Collagen I-Coated Titanium Surfaces for Bone Implantation

  • Marco Morra
  • Clara Cassinelli
  • Giovanna Cascardo
  • Daniele Bollati


Biological interactions at the tissue/implant material interface can be modulated by surface-linked cell-signalling biological molecules. Collagen type I, the main extracellular matrix protein of bone tissue, has been widely investigated in biomolecular surface modification of bone-contacting titanium implant devices. Literature reports on the biological effects of collagen-based coatings are, however, often contradictory. From a biomolecular surface-engineering perspective, a possible explanation is that the definition “collagen-coated surface” encompasses widely different molecular and supramolecular structures: adsorbed collagen, covalently linked collagen, crosslinked collagen, fibrillar versus monomeric collagen, and many other variation of this theme. Relevant details are not always described and proper surface characterization is often lacking. This chapter attempts to build up a rational frame of reference to describe surface modification of implant devices by collagen type I from a surface chemistry point of view, as well as to discuss relevant implications for process design.


Surface Density Collagen Fibril Titanium Surface Collagen Molecule Collagen Coating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



atomic force microscopy


arginine –glycine –aspartic acid


biochemical modification of titanium surfaces




double acid etched


extracellular matrix










phosphate-buffered saline


platelet-derived growth factor


periodontal ligament


poly(ethylene glycol)


arginine–glycine–aspartic acid


real-time polymerase chain reaction




titanium/aluminum/vanadium alloy


time-of-flight static secondary ion mass spectroscopy


ultra-high vacuum


X-ray photoelectron spectroscopy



Most of this work was performed under the program “Coating bioattivi per dispositivi a contatto con osso” Legge 598/94 art. 11 – Ricerca, Regione Piemonte.

The significant contribution of Dr. Eng. Ilaria Cannella to the analytical work (which was part of her thesis work) is acknowledged.


  1. 1.
    Davies JE, Ed, The bone-biomaterial interface, Toronto, University of Toronto Press, 1991Google Scholar
  2. 2.
    Davies JE, Ed, Bone Engineering, Toronto, Em Squared, 2000Google Scholar
  3. 3.
    Brunette DM, Tengvall P, Textor M, Thomsen P, Eds, Titanium in Medicine, Berlin, Springer, 2001Google Scholar
  4. 4.
    Ellingsen JE, Lyngstadaas SP, Eds, Bio-Implant Interface, CRC, Boca Raton, 2003Google Scholar
  5. 5.
    Cunningham BW, Basic scientific considerations in total disc arthroplasty, Spine J, 2004;4:219S–230SCrossRefGoogle Scholar
  6. 6.
    Rupp F, Scheideler L, Olshanska N, de Wild M, Wieland M, Geis-Gerstorfer J, Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces, J Biomed Mater Res, 2006;76A:323–334CrossRefGoogle Scholar
  7. 7.
    Cooper LF, Zhou Y, Takebe J, Guo J, Abron A, Holmen A, Ellingsen JE, Fluoride modification effects on osteoblast behavior and bone formation at TiO2 grit-blasted c.p. titanium endosseous implants, Biomaterials, 2006;27:926–936CrossRefGoogle Scholar
  8. 8.
    Puleo DA, Nanci A, Understanding and controlling the bone-implant interface, Biomaterials, 1999;20:2311–2321CrossRefGoogle Scholar
  9. 9.
    Lebaron RG, Athanasiou KA, Extracellular matrix cell adhesion peptides: functional applications in orthopedic materials, Tissue Eng, 2000;6:85–104CrossRefGoogle Scholar
  10. 10.
    Jikko A, Harris SE, Chen D, Mendrick DL, Damsky CH, Collagen integrin receptors regulate early osteoblast differentiation induced by BMP-2, J Bone Miner Res, 1999;14:1075–1083CrossRefGoogle Scholar
  11. 11.
    Mizuno M, Fujisawa R, Kuboki Y, Type I collagen-induced osteoblastic differentiation of bone-marrow cells mediated by collagen-alpha2beta1 integrin interaction, J Cell Physiol, 2000;184:207–213CrossRefGoogle Scholar
  12. 12.
    Salasznyk RM, Williams WA, Boskey A, Batorsky A, Plopper GE, Adhesion to vitronectin and collagen I promotes osteogenic differentiation of human mesenchymal stem cells, J Biomed Biotechnol, 2004;1:24–34CrossRefGoogle Scholar
  13. 13.
    Sampath TK, Reddi AH, Dissociative extraction and reconstitution of extracellular matrix components involved in local bone differentiation, Proc Natl Acad Sci U S A 1981;78:7599–7603CrossRefGoogle Scholar
  14. 14.
    Heemskerk JWM, Wust WMJ, Feijge MAH, Reutelingsperger CMP, Lindhout T, Collagen but not fibrinogen surfaces induce bleb formation, exposure of phosphatidylserine, and procoagulant activity of adherent platelets: evidence for regulation by protein tyrosine kinase-dependent Ca2 + responses, Blood, 1997;90:2615–2625Google Scholar
  15. 15.
    Park JY, Gemmell CH, Davies JE, Platelet interactions with titanium, modulation of platelet activity by surface topography, Biomaterials, 2000;22:2671–2682CrossRefGoogle Scholar
  16. 16.
    Davies JE, Housseini MM, Histodynamics of endosseous wound healing. In: Davies JE, Ed, Bone Engineering, Toronto, Em Squared, 2000;1–14Google Scholar
  17. 17.
    Gemmell CH, Park JY, Initial blood interactions with endosseous implant materials. In: Davies JE, Ed, Bone Engineering, Toronto, Em Squared, 2000;108–117Google Scholar
  18. 18.
    Panduranga Rao K, Recent developments of collagen based biomaterials for medical applications and drug delivery systems, J Biomater Sci Polym Ed, 1995;7:623–645CrossRefGoogle Scholar
  19. 19.
    Gungormus M, Kaya O, Evaluation of the effect of heterologous type I collagen on healing of bone defects, J Oral Maxillofac Surg, 2002;60:541–545CrossRefGoogle Scholar
  20. 20.
    Somorjai G, Biointerfaces: The Grand Challenge of Molecular Surface Chemistry, invited talk at the 25th Anniversary of NESAC/BIO, University of Washington, Seattle, WA, August 24–27, 2008Google Scholar
  21. 21.
    Lowenberg BF, Pilliar RM, Aubin JE, Sodek J, Melcher AH, Cell attachment of human gingival fibroblasts in vitro to porous-surfaced titanium alloy discs coated with collagen and platelet-derived growth factor, Biomaterials, 1988;9:302–309CrossRefGoogle Scholar
  22. 22.
    Matsumura K, Hyon SH, Nakajima N, Peng C, Tsutsumi S, Surface modification of poly(ethylene-co-vinyl alcohol) (EVA). Part I. Introduction of carboxyl groups and immobilization of collagen, J Biomed Mater Res, 2000;50:512–517CrossRefGoogle Scholar
  23. 23.
    Peng C, Tsutsumi S, Matsumura K, Nakajima N, Hyon SH, Morphologic study and syntheses of type I collagen and fibronectin of human periodontal ligament cells cultured on poly(ethylene-co-vinyl alcohol) (EVA) with collagen immobilization, J Biomed Mater Res, 2001;54:241–246CrossRefGoogle Scholar
  24. 24.
    Matsumura K, Hyon SH, Nakajima N, Peng C, Iwata H, Tsutsumi S, Adhesion between poly(ethylene-co-vinyl alcohol) (EVA) and titanium, J Biomed Mater Res, 2002;60:309–315CrossRefGoogle Scholar
  25. 25.
    Geissler U, Hempel U, Wolf C, Scharnweber D, Worch H, Wenzel K, Collagen type I-coating of Ti6Al4V promotes adhesion of osteoblasts, J Biomed Mater Res, 2000;51:752–760CrossRefGoogle Scholar
  26. 26.
    Baier RE, Meyer AE, Future directions in surface preparation of dental implants, J Dent Ed, 1988;52:788–791Google Scholar
  27. 27.
    Cassinelli C, Morra M, Bruzzone G, Carpi A, Di Santi G, Giardino R, Fini M, Surface chemistry effects of topography modification of titanium dental implants surfaces: 1. In vitro experiments, Int J Oral Maxillofacial Implants, 2003;18:45–62Google Scholar
  28. 28.
    Morra M, Cassinelli C, Cascardo G, Bollati D, Rodriguez Y, Baena R, Multifunctional implant surfaces: surface characterization and bone response to acid-etched Ti implants surface-modified by fibrillar collagen I, J Biomed Mater Res, A, submittedGoogle Scholar
  29. 29.
    Boyan BD, Lossdörfer S, Wang L, Zhao G, Lohmann CH, Cochran DL, Schwartz Z, Osteoblasts generate an osteogenic microenvironment when grown on surfaces with rough microtopographies, Eur Cell Mater, 2003;6:22–27Google Scholar
  30. 30.
    Nagai M, Hayakawa T, Fukatsu A, Yamamoto M, Fukumoto M, Nagahama F, Mishima H, Yoshinari M, Nemoto K, Kato T, In vitro study of collagen coating of titanium implants for initial cell attachment, Dent Mater J, 2002;21:250–260CrossRefGoogle Scholar
  31. 31.
    Roehlecke C, Witt M, Kasper M, Schulze E, Wolf C, Hofer A, Funk RW, Synergistic effect of titanium alloy and collagen type I on cell adhesion, proliferation and differentiation of osteoblast-like cells, Cells Tissues Organs, 2001;168:178–187CrossRefGoogle Scholar
  32. 32.
    Becker D, Geissler U, Hempel U, Bierbaum S, Scharnweber D, Worch H, Wenzel KW, Proliferation and differentiation of rat calvarial osteoblasts on type I collagen-coated titanium alloy, J Biomed Mater Res, 2002;59:516–527CrossRefGoogle Scholar
  33. 33.
    Van den Dolder J, Bancroft GN, Sikavitsas VI, Spauwen PH, Mikos AG, Jansen JA, Effect of fibronectin- and collagen I-coated titanium fiber mesh on proliferation and differentiation of osteogenic cells, Tissue Eng, 2003;9:505–515CrossRefGoogle Scholar
  34. 34.
    Bierbaum S, Beutner R, Hanke T, Scharnweber D, Hempel U, Worch H, Modification of Ti6Al4V surfaces using collagen I, III, characteristics of the adsorbed matrix, J Biomed Mater Res A, 2003;67:421–430CrossRefGoogle Scholar
  35. 35.
    Bierbaum S, Hempel U, Geissler U, Hanke T, Scharnweber D, Wenzel KW, Wenzel KW, Modification of Ti6AL4V surfaces using collagen I, III, and fibronectin. II. Influence on osteoblast responses, J Biomed Mater Res A, 2003;67:431–438CrossRefGoogle Scholar
  36. 36.
    Kim HW, Li LH, Lee EJ, Lee SH, Kim HE, Fibrillar assembly and stability of collagen coating on titanium for improved osteoblast responses, J Biomed Mater Res A, 2005;75:629–638Google Scholar
  37. 37.
    Müller R, Abke J, Schnell E, Macionczyk F, Gbureck U, Mehrl R, Ruszczak Z, Kujat R, Englert C, Nerlich M, Angele P, Surface engineering of stainless steel materials by covalent collagen immobilization to improve implant biocompatibility, Biomaterials, 2005;26:6962–6972CrossRefGoogle Scholar
  38. 38.
    Müller R, Abke J, Schnell E, Scharnweber D, Kujat R, Englert C, Taheri D, Nerlich M, Angele P, Influence of surface pretreatment of titanium- and cobalt-based biomaterials on covalent immobilization of fibrillar collagen, Biomaterials, 2006;27:4059–4068CrossRefGoogle Scholar
  39. 39.
    Douglas T, Heinemann S, Hempel U, Mietrach C, Knieb C, Bierbaum S, Scharnweber D, Worch H, Characterization of collagen II fibrils containing biglycan and their effect as a coating on osteoblast adhesion and proliferation, J Mater Sci Mater Med, 2008;19:1653–1660CrossRefGoogle Scholar
  40. 40.
    Douglas T, Hempel U, Mietrach C, Viola M, Vigetti D, Heinemann S, Bierbaum S, Scharnweber D, Worch H, Influence of collagen-fibril-based coatings containing decorin and biglycan on osteoblast behavior, J Biomed Mater Res A, 2008;84:805–816Google Scholar
  41. 41.
    Douglas T, Heinemann S, Mietrach C, Hempel U, Bierbaum S, Scharnweber D, Worch H, Interactions of collagen types I and II with chondroitin sulfates A-C and their effect on osteoblast adhesion, Biomacromolecules, 2007;8:1085–1092CrossRefGoogle Scholar
  42. 42.
    Rammelt S, Schulze E, Wolf E, Scharnweber D, Holch M, Worch H, Zwipp H, Immunohistochemical characterization of the bone implant interface of collagen coated titanium pins in the undecalcified rat-tibia, Eur J Trauma, 2002;28:125–126Google Scholar
  43. 43.
    Rammelt S, Schulze E, Bernhardt R, Hanisch U, Scharnweber D, Worch H, Zwipp H, Biewener A, Coating of titanium implants with type-I collagen, J Orthop Res, 2004;22:1025–1034CrossRefGoogle Scholar
  44. 44.
    Morra M, Cassinelli C, Cascardo G, Cahalan P, Cahalan L, Fini M, Giardino R, Surface engineering of titanium by collagen immobilization. Surface characterization and in vitro and in vivo studies, Biomaterials, 2003;24:4639–4654CrossRefGoogle Scholar
  45. 45.
    Morra M, Cassinelli C, Meda L, Fini M, Giavaresi G, Giardino R, Surface analysis and effects on interfacial bone microhardness of collagen-coated titanium implants: a rabbit model, Int J Oral Maxillofac Implants, 2005;20:23–30Google Scholar
  46. 46.
    Morra M, Cassinelli C, Fini M, Giardino R, Enhanced osteointegration by biochemical surface modification: covalent linking of collagen I to intervertebral metal disk surface, Eur Cell Mater, 2005;10(suppl. 3):6Google Scholar
  47. 47.
    Morra M, Cassinelli C, Cascardo G, Mazzucco L, Borzini P, Fini M, Giavaresi G, Giardino R, Collagen I-coated porous titanium surfaces: mesenchymal cell adhesion and in vivo evaluation in trabecular bone implants, J Biomed Mater Res A, 2006;78:449–458Google Scholar
  48. 48.
    Schliephake H, Scharnweber D, Dard M, Sewing A, Aref A, Roessler S, Functionalization of dental implant surfaces using adhesion molecules, J Biomed Mater Res Part B Appl Biomater, 2005;73B:88–96CrossRefGoogle Scholar
  49. 49.
    Bernhardt R, van den Dolder J, Bierbaum S, Beutner R, Scharnweber D, Jansen J, Beckmann F, Worch H, Osteoconductive modifications of Ti-implants in a goat defect model: characterization of bone growth with SR μCT and histology, Biomaterials, 2005;26:3009–3019CrossRefGoogle Scholar
  50. 50.
    Rammelt S, Illert T, Bierbaum S, Scharnweber D, Zwipp H, Schneiders W, Coating of titanium implants with collagen, RGD peptide and chondroitin sulfate, Biomaterials, 2006;27:5561–5571CrossRefGoogle Scholar
  51. 51.
    Stadlinger B, Pilling E, Mai R, Bierbaum S, Berhardt R, Scharnweber D, Eckelt U, Effect of biological implant surface coatings on bone formation, applying collagen, proteoglycans, glycosaminoglycans and growth factors, J Mater Sci Mater Med, 2008;19:1043–1049CrossRefGoogle Scholar
  52. 52.
    Stadlinger B, Pilling E, Huhle M, Mai R, Bierbaum S, Scharnweber D, Kuhlisch E, Loukota R, Eckelt U, Evaluation of osseointegration of dental implants coated with collagen, chondroitin sulphate and BMP-4: an animal study, Int J Oral Maxillofac Surg, 2008;37:54–59CrossRefGoogle Scholar
  53. 53.
    Rammelt S, Heck C, Bernhardt R, Bierbaum S, Scharnweber D, Goebbels J, Ziegler J, Biewener A, Zwipp H, In vivo effects of coating loaded and unloaded Ti implants with collagen, chondroitin sulfate, and hydroxyapatite in the sheep tibia, J Orthop Res, 2007;25:1052–1061CrossRefGoogle Scholar
  54. 54.
    Stadlinger B, Pilling E, Huhle M, Mai R, Bierbaum S, Bernhardt R, Scharnweber D, Kuhlisch E, Hempel U, Eckelt U Influence of extracellular matrix coatings on implant stability and osseointegration: an animal study, J Biomed Mater Res B Appl Biomater, 2007;83:222–231Google Scholar
  55. 55.
    Svehla M, Morberg P, Bruce W, Walsh WR, No effect of a type I collagen gel coating in uncemented implant fixation, J Biomed Mater Res B Appl Biomater, 2005;74:423–428Google Scholar
  56. 56.
    Hay ED, Ed, Cell Biology of the Extracellular Matrix, 2nd edition, New York, Plenum, 1991Google Scholar
  57. 57.
    Brinckmann J, Notbohm H, Muller PK, Eds, Primer in structure, processing and assembly, In: Topics in Current Chemistry: Collagen, Berlin, Springer, 2005Google Scholar
  58. 58.
    Kadler KE, Holmes DF, Trotter JA, Chapman JA, Collagen fibril formation, Biochem J, 1996;316:1–11Google Scholar
  59. 59.
    Hodge AJ, In: Ramachandran GN, Ed, Treatise on Collagen, Vol. 1, New York, Academic, 1967;185:205–213Google Scholar
  60. 60.
    Gale M, Pollanen MS, Markiewicz P, Goh MC, Sequential assembly of collagen revealed by atomic force microscopy, Biophys J, 1995;68:2124CrossRefGoogle Scholar
  61. 61.
    Yamauchi M, Collagen Biochemistry: An Overview, New York, WSP, 2003;93–112Google Scholar
  62. 62.
    Birk DE, Bruckner P, Collagen suprastructures, In: Brinckmann J, Müller PK, Notbohm H, Eds, Topics in Current Chemistry: Collagen, Berlin, Springer, 2005; 245:185–206Google Scholar
  63. 63.
    Horbett TA, Principles underlying the role of adsorbed plasma-proteins in blood interactions with foreign materials, Cardiovasc Pathol, 1993;2:S137–S148CrossRefGoogle Scholar
  64. 64.
    Bergstrom K, Holmberg K, Safrani A, Hoffmann AS, Edgell MJ, Kozlowski A, Hovanes BA, Milton Harris J, Reduction of fibrinogen adsorption on PEG-coated polystyrene surfaces, J Biomed Mater Res, 1992;26:779–790CrossRefGoogle Scholar
  65. 65.
    Zhu Y, Chan-Park MB, Density quantification of collagen grafted on biodegradable polyester: its application to esophageal smooth muscle cell, Anal Biochem, 2007;363:119–127CrossRefGoogle Scholar
  66. 66.
    Cannella I, Sviluppo di un protocollo di caratterizzazione di un dispositivo da impianto in osso con modifica superficiale biomolecolare, Biomedical engineering thesis, Politecnico of Turin, 2008Google Scholar
  67. 67.
    Martin SM, Schwartz JL, Giachelli CM, Ratner BD, Enhancing the biological activity of immobilized osteopontin using a type-I collagen affinity coating, J Biomed Mater Res, 2004;70A:10–19CrossRefGoogle Scholar
  68. 68.
    Lhoest JB, Wagner MS, Tidwell CD, Castner DG, Characterization of adsorbed protein films by time of flight secondary ion mass spectrometry, J Biomed Mater Res, 2001;57:432–440CrossRefGoogle Scholar
  69. 69.
    Wagner MS, Castner DG, Characterization of adsorbed protein films by time of flight secondary ion mass spectrometry with principal component analysis, Langmuir, 2001;17:4649–4660CrossRefGoogle Scholar
  70. 70.
    Wagner MS, Tyler BG, Castner DG, Interpretation of static time of flight secondary ion mass spectra of adsorbed proteins films by multivariate pattern recognition, Anal Chem, 2002;74:1824–1835CrossRefGoogle Scholar
  71. 71.
    Fassett J, Tobolt D, Hansen LK, Type I, collagen structure regulates cell morphology and EGF signaling in primary rat hepatocytes through cAMP-dependent protein kinase A, Mol Biol Cell, 2006;17:345–356CrossRefGoogle Scholar
  72. 72.
    Henriet P, Zhong ZD, Brooks PC, Weinberg KI, DeClerck YA, Contact with fibrillar collagen inhibits melanoma cell proliferation by up-regulating p27KIP1, Proc Natl Acad Sci U S A, 2000;97:10026–10031CrossRefGoogle Scholar
  73. 73.
    Halliday NL, Tomasek JJ, Mechanical properties of the extracellular matrix influence fibronectin fibril assembly in vitro, Exp Cell Res, 1995;217:109–117CrossRefGoogle Scholar
  74. 74.
    Roskelley CD, Desprez PY, Bissell MJ, Extracellular matrix dependent tissue-specific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction, Proc Natl Acad Sci U S A 1994;91:12378–12382CrossRefGoogle Scholar
  75. 75.
    Morra M, Cassinelli C, Cascardo G, Bollati D, manuscript in preparationGoogle Scholar
  76. 76.
    Cheng SL, Yang JW, Rifas L, Zhang SF, Avioli LV, Differentiation of human bone marrow osteogenic stromal cells in vitro: induction of the osteoblast phenotype by dexamethasone, Endocrinology, 1994;134:277–286CrossRefGoogle Scholar
  77. 77.
    Freitas de Assis A, Beloti MM, Crippa GE, de Oliveira PT, Morra M, Luiz Rosa A, Development of osteoblastic phenotype in human alveolar bone-derived cells grown on collagen type I-coated titanium surface, Clin Oral Implant Res, submittedGoogle Scholar
  78. 78.
    Guo L, Kawazoe N, Hoshiba T, Tateishi T, Chen G, Zhang X, Osteogenic differentiation of human mesenchymal stem cells on chargeable polymer-modified surfaces, J Biomed Mater Res, Published Online: 28 Jan 2008Google Scholar
  79. 79.
    Ratner B, New ideas in biomaterials science – a path to engineered biomaterials, J Biomed Mater Res, 1993;27:837–850CrossRefGoogle Scholar
  80. 80.
    Morra M, Biomolecular modification of implant surfaces, Expert Rev Med Devices, 2007;4:361–372CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Marco Morra
    • 1
  • Clara Cassinelli
    • 1
  • Giovanna Cascardo
    • 1
  • Daniele Bollati
    • 1
  1. 1.Nobil Bio Ricerche s.r.lPortacomaroItaly

Personalised recommendations