, Fernando KAS, Qu L, Wang W, et al Advances toward bioapplications of carbon nanotubes. J. Mater. Chem. 2004;14:527–541.Google Scholar
  126. 126.
    Liu Y, Qu X, Guo H, Chen H, Liu B, Dong S. Facile preparation of amperometric laccase biosensor with multifunction based on the matrix of carbon nanotubes-chitosan composite. Biosens. Bioelectron. 2006;21:2195–2201.Google Scholar
  127. 127.
    Qi H, Zhang C, Li X. Amperometric third-generation hydrogen peroxide biosensor incorporating multiwall carbon nanotubes and hemoglobin. Sens. Actuators B 2006;114:364–370.Google Scholar
  128. 128.
    Weber J, Kumar A, Kumar A, Bhansali S. Novel lactate and pH biosensor for skin and sweat analysis based on single walled carbon nanotubes. Sens. Actuators B 2006;117:308–313.Google Scholar
  129. 129.
    Zhang M, Gorski W. Electrochemical sensing based on redox mediation at carbon nanotubes. Anal. Chem. 2005;77:3960–3965.Google Scholar
  130. 130.
    Sánchez S, Roldán M, Pérez S, Fàbregas E. Toward a fast, easy, and versatile immobilization of biomolecules into carbon nanotube/polysulfone-based biosensors for the detection of hCG hormone. Anal. Chem. 2008;80:6508–6514.Google Scholar
  131. 131.
    Eggins BR. Sensing elements. In: Eggins BR, (ed.) Chemical Sensors and Biosensors. West Sussex, England: Wiley; 2002. pp. 98–106.Google Scholar
  132. 132.
    Krajewska B. Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme Microb. Technol. 2004;35:126–139.Google Scholar
  133. 133.
    López MS-P, López-Cabarcos E, López-Ruiz B. Organic phase enzyme electrodes. Biomol. Eng. 2006;23:135–147.Google Scholar
  134. 134.
    Mizutani H, Miyahara I, Hirotsu K, Nishina Y, Shiga K, Setoyama C, et al. Three-dimensional structure of porcine kidney D-amino acid oxidase at 3.0 A resolution. J. Biochem. 1996;120:14–17.Google Scholar
  135. 135.
    Yagi K, Ohishi N. Structure and function of D-amino acid oxidase – IV. Electrophoretic and ultracentrifugal approach to the monomer equilibrium. J. Biochem. 1972;71:993–998.Google Scholar
  136. 136.
    Tishkov VI, Khoronenkova SV. D-amino acid oxidase: structure, catalytic mechanism, and practical application. Biochemistry 2005;70:40–54.Google Scholar
  137. 137.
    Tessema M, Larsson T, Buttler T, Csoregi E, Ruzgas T, Nordling M, et al Simultaneous amperometric determination of some mono-, di-, and oligosaccharides in flow injection and liquid chromatography using two working enzyme electrodes with different selectivity. Anal. Chim. Acta 1997;349:179–188.Google Scholar
  138. 138.
    Wang J, Chen G. Microchip capillary electrophoresis with electrochemical detector for fast measurements of aromatic amino acids. Talanta 2003;60:1239–1244.Google Scholar
  139. 139.
    Nagata Y, Akino T, Ohno K, Kataoka Y, Ueda T, Sakurai T, et al Free D-amino acids in human plasma in relation to senescence and renal diseases. Clin. Sci. 1987;73:105–8.Google Scholar
  140. 140.
    D’Aniello A, D’Onofrio G, Pischetola M, D’Aniello G, Vetere A, Petrucelli L, et al Biological role of D-amino acid oxidase and D-aspartate oxidase. Effects of D-amino acids. J. Biol. Chem. 1993;268:26941–26949.Google Scholar
  141. 141.
    Hall D, Gogos JA, Karayiorgou M. The contribution of three strong candidate schizophrenia susceptibility genes in demographically distinct populations. Genes Brain Behav. 2004;3:240–248.Google Scholar
  142. 142.
    Quan Z, Song Y, Feng Y, LeBlanc MH, Liu Y-M. Detection of D-serine in neural samples by saccharide enhanced chiral capillary electrophoresis. Anal. Chim. Acta 2005;528:101–106.Google Scholar
  143. 143.
    Hamase K, Morikawa A, Zaitsu K. Amino acids in mammals and their diagnostic value. J. Chromatogr. B 2002;781:73–91.Google Scholar
  144. 144.
    Pilone MS, Pollegioni L. D-amino acid oxidase as an industrial biocatalyst. Biocatal. Biotransform. 2002;20:145–159.Google Scholar
  145. 145.
    Betancor L, Hidalgo A, Fernandez-Lorente G, Mateo C, Rodriguez V, Fuentes M, et al Use of physicochemical tools to determine the choice of optimal enzyme: stabilization of D-amino acid oxidase. Biotechnol. Prog. 2003;19:784–748.Google Scholar
  146. 146.
    Fernandez-Lafuente R, Rodriguez V, Mateo C, Fernandez-Lorente G, Arminsen P, Sabuquillo P, et al Stabilization of enzymes (-amino acid oxidase) against hydrogen peroxide via immobilization and post-immobilization techniques. J. Mol. Catal., B Enzym. 1999;7:173–179.Google Scholar
  147. 147.
    Duran N, Rosa MA, Annibale A, Gianfreda L. Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review. Enzyme Microb. Technol. 2002;31:907–931.Google Scholar
  148. 148.
    Rivas GA, Rubianes MD, Rodríguez MC, Ferreyra NF, Luque GL, Pedano ML, et al Carbon nanotubes for electrochemical biosensing. Talanta 2007;74:291–307.Google Scholar
  149. 149.
    Karajanagi SS, Vertegel AA, Kane RS, Dordick JS. Structure and function of enzymes adsorbed onto single-walled carbon nanotubes. Langmuir 2004;20:11594–11599.Google Scholar
  150. 150.
    Schulz B, Chan D, Bäckström J, Rübhausen M. Spectroscopic ellipsometry on biological materials – investigation of hydration dynamics and structural properties. Thin Solid Films 2004;455–456:731–734.Google Scholar
  151. 151.
    Danny C, Benjamin S, Kathrin G, Heike Hedwig M, Michael R. In vivo spectroscopic ellipsometry measurements on human skin. J. Biomed. Opt. 2007;12:014023.Google Scholar
  152. 152.
    Santos O, Kosoric J, Hector MP, Anderson P, Lindh L. Adsorption behavior of statherin and a statherin peptide onto hydroxyapatite and silica surfaces by in situ ellipsometry. J. Colloid Interface Sci. 2008;318:175–182.Google Scholar
  153. 153.
    Arwin H. Is ellipsometry suitable for sensor applications? Sens. Actuators A 2001;92:43–51.Google Scholar
  154. 154.
    Demirel G, Çaglayan MO, Garipcan B, Piskin E. A novel DNA biosensor based on ellipsometry. Surf. Sci. 2008;602:952–959.Google Scholar
  155. 155.
    Nabok A, Tsargorodskaya A, Davis F, Higson SPJ. The study of genomic DNA adsorption and subsequent interactions using total internal reflection ellipsometry. Biosens. Bioelectron. 2007;23:377–383.Google Scholar
  156. 156.
    Wenmackers S, Pop SD, Roodenko K, Vermeeren V, Williams OA, Daenen M, et al Structural and optical properties of DNA layers covalently attached to diamond surfaces. Langmuir 2008;24:7269–7277.Google Scholar
  157. 157.
    Cristofolini L, Berzina T, Erokhin V, Tenti M, Fontana MP, Erokhina S, et al The structure of DNA-containing complexes suggests the idea for a new adaptive sensor. Colloids Surf. A 2008;321:158–162.Google Scholar
  158. 158.
    Carlsson J, Winquist F, Danielsson B, Lundström I. Biosensor discrimination of meat juice from various animals using a lectin panel and ellipsometry. Anal. Chim. Acta 2005;547:229–236.Google Scholar
  159. 159.
    Jin G, Tengvall P, Lundström I, Arwin H. A biosensor concept based on imaging ellipsometry for visualization of biomolecular interactions. Anal. Biochem. 1995;232:69–72.Google Scholar
  160. 160.
    van Noort D, Rumberg J, Jager EWH, Mandenius CF. Silicon based affinity biochips viewed with imaging ellipsometry. Meas. Sci. Technol. 2000;11:801–808.Google Scholar
  161. 161.
    Bae YM, Oh B-K, Lee W, Lee WH, Choi J-W. Immunosensor for detection of Legionella pneumophila based on imaging ellipsometry. Mater. Sci. Eng. C 2004;24:61–64.Google Scholar
  162. 162.
    Bae YM, Park K-W, Oh B-K, Lee WH, Choi J-W. Immunosensor for detection of Salmonella typhimurium based on imaging ellipsometry. Colloids Surf. A 2005;257–258:19–23.Google Scholar
  163. 163.
    Bae YM, Oh BK, Lee W, Lee WH, Choi JW. Immunosensor for detection of Yersinia enterocolitica based on imaging ellipsometry. Anal. Chem. 2004;76:1799–1803.Google Scholar
  164. 164.
    Marinkova D, Bivolarska M, Ahtapodov L, Yotova L, Mateva R, Velinov T. Plasmon microscopy and imaging ellipsometry of Artrobacter oxydans attached on polymer films. Colloids Surf. A 2008;65:276–280.Google Scholar
  165. 165.
    Pereira EMA, Sierakowski MR, Jó TA, Moreira RA, Monteiro-Moreira ACO, França RFO, et al Lectins and/or xyloglucans/alginate layers as supports for immobilization of dengue virus particles. Colloids Surf. B 2008;66:45–52.Google Scholar
  166. 166.
    Wang Z, Jin G. Feasibility of protein A for the oriented immobilization of immunoglobulin on silicon surface for a biosensor with imaging ellipsometry. J. Biochem. Biophys. Methods 2003;57:203–211.Google Scholar
  167. 167.
    Qi C, Duan J-Z, Wang Z-H, Chen Y-Y, Zhang P-H, Zhan L, et al Investigation of interaction between two neutralizing monoclonal antibodies and SARS virus using biosensor based on imaging ellipsometry. Biomed. Microdevices 2006;8:247–253.Google Scholar
  168. 168.
    Wang Z-H, Jin G. Silicon surface modification with a mixed silanes layer to immobilize proteins for biosensor with imaging ellipsometry. Colloids Surf. B 2004;34:173–177.Google Scholar
  169. 169.
    Schuy S, Faiss S, Yoder NC, Kalsani V, Kumar K, Janshoff A, et al Structure and Thermotropic phase Behavior of Fluorinated Phospholipid Bilayers: A combined Attenuated Total Reflection FTIR Spectroscopy and Imaging Ellipsometry Study. J. Phys. Chem. B Biointerfaces 2008;112:8250–8256.Google Scholar
  170. 170.
    Srivatsa V, Neil B, Yanming Z, Russell C. Evanescent-imaging-ellipsometry-based microarray reader. J. Biomed. Opt. 2006;11:014028.Google Scholar
  171. 171.
    Beyerlein D, Kratzmüller T, Eichhorn KJ. Study of novel polymer architectures on solid surfaces by variable angle spectroscopic and imaging ellipsometry. Vib. Spectrosc 2002;29:223–227.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Maria F. Mora
    • 1
  • Jennifer L. Wehmeyer
    • 2
  • Ron Synowicki
    • 3
  • Carlos D. Garcia
    • 1
  1. 1.Department of ChemistryThe University of Texas at San AntonioSan AntonioUSA
  2. 2.Department of Biomedical EngineeringThe University of Texas at San AntonioSan AntonioUSA
  3. 3.J. A. Woollam Co., IncLincolnUSA

Personalised recommendations