Inflammatory Response to Implanted Nanostructured Materials

  • Kristy M. Ainslie
  • Rahul G. Thakar
  • Daniel A. Bernards
  • Tejal A. Desai


Nanostructured materials are implanted for dynamic application in therapies such as drug delivery, tissue engineering, biosensing, and imaging. The interaction between nanostructured materials and the tissues of the body can be used to alter cellular attachment and motility, detect analytes in vivo, and simulate tissue organization. These interactions may also lead to a variety of adverse immune responses, such as acute inflammation and fibrous encapsulation. Nanostructured surfaces have been shown to attenuate the acute inflammatory response of immune cells to a material, as well as change the normal encapsulation response that generally results in implants being quarantined by a wall of cells. Additionally, many of these novel materials improve the time course of wound healing in vivo. In general, nanostructured materials are equally or less immunogenic than a planar surface of the same material. However, much like the basis of material biocompatibility, further studies need to be completed on a per material basis to properly evaluate the inflammation potential of novel nanomaterials.


Nanostructured Material Danger Signal Electron Beam Lithography Nanostructured Surface Alumina Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



chemokine ligand 1


chemokine ligand 2


chemokine ligand 3


chemokine ligand 10


electron beam lithography


extracellular matrix


granulocyte-macrophage colony-stimulating factor


interleukin six


interleukin eight


macrophage inflammatory protein 1 alpha


macrophage inflammatory protein 1 beta


monocyte chemotactic protein-1


marrow stromal cells














regulated upon activation, normal T-cell expressed and secreted


reactive oxygen species


tumor necrosis factor alpha


transforming growth factor-beta


  1. 1.
    Yurchenco PD, Birk DE, Mecham RP, editors. Extracellular matrix assembly and structure. San Diego: Academic Press, Inc.; 1994.Google Scholar
  2. 2.
    Liu HA, Webster TJ. Nanomedicine for implants: A review of studies and necessary experimental tools. Biomaterials. 2007;28(2):354–69.CrossRefGoogle Scholar
  3. 3.
    Swan EEL, Popat KC, Grimes CA, Desai TA. Fabrication and evaluation of nanoporous alumina membranes for osteoblast culture. J Biomed Mater Res Part A. 2005;72A(3):288–95.CrossRefGoogle Scholar
  4. 4.
    Popat KC, Daniels RH, Dubrow RS, Hardev V, Desai TA. Nanostructured surfaces for bone biotemplating applications. J Orthop Res. 2006;24(4):619–27.CrossRefGoogle Scholar
  5. 5.
    Park GE, Pattison MA, Park K, Webster TJ. Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds. Biomaterials. 2005;26(16):3075–82.CrossRefGoogle Scholar
  6. 6.
    Patel S, Kurpinski K, Quigley R, Gao H, Hsiao BS, Poo MM, et al. Bioactive nanofibers: Synergistic effects of nanotopography and chemical signaling on cell guidance. Nano Lett. 2007;7(7):2122–28.CrossRefGoogle Scholar
  7. 7.
    Huang NF, Patel S, Thakar RG, Wu J, Hsiao BS, Chu B, et al. Myotube assembly on nanofibrous and micropatterned polymers. Nano Lett. 2006;6(3):537–42.CrossRefGoogle Scholar
  8. 8.
    Thapa A, Miller DC, Webster TJ, Haberstroh KM. Nano-structured polymers enhance bladder smooth muscle cell function. Biomaterials. 2003;24(17):2915–26.CrossRefGoogle Scholar
  9. 9.
    Lu J, Rao MP, MacDonald NC, Khang D, Webster TJ. Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features. Acta Biomaterialia. 2008;4(1):192–201.CrossRefGoogle Scholar
  10. 10.
    Anderson JM, Cook G, Costerton B, Hanson SR, Hensten-Pettersen A, Jacobsen N, et al. Host reactions to biomaterials and their evalulation. In: Ratner BD, Hoffmann AS, Schoen FJ, Lemons JE, editors. Biomaterials science. 2nd ed. San Francisco: Elsevier Academic; 2004.Google Scholar
  11. 11.
    Williams DF. General concepts of biocompatibility. In: Black J, Hastings G, editors. Handbook of biomaterial properties. New York: Chapman & Hall; 1998.Google Scholar
  12. 12.
    Matthews JA, Boland ED, Wnek GE, Simpson DG, Bowlin GL. Electrospinning of collagen type II: A feasibility study. J Bioactive and Compatible Polymers. 2003;18(2):125–34.CrossRefGoogle Scholar
  13. 13.
    Zong X, Bien H, Chung CY, Yin L, Fang D, Hsiao BS, et al. Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials. 2005;26(26):5330–38.CrossRefGoogle Scholar
  14. 14.
    Ainslie KM, Bachelder EM, Borkar S, Zahr AS, Sen A, Badding JV, et al. Cell adhesion on nanofibrous polytetrafluoroethylene (nPTFE). Langmuir. 2007; 23(2):747–54.CrossRefGoogle Scholar
  15. 15.
    Grimes CA. Synthesis and application of highly ordered arrays of TiO2 nanotubes. J Mater Chem. 2007;17(15):1451–57.CrossRefGoogle Scholar
  16. 16.
    Reimhult E, Kumar K, Knoll W. Fabrication of nanoporous silicon nitride and silicon oxide films of controlled size and porosity for combined electrochemical and waveguide measurements. Nanotechnology. 2007;18(27).Google Scholar
  17. 17.
    Jung M, Lee S, Jhon YM, Mho SI, Cho JW, Woo D. Nanohole arrays with sub-30 nm diameter formed on GaAs using nanoporous alumina mask. Jpn J Appl Phys Part 1. 2007;46(7A):4410–12.CrossRefGoogle Scholar
  18. 18.
    Sharma G, Pishko MV, Grimes CA. Fabrication of metallic nanowire arrays by electrodeposition into nanoporous alumina membranes: effect of barrier layer. J Mater Sci. 2007;42(13):4738–44.CrossRefGoogle Scholar
  19. 19.
    Ainslie KM, Sharma G, Dyer MA, Grimes CA, Pishko MV. Attenuation of protein adsorption on static and oscillating magnetostrictive nanowires. Nano Lett. 2005;5(9):1852–56.CrossRefGoogle Scholar
  20. 20.
    Sharma G, Grimes CA. Synthesis, characterization, and magnetic properties of FeCoNi ternary alloy nanowire arrays. J Mater Res. 2004;19(12):3695–703.CrossRefGoogle Scholar
  21. 21.
    Tao SL, Desai TA. Aligned arrays of biodegradable poly(epsilon-caprolactone) nanowires and nanofibers by template synthesis. Nano Lett. 2007;7(6):1463–68.CrossRefGoogle Scholar
  22. 22.
    Cheng J, Fortina P, Surrey S, Kricka LJ, Wilding P. Microchip-based devices for molecular diagnosis of genetic diseases. Mol Diagn. 1996;1(3):183–200.CrossRefGoogle Scholar
  23. 23.
    Flaim CJ, Chien S, Bhatia SN. An extracellular matrix microarray for probing cellular differentiation. Nat Methods. 2005;2(2):119–25.CrossRefGoogle Scholar
  24. 24.
    Hudson TJ, Stein LD, Gerety SS, Ma J, Castle AB, Silva J, et al. An STS-based map of the human genome. Science. 1995 22;270(5244):1945–54.CrossRefGoogle Scholar
  25. 25.
    Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol. 1996;14(13):1675–80.CrossRefGoogle Scholar
  26. 26.
    McIntyre PM. Microfabrication technology for DNA sequencing. Trends Biotechnol. 1996;14(3):69–73.CrossRefGoogle Scholar
  27. 27.
    Westin L, Xu X, Miller C, Wang L, Edman CF, Nerenberg M. Anchored multiplex amplification on a microelectronic chip array. Nat Biotechnol. 2000;18(2):199–204.CrossRefGoogle Scholar
  28. 28.
    Norman J, Desai T. Methods for fabrication of nanoscale topography for tissue engineering scaffolds. Ann Biomed Eng. 2006;34(1):89–101.CrossRefGoogle Scholar
  29. 29.
    Madou M. Fundamentals of microfabrication: The science of miniaturization. 2nd ed. New York, NY: CRC; 2002.Google Scholar
  30. 30.
    Lee H, Lee BP, Messersmith PB. A reversible wet/dry adhesive inspired by mussels and geckos. Nature 2007;448(7151):338–41.CrossRefGoogle Scholar
  31. 31.
    Seunarine K, Gadegaard N, Tormen M, O Meredith D, O Riehle M. Wilkinson CDW. 3D polymer scaffolds for tissue engineering. Nanomedicine. 2006;1(3):281–96.CrossRefGoogle Scholar
  32. 32.
    Sarkar S, Dadhania M, Rourke P, Desai TA, Wong JY. Vascular tissue engineering: Microtextured scaffold templates to control organization of vascular smooth muscle cells and extracellular matrix. Acta Biomaterialia. 2005;1(1):93–100.CrossRefGoogle Scholar
  33. 33.
    Sarkar S, Lee GY, Wong JY, Desai TA. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications. Biomaterials. 2006;27(27):4775–82.CrossRefGoogle Scholar
  34. 34.
    Ainslie KM, Desai TA. Lab Chip. 2008;8(11):1864–78.Google Scholar
  35. 35.
    Curtis AS, Gadegaard N, Dalby MJ, Riehle MO, Wilkinson CD, Aitchison G. Cells react to nanoscale order and symmetry in their surroundings. IEEE Trans Nanobioscience. 2004;3(1):61–5.CrossRefGoogle Scholar
  36. 36.
    Dalby MJ, Riehle MO, Sutherland DS, Agheli H, Curtis AS. Changes in fibroblast morphology in response to nano-columns produced by colloidal lithography. Biomaterials. 2004;25(23):5415–22.CrossRefGoogle Scholar
  37. 37.
    Gallagher JO, McGhee KF, Wilkinson CD, Riehle MO. Interaction of animal cells with ordered nanotopography. IEEE Trans Nanobioscience. 2002;1(1):24–8.CrossRefGoogle Scholar
  38. 38.
    Yim EK, Reano RM, Pang SW, Yee AF, Chen CS, Leong KW. Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials. 2005;26(26):5405–13.CrossRefGoogle Scholar
  39. 39.
    Cui Y, Wei Q, Park H, Lieber CM. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science. 2001;293(5533):1289–92.CrossRefGoogle Scholar
  40. 40.
    Lin H, Datar RH. Medical applications of nanotechnology. Natl Med J India. 2006;19(1):27–32.Google Scholar
  41. 41.
    Kim DHK, P.; Suh, KY, Choi SK, Lee SH, Kim B. Modulation of adhesion and growth of cardiac myocytes by surface nanotopography. 27th Annual International Conference of the Engineering in Medicine and Biology Society. 2005:4091–4.Google Scholar
  42. 42.
    Popat KC, Leoni L, Grimes CA, Desai TA. Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials. 2007;28(21):3188–97.CrossRefGoogle Scholar
  43. 43.
    Schindler M, Nur EKA, Ahmed I, Kamal J, Liu HY, Amor N, et al. Living in three dimensions: 3D nanostructured environments for cell culture and regenerative medicine. Cell Biochem Biophys. 2006;45(2):215–27.CrossRefGoogle Scholar
  44. 44.
    Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006;311(5761):622–7.CrossRefGoogle Scholar
  45. 45.
    Tsuji JS, Maynard AD, Howard PC, James JT, Lam CW, Warheit DB, et al. Research strategies for safety evaluation of nanomaterials, part IV: Risk assessment of nanoparticles. Toxicol Sci. 2006;89(1):42–50.CrossRefGoogle Scholar
  46. 46.
    Lam CW, James JT, McCluskey R, Arepalli S, Hunter RL. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol. 2006;36(3):189–217.CrossRefGoogle Scholar
  47. 47.
    Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 2006;6(8):1794–807.CrossRefGoogle Scholar
  48. 48.
    Inoue K, Takano H, Yanagisawa R, Sakurai M, Ichinose T, Sadakane K, et al. Effects of nano particles on antigen-related airway inflammation in mice. Respir Res. 2005;6.Google Scholar
  49. 49.
    Sayes CM, Wahi R, Kurian PA, Liu YP, West JL, Ausman KD, et al. Correlating nanoscale titania structure with toxicity: A cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci. 2006;92(1):174–85.CrossRefGoogle Scholar
  50. 50.
    Yamawaki H, Iwai N. Mechanisms underlying nano-sized air-pollution-mediated progression of atherosclerosis – Carbon black causes cytotoxic injury/inflammation and inhibits cell growth in vascular endothelial cells. Circ J. 2006;70(1):129–40.CrossRefGoogle Scholar
  51. 51.
    Paul WE. Fundamental immunology. 4th ed. New York: Raven; 1994.Google Scholar
  52. 52.
    Mitchell RN. Innate and adaptive immunity: The immune response to foreign material. In: Ratner BD, Hoffmann AS, Schoen FJ, Lemons JE, editors. Biomaterials science: An introduction to materials in medicine. 2nd ed. San Francisco: Elsevier; 2004.Google Scholar
  53. 53.
    Janeway C, Travers P, Walport M, Shlomchik M. Immunobiology. 5th ed. New York: Garland Science; 2001.Google Scholar
  54. 54.
    Anderson JM. Soft tissue response. In: Black J, Hastings G, editors. Handbook of biomaterial properties. New York: Chapman & Hall; 1998.Google Scholar
  55. 55.
    Tang L, Eaton JW. Natural responses to unnatural materials: A molecular mechanism for foreign body reactions. Mol Med. 1999;5(6):351–8.Google Scholar
  56. 56.
    Gallucci S, Lolkema M, Matzinger P. Natural adjuvants: endogenous activators of dendritic cells. Nat Med. 1999;5(11):1249–55.CrossRefGoogle Scholar
  57. 57.
    Champion JA, Mitragotri S. Role of target geometry in phagocytosis. Proc Natl Acad Sci U S A. 2006;103(13):4930–4.CrossRefGoogle Scholar
  58. 58.
    McNally AK, Anderson JM. Foreign body-type multinucleated giant cell formation is potently induced by alpha-tocopherol and prevented by the diacylglycerol kinase inhibitor R59022. Am J Pathol. 2003;163(3):1147–56.CrossRefGoogle Scholar
  59. 59.
    Padera RF, Colton CK. Time course of membrane microarchitecture-driven neovascularization. Biomaterials. 1996;17(3):277–84.CrossRefGoogle Scholar
  60. 60.
    BeruBe K, Balharry D, Sexton K, Koshy L, Jones T. Combustion-derived nanoparticles: Mechanisms of pulmonary toxicity. Clin Exp Pharmacol Physiol. 2007;34(10):1044–50.CrossRefGoogle Scholar
  61. 61.
    Dobrovolskaia MA, McNeil SE. Immunological properties of engineered nanomaterials. Nat Nanotechnol. 2007;2(8):469–78.CrossRefGoogle Scholar
  62. 62.
    Barlow PG, Clouter-Baker A, Donaldson K, Maccallum J, Stone V. Carbon black nanoparticles induce type II epithelial cells to release chemotaxins for alveolar macrophages. Part Fibre Toxicol. 2005;2:11.CrossRefGoogle Scholar
  63. 63.
    Davoren M, Herzog E, Casey A, Cottineau B, Chambers G, Byrne HJ, et al. In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicol In Vitro. 2007;21(3):438–48.CrossRefGoogle Scholar
  64. 64.
    Anderson JM, Defife K, McNally A, Collier T, Jenney C. Monocyte, macrophage and foreign body giant cell interactions with molecularly engineered surfaces. J Mater Sci Mater Med. 1999;10(10/11):579–88.CrossRefGoogle Scholar
  65. 65.
    Tanaka Y, Morishima I, Kikuchi K. Invasive micropapillary carcinomas arising 42 years after augmentation mammoplasty: A case report and literature review. World J Surg Oncol. 2008;6:33.CrossRefGoogle Scholar
  66. 66.
    Ainslie KM, Tao SL, Popat KC, Desai TA. In vitro immunogenicity of silicon based micro- and nano-structured surfaces. ACS Nano. 2008;2(5):1076–84.CrossRefGoogle Scholar
  67. 67.
    Karlsson M, Tang L. Surface morphology and adsorbed proteins affect phagocyte responses to nano-porous alumina. J Mater Sci Mater Med. 2006;17(11):1101–11.CrossRefGoogle Scholar
  68. 68.
    Ainslie KM, Tao SL, Popat KC, Daniels H, Hardev V, Grimes CA, Desai TA. J Biomed Mater Res A. 2008 5 [Epub ahead of print].Google Scholar
  69. 69.
    Giavaresi G, Tschon M, Daly JH, Liggat JJ, Sutherland DS, Agheli H, et al. In vitro and in vivo response to nanotopographically-modified surfaces of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and polycaprolactone. J Biomater Sci Polym Ed. 2006;17(12):1405–23.CrossRefGoogle Scholar
  70. 70.
    Cool SM, Kenny B, Wu A, Nurcombe V, Trau M, Cassady AI, et al. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) composite biomaterials for bone tissue regeneration: In vitro performance assessed by osteoblast proliferation, osteoclast adhesion and resorption, and macrophage proinflammatory response. J Biomed Mater Res A. 2007;82(3):599–610.Google Scholar
  71. 71.
    Dalby MJ, Gadegaard N, Herzyk P, Agheli H, Sutherland DS, Wilkinson CD. Group analysis of regulation of fibroblast genome on low-adhesion nanostructures. Biomaterials. 2007;28(10):1761–9.CrossRefGoogle Scholar
  72. 72.
    Bico J, Tordeux C, Quere D. Rough wetting. Europhys Lett. 2001;55(2):214–20.CrossRefGoogle Scholar
  73. 73.
    Dalby MJ, Marshall GE, Johnstone HJ, Affrossman S, Riehle MO. Interactions of human blood and tissue cell types with 95-nm-high nanotopography. IEEE Trans Nanobioscience. 2002;1(1):18–23.CrossRefGoogle Scholar
  74. 74.
    Ainslie KM, Bachelder EM, Sharma G, Grimes C, Pishko MV. Macrophage cell adhesion and inflammation cytokines on magnetostrictive nanowires. Nanotoxicology. 2007;1(4):279–90.CrossRefGoogle Scholar
  75. 75.
    Little MC, Gawkrodger DJ, MacNeil S. Chromium- and nickel-induced cytotoxicity in normal and transformed human keratinocytes: an investigation of pharmacological approaches to the prevention of Cr(VI)-induced cytotoxicity. Br J Dermatol. 1996;134(2):199–207.CrossRefGoogle Scholar
  76. 76.
    Wojciak-Stothard B, Curtis A, Monaghan W, MacDonald K, Wilkinson C. Guidance and activation of murine macrophages by nanometric scale topography. Exp Cell Res. 1996 15;223(2):426–35.Google Scholar
  77. 77.
    Peng CC, Yang MH, Chiu WT, Chiu CH, Yang CS, Chen YW, et al. Composite nano-titanium oxide-chitosan artificial skin exhibits strong wound-healing effect-an approach with anti-inflammatory and bactericidal kinetics. Macromol Biosci. 2008 9;8(4):316–27.Google Scholar
  78. 78.
    Areva S, Paldan H, Peltola T, Narhi T, Jokinen M, Linden M. Use of sol-gel-derived titania coating for direct soft tissue attachment. J Biomed Mater Res A. 2004;70(2):169–78.CrossRefGoogle Scholar
  79. 79.
    Champion JA, Katare YK, Mitragotri S. Particle shape: A new design parameter for micro- and nanoscale drug delivery carriers. J Control Release. 2007;121(1–2):3–9.CrossRefGoogle Scholar
  80. 80.
    Lemaire I, Yang H, Lafont V, Dornand J, Commes T, Cantin MF. Differential effects of macrophage- and granulocyte-macrophage colony-stimulating factors on cytokine gene expression during rat alveolar macrophage differentiation into multinucleated giant cells (MGC): Role for IL-6 in type 2 MGC formation. J Immunol. 1996;157(11):5118–25.Google Scholar
  81. 81.
    Desai TA, Chu WH, Tu JK, Beattie GM, Hayek A, Ferrari M. Microfabricated immunoisolating biocapsules. Biotechnol Bioeng. 1998;57(1):118–20.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Kristy M. Ainslie
    • 1
  • Rahul G. Thakar
    • 1
  • Daniel A. Bernards
    • 1
  • Tejal A. Desai
    • 1
  1. 1.Department of Physiology Division of BioengineeringUniversity of California–San FranciscoSan FranciscoUSA

Personalised recommendations