Protein and Cell Interactions with Nanophase Biomaterials

  • Courtney M. Creecy
  • David A. Puleo
  • Rena Bizios


This chapter provides an overview of current knowledge regarding protein and cell interactions with nanophase materials, that is, materials with feature sizes of less than 100 nm in (at least) one dimension. Nanophase biomaterials promote select and specific interactions with biomolecules and, subsequently, support enhanced mammalian cell functions pertinent to new tissue formation. Although some advances have been made in elucidating aspects of these processes, many questions regarding fundamental processes controlling protein and cell interactions with nanophase biomaterials remain unanswered. Advantages and limitations of these material formulations are highlighted in this chapter; challenges and needs for further research that will elucidate the cellular and molecular processes, as well as pertinent underlying mechanisms, are outlined. These issues must be addressed and resolved before the full potential and promise of these novel biomaterial formulations can be realized.


Ceramic Substrate Cadmium Selenide Osteoblast Adhesion Conventional Alumina Nanophase Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



carbon dioxide


Dulbecco’s modified Eagle medium


fetal bovine serum




phosphate-buffered saline


poly(l-lactic acid) PMMApoly(methyl methacrylate)


arginine–glycine–aspartic acid


  1. 1.
    Sniadecki N, Desai R, Ruiz S, Chen C. Nanotechnology for cell–substrate interactions. Annals of Biomedical Engineering. 2006;34(1):59–74.CrossRefGoogle Scholar
  2. 2.
    Siegel RW. Creating nanophase materials. Scientific American. 1996;275(6):74–79.CrossRefGoogle Scholar
  3. 3.
    Horbett T. Role of adsorbed proteins in tissue response to biomaterials. In: Ratner B, Hoffman A, Schoen A, Lemmons J, editors. Biomaterials Science: An Introduction to Materials in Medicine, 2nd ed. San Diego, CA: Elsevier Academic Press 2004. pp. 237–246.Google Scholar
  4. 4.
    Asuri P, Bale SS, Karajanagi SS, Kane RS. The protein-nanomaterial interface. Current Opinions in Biotechnology. 2006;17(6):562–568.CrossRefGoogle Scholar
  5. 5.
    Kane RS, Stroock AD. Nanobiotechnology: protein-nanomaterial interactions. Biotechnology Progress. 2007;23(2):316–319.CrossRefGoogle Scholar
  6. 6.
    Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. Journal of Biomedical Materials Research. 2000;51(3):475–483.CrossRefGoogle Scholar
  7. 7.
    Webster TJ, Schadler LS, Siegel RW, Bizios R. Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve vitronectin. Tissue Engineering. 2001;7(3):291–301.CrossRefGoogle Scholar
  8. 8.
    Andersson A-S, Olsson P, Lidberg U, Sutherland D. The effects of continuous and discontinuous groove edges on cell shape and alignment. Experimental Cell Research. 2003;288(1):177–188.CrossRefGoogle Scholar
  9. 9.
    Webster TJ, Siegel RW, Bizios R. Osteoblast adhesion on nanophase ceramics. Biomaterials. 1999;20(13):1221–1227.CrossRefGoogle Scholar
  10. 10.
    Klabunde KJ, Stark J, Koper O, Mohs C, Park DG, Decker S, et al. Nanocrystals as stoichiometric reagents with unique surface chemistry. The Journal of Physical Chemistry. 1996;100(30):12142–12153.CrossRefGoogle Scholar
  11. 11.
    Luck M, Paulke BR, Schroder W, Blunk T, Muller RH. Analysis of plasma protein adsorption on polymeric nanoparticles with different surface characteristics. Journal of Biomedical Materials Research. 1998;39(3):478–485.CrossRefGoogle Scholar
  12. 12.
    Kasemo B, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden. Personal communication to RB, 2003.Google Scholar
  13. 13.
    Vertegel AA, Siegel RW, Dordick JS. Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir. 2004;20(16):6800–6807.CrossRefGoogle Scholar
  14. 14.
    Lundqvist M, Sethson I, Jonsson B-H. Protein adsorption onto silica nanoparticles: conformational changes depend on the particles’ curvature and the protein stability. Langmuir. 2004;20(24):10639–10647.CrossRefGoogle Scholar
  15. 15.
    Karajanagi SS, Vertegel AA, Kane RS, Dordick JS. Structure and function of enzymes adsorbed onto single-walled carbon nanotubes. Langmuir. 2004;20(26):11594–11599.CrossRefGoogle Scholar
  16. 16.
    Roach P, Farrar D, Perry CC. Surface tailoring for controlled protein adsorption: effect of topography at the nanometer scale and chemistry. Journal of the American Chemical Society. 2006;128(12):3939–3945.CrossRefGoogle Scholar
  17. 17.
    Hong R, Fischer NO, Verma A, Goodman CM, Emrick T, Rotello VM. Control of protein structure and function through surface recognition by tailored nanoparticle scaffolds. Journal of the American Chemical Society. 2004;126(3):739–743.CrossRefGoogle Scholar
  18. 18.
    Bayraktar H, Ghosh PS, Rotello VM, Knapp MJ. Disruption of protein-protein interactions using nanoparticles: inhibition of cytochrome c peroxidase. Chemical Communications (Cambridge, England). 2006(13):1390–1392.CrossRefGoogle Scholar
  19. 19.
    Asuri P, Karajanagi SS, Yang H, Yim T-J, Kane RS, Dordick JS. Increasing protein stability through control of the nanoscale environment. Langmuir. 2006;22(13):5833–5836.CrossRefGoogle Scholar
  20. 20.
    Ballard JD. Investigation of cell adhesion to silica nanoparticle-decorated surfaces and the associated protein-mediated mechanisms. Troy, NY: Rensselaer Polytechnic Institute; 2005.Google Scholar
  21. 21.
    Davies JE, Matsuda T. Extracellular matrix production by osteoblasts on bioactive substrata in vitro. Scanning Microscopy 1988;(23):1445–1452.Google Scholar
  22. 22.
    Hayashi H, Uchida A, Hamada H, Yoshikawa H, Shinto Y, Ono K. Alumina ceramic prostheses for bone tumor surgery. Archives Of Orthopaedic And Trauma Surgery. 1992;(1121):1–4.CrossRefGoogle Scholar
  23. 23.
    Matsuda T, Davies JE. The in vitro response of osteoblasts to bioactive glass. Biomaterials. 1987;84):275–284.CrossRefGoogle Scholar
  24. 24.
    Sautier J, Nefussi J, Forest N. Ultrasonic study of bone formation on synthetic hydroxyapatite in osteoblast cultures. Cells and Materials. 1991;1:209–217.Google Scholar
  25. 25.
    Toni A, Lewis CG, Sudanese A, Stea S, Calista F, Savarino L, et al. Bone demineralization induced by cementless alumina-coated femoral stems. The Journal of Arthroplasty. 1994;9(4):435–444.CrossRefGoogle Scholar
  26. 26.
    McManus AJ, Doremus RH, Siegel RW, Bizios R. Evaluation of cytocompatibility and bending modulus of nanoceramic/polymer composites. Journal of Biomedical Materials Research. Part A. 2005;72(1):98–106.Google Scholar
  27. 27.
    Ayad S, Boot-Handford R, Humpries M, Kadler K, Shuttleworth A. The extracellular matrix facts book. San Diego, CA: Academic Press Inc; 1994.Google Scholar
  28. 28.
    Gronowicz G, McCarthy MB. Response of human osteoblasts to implant materials: integrin-mediated adhesion. Journal of Orthopaedic Research. 1996;14(6):878–887.CrossRefGoogle Scholar
  29. 29.
    Moursi AM, Globus RK, Damsky CH. Interactions between integrin receptors and fibronectin are required for calvarial osteoblast differentiation in vitro. Journal of Cell Science. 1997;110 (Pt 18):2187–2196.Google Scholar
  30. 30.
    Schneider G, Burridge K. Formation of focal adhesions by osteoblasts adhering to different substrata. Experimental Cell Research. 1994;214(1):264–269.CrossRefGoogle Scholar
  31. 31.
    Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials. 2000;211(7):1803–1810.CrossRefGoogle Scholar
  32. 32.
    Kay S, Thapa A, Haberstroh KM, Webster TJ. Nanostructured polymer/nanophase ceramic composites enhance osteoblast and chondrocyte adhesion. Tissue Engineering. 2002;8(5):753–761.CrossRefGoogle Scholar
  33. 33.
    Khang D, Lu J, Yao C, Haberstroh KM, Webster TJ. The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium. Biomaterials. 2008;29(8):970–983.CrossRefGoogle Scholar
  34. 34.
    Vance RJ, Miller DC, Thapa A, Haberstroh KM, Webster TJ. Decreased fibroblast cell density on chemically degraded poly-lactic-co-glycolic acid, polyurethane, and polycaprolactone. Biomaterials. 2004;25(11):2095–2103.CrossRefGoogle Scholar
  35. 35.
    Webster TJ, Waid MC, McKenzie JL, Price RL, Ejiofor JU. Nano-biotechnology: carbon nanofibres as improved neural and orthopaedic implants. Nanotechnology. 2004;15(1):48–54.CrossRefGoogle Scholar
  36. 36.
    Dulgar-Tulloch A, Bizios R, Siegel R. Human mesenchymal stem cell adhesion and proliferation in response to ceramic chemistry and nanoscale topography. Journal of Biomedical Materials Research. Part A (published online, 18 June 2008).Google Scholar
  37. 37.
    Balasundaram G, Sato M, Webster TJ. Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD. Biomaterials. 2006;27(14):2798–2805.CrossRefGoogle Scholar
  38. 38.
    Webster TJ, Ejiofor JU. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials. 2004;25(19):4731–4739.CrossRefGoogle Scholar
  39. 39.
    Price RL, Ellison K, Haberstroh KM, Thomas J. Webster. Nanometer surface roughness increases select osteoblast adhesion on carbon nanofiber compacts. Journal of Biomedical Materials Research 2004;70A(1):129–138.CrossRefGoogle Scholar
  40. 40.
    Dulgar-Tulloch A. The effects of nanophase ceramic materials on the cellular functions of human mesenchymal stem cells. Troy, NY: Rensselaer Polytechnic Institute; 2005.Google Scholar
  41. 41.
    Colon G, Ward BC, Thomas J. Webster. Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO. Journal of Biomedical Materials Research. Part A. 2006;78A(3):595–604.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Courtney M. Creecy
    • 1
  • David A. Puleo
    • 2
  • Rena Bizios
    • 1
  1. 1.Department of Biomedical EngineeringThe University of Texas at San AntonioSan AntonioUSA
  2. 2.Center for Biomedical EngineeringUniversity of KentuckyLexingtonUSA

Personalised recommendations