Hydrogel Nanocomposites in Biology and Medicine: Applications and Interactions

  • Nitin S. Satarkar
  • Ashley M. Hawkins
  • J. Zach Hilt


Hydrogel nanocomposites are a new class of biomaterials that have recently attracted a lot of attention for applications in medical and pharmaceutical areas. The nanocomposites may consist of various types of nanoparticles, such as clay, ceramic, metallic, or metal oxides dispersed in a hydrogel matrix. The hydrogel nanocomposites have been investigated for various biological applications including drug delivery, tissue engineering, antimicrobial materials, and thermal therapy. In particular, different techniques to control the drug release rate from the nanocomposite matrix have been highlighted. In this chapter, various tissue-engineering areas are discussed, including bone, articular cartilage, and cornea repair. Biological interactions with nanocomposites, including cell adhesion and pertinent cytotoxicity studies, are also discussed.


Drug Release Lower Critical Solution Temperature Composite Hydrogel Hydrogel Network Hydrogel Nanocomposites 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



alkaline phosphate


alternating magnetic field


direct current






human hepatoma cells






lower critical solution temperature


3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide






poly(vinyl alcohol)


remote controlled


relative growth rate


super porous hydrogel


super porous hydrogel composite


tricalcium phosphate


  1. 1.
    Lowman AM, Peppas NA. Hydrogels. In: Mathiowitz E, editor. Encyclopedia of Controlled Drug Delivery. New York: Wiley, 1999. pp. 397–418.Google Scholar
  2. 2.
    Peppas NA, Hilt JZ, Khademhosseini A, Langer R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 2006;18:1345–1360.CrossRefGoogle Scholar
  3. 3.
    Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 2000;5:27–46.CrossRefGoogle Scholar
  4. 4.
    Hoffman AS. Hydrogels in biomedical applications. Adv Drug Deliv Rev 2002;43:3–12.CrossRefGoogle Scholar
  5. 5.
    Chaterji S, Kwon IK, Park K. Smart polymeric gels: redefining the limits of biomedical devices. Prog Polym Sci 2007;32(8–9):1083–1122.CrossRefGoogle Scholar
  6. 6.
    Ulijn RV, Bibi N, Jayawarna V, Thornton PD, Todd SJ, Mart RJ, et al Bioresponsive hydrogels. Materials Today 2007;10(4):40–48.CrossRefGoogle Scholar
  7. 7.
    Miyata T, Asami N, Uragami T. A reversibly antigen-responsive hydrogel. Nature 1999;399(6738):766–769.CrossRefGoogle Scholar
  8. 8.
    Hilt JZ, Gupta AK, Bashir R, Peppas NA. Ultrasensitive Biomems sensors based on microcantilevers patterned with environmentally responsive hydrogels. Biomed Microdevices 2003;5(3):177–184.CrossRefGoogle Scholar
  9. 9.
    Dong L, Jiang H. Autonomous microfluidics with stimuli-responsive hydrogels. Soft Matter 2007;3(10):1223–1230.CrossRefGoogle Scholar
  10. 10.
    Beebe DJ, Moore JS, Bauer JM, Yu Q, Liu RH, Devadoss C, et al Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 2000;404(6778):588–590.CrossRefGoogle Scholar
  11. 11.
    Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 2001;53(3):321–339.CrossRefGoogle Scholar
  12. 12.
    Schild HG. Poly(N-isopropylacrylamide): experiment, theory, and application. Prog Polym Sci 1992;17:163–249.CrossRefGoogle Scholar
  13. 13.
    Yoshida R, Sakai K, Okano T, Sakurai Y. Modulating the phase transition temperature and thermosensitivity in N-isopropylacrylamide copolymer gels. J Biomater Sci Polym Ed 1994;6:585–598.CrossRefGoogle Scholar
  14. 14.
    Hoffman AS. Applications of thermally reversible polymers and hydrogels in therapeutics and diagnostics. J Control Release 1987;6(1):297–305.CrossRefGoogle Scholar
  15. 15.
    Agarwal AK, Dong L, Beebe DJ, Jiang H. Autonomously-triggered microfluidic cooling using thermo-responsive hydrogels. Lab Chip 2007;7(3):310–315.CrossRefGoogle Scholar
  16. 16.
    Goldberg M, Langer R, Jia X. Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polym Ed 2007;18:241–268.CrossRefGoogle Scholar
  17. 17.
    Frimpong RA, Hilt JZ. Hydrogel nanocomposites for intelligent therapeutics In: Peppas NA, Hilt JZ, Thomas JB, editors. Nanotechnology in Therapeutics: Current Technology and Applications. Norfolk: Horizon Scientific, 2007. pp. 241–256.Google Scholar
  18. 18.
    Thomas V, Namdeo M, Mohan YM, Bajpai SK, Bajpai M. Review on polymer, hydrogel and microgel metal nanocomposites: a facile nanotechnological approach. J Macromol Sci, Part A: Pure Appl Chem 2008;45(1):107–119.CrossRefGoogle Scholar
  19. 19.
    Gattas-Asfura KM, Zheng Y, Micic M, Snedaker MJ, Ji X, Sui G, et al Immobilization of quantum dots in the photo-cross-linked poly(ethylene glycol)-based hydrogel. J Phys Chem B 2003;107(38):10464–10469.CrossRefGoogle Scholar
  20. 20.
    Xu H, Wang YJ, Zheng YD, Chen XF, Ren L, Wu G, et al Preparation and characterization of bioglass/polyvinyl alcohol composite hydrogel. Biomed Mater 2007;2(2):62–66.CrossRefGoogle Scholar
  21. 21.
    Cai K, Zhang J, Deng LH, Yang L, Hu Y, Chen C, et al Physical and biological properties of a novel hydrogel composite based on oxidized alginate, gelatin and tricalcium phosphate for bone tissue engineering. Adv Eng Mater 2007;9(12):1082–1088.CrossRefGoogle Scholar
  22. 22.
    Lee W-F, Fu Y-T. Effect of monmorillonite on the swelling behavior and drug-release behavior of nanocomposite hydrogels. J Appl Polym Sci 2003;89:3652–3660.CrossRefGoogle Scholar
  23. 23.
    Biondi M, Ungaro F, Quaglia F, Netti PA. Controlled drug delivery in tissue engineering. Adv Drug Deliv Rev 2008;60(2):229–242.CrossRefGoogle Scholar
  24. 24.
    Satarkar NS, Hilt JZ. Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release. J Control Rel 2008;130(3):246–251.CrossRefGoogle Scholar
  25. 25.
    Sershen SR, Westcott SL, Halas NJ, West JL. Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. J Biomed Mater Res 2000;51(3):293–298.CrossRefGoogle Scholar
  26. 26.
    Zrínyi M. Intelligent polymer gels controlled by magnetic fields. Colloid Polym Sci 2000;278(2):98–103.CrossRefGoogle Scholar
  27. 27.
    Filipcsei G, Csetneki I, Szilagyi A, Zrinyi M. Magnetic field-responsive smart polymer composites. Adv Polym Sci 2007;206:137–189.CrossRefGoogle Scholar
  28. 28.
    Okada A, Usuki A. Twenty years of polymer-clay nanocomposites. Macromol Mater Eng 2006;291(12):1449–1476.CrossRefGoogle Scholar
  29. 29.
    Haraguchi K. Nanocomposite hydrogels. Curr Opin Solid State Mater Sci 2007;11:47–54CrossRefGoogle Scholar
  30. 30.
    Bajpai SK, Mohan YM, Bajpai M, Tankhiwale R, Thomas V. Synthesis of polymer stabilized silver and gold nanostructures. J Nanosci Nanotechnol 2007;7:2994–3010.CrossRefGoogle Scholar
  31. 31.
    Degirmenbasi N, Kalyon DM, Birinci E. Biocomposites of nanohydroxyapatite with collagen and poly(vinyl alcohol). Colloids Surf B Biointerfaces 2006;48(1):42–49.CrossRefGoogle Scholar
  32. 32.
    Demirtas TT, Karakecili AG, Gumusderelioglu M. Hydroxyapatite containing superporous hydrogel composites: synthesis and in vitro characterization. J Mater Sci Mater Med 2008;19(2):729–735.CrossRefGoogle Scholar
  33. 33.
    Hutchens SA, Benson RS, Evans BR, O’Neill HM, Rawn CJ. Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel. Biomaterials 2006;27(26):4661–4670.CrossRefGoogle Scholar
  34. 34.
    Kobayashi H, Kato M, Taguchi T, Ikoma T, Miyashita H, Shimmura S, et al Collagen immobilized PVA hydrogel-hydroxyapatite composites prepared by kneading methods as a material for peripheral cuff of artificial cornea. Mater Sci Eng C 2004;24(6–8):729–735.CrossRefGoogle Scholar
  35. 35.
    Sanginario V, Ginebra MP, Tanner KE, Planell JA, Ambrosio L. Biodegradable and semi-biodegradable composite hydrogels as bone substitutes: morphology and mechanical characterization. J Mater Sci Mater Med 2006;17(5):447–454.CrossRefGoogle Scholar
  36. 36.
    Wang MB, Li YB, Wu JQ, Xu FL, Zuo Y, Jansen JA. In vitro and in vivo study to the biocompatibility and biodegradation of hydroxyapatite/poly(vinyl alcohol)/gelatin composite. J Biomed Mater Res A 2008;85A(2):418–426.CrossRefGoogle Scholar
  37. 37.
    Xu FL, Li YB, Deng YP, Xiong J. Porous nano-hydroxyapatite/poly(vinyl alcohol) composite hydrogel as artificial cornea fringe: characterization and evaluation in vitro. J Biomater Sci Polym Ed 2008;19(4):431–439.CrossRefGoogle Scholar
  38. 38.
    Luginbuehl V, Wenk E, Koch A, Gander B, Merkle HP, Meinel L. Insulin-like growth factor I-releasing alginate-tricalciumphosphate composites for bone regeneration. Pharm Res 2005;22(6):940–950.CrossRefGoogle Scholar
  39. 39.
    Meenach SA, Anderson AA, Suthar M, Anderson KW, Hilt JZ. Biocompatibility analysis of magnetic hydrogel nanocomposites based on poly(N-isopropylacrylamide) and iron oxide. J Biomed Mater Res A, In Press.Google Scholar
  40. 40.
    Nayak S, Lyon LA. Soft nanotechnology with soft nanoparticles. Angew Chem Int Ed 2005;44(47):7686–7708.CrossRefGoogle Scholar
  41. 41.
    Liu T-Y, Hu S-H, Liu K-H, Liu D-M, Chen S-Y. Preparation and characterization of smart magnetic hydrogels and its use for drug release. J Magn Magn Mater 2006;304:e397–e399.CrossRefGoogle Scholar
  42. 42.
    Hu S-H, Liu T-Y, Liu D-M, Chen S-Y. Controlled pulsatile drug release from a ferrogel by a high-frequency magnetic field. Macromolecules 2007;40(19):6786–6788.CrossRefGoogle Scholar
  43. 43.
    Hu S-H, Liu T-Y, Liu D-M, Chen S-Y. Nano-ferrosponges for controlled drug release. J Control Release 2007;121(3):181–189.CrossRefGoogle Scholar
  44. 44.
    Reséndiz-Hernández PJ, Rodríguez-Fernández OS, García-Cerda LA. Synthesis of poly(vinyl alcohol)-magnetite ferrogel obtained by freezing-thawing technique. J Magn Magn Mater 2008;320(14):e373–e376.CrossRefGoogle Scholar
  45. 45.
    Liu T-Y, Hu S-H, Liu K-H, Liu D-M, Chen S-Y. Study on controlled drug permeation of magnetic-sensitive ferrogels: effect of Fe3O4 and PVA. J Control Release 2008;126(3):228–236.CrossRefGoogle Scholar
  46. 46.
    Liu TY, Hu SH, Liu DM, Chen SY. Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug. Langmuir 2006;22(14):5974–5978.CrossRefGoogle Scholar
  47. 47.
    Bikram M, Gobin AM, Whitmire RE, West JL. Temperature-sensitive hydrogels with SiO2-Au nanoshells for controlled drug delivery. J Control Release 2007;123(3):219–227.CrossRefGoogle Scholar
  48. 48.
    Sershen SR, West JL. Implantable, polymeric systems for modulated drug delivery. Adv Drug Deliv Rev 2002;54:1225–1235.CrossRefGoogle Scholar
  49. 49.
    Lee W-F, Chen Y-C. Effect of hydrotalcite on the physical properties and drug-release behavior of nanocomposite hydrogels based on poly[acrylic acid-co-poly(ethylene glycol) methyl ether acrylate] gels. J Appl Polym Sci 2004;94(2):692–699.CrossRefGoogle Scholar
  50. 50.
    Lee W-F, Tsao K-T. Effect of intercalant content of mica on the various properties for the charged nanocomposite poly(N-isopropyl acrylamide) hydrogels. J Appl Polym Sci 2007;104(4):2277–2287.CrossRefGoogle Scholar
  51. 51.
    Trojani C, Boukhechba F, Scimeca JC, Vandenbos F, Michiels JF, Daculsi G, et al Ectopic bone formation using an injectable biphasic calcium phosphate/Si-HPMC hydrogel composite loaded with undifferentiated bone marrow stromal cells. Biomaterials 2006;27(17):3256–3264.CrossRefGoogle Scholar
  52. 52.
    Haraguchi K, Takehisa T, Ebato M. Control of cell cultivation and cell sheet detachment on the surface of polymer/clay nanocomposite hydrogels. Biomacromolecules 2006;7(11):3267–3275.CrossRefGoogle Scholar
  53. 53.
    Schiraldi C, D’Agostino A, Oliva A, Flamma F, De Rosa A, Apicella A, et al Development of hybrid materials based on hydroxyethylmethacrylate as supports for improving cell adhesion and proliferation. Biomaterials 2004;25(17):3645–3653.CrossRefGoogle Scholar
  54. 54.
    Lee W-F, Tsao K-T. Preparation and properties of nanocomposite hydrogels containing silver nanoparticles by ex situ polymerization. J Appl Polym Sci 2006;100(5):3653–3661.CrossRefGoogle Scholar
  55. 55.
    Murali Mohan Y, Lee K, Premkumar T, Geckeler KE. Hydrogel networks as nanoreactors: a novel approach to silver nanoparticles for antibacterial applications. Polymer 2007;48(1):158–164.CrossRefGoogle Scholar
  56. 56.
    Murali Mohan Y, Premkumar T, Lee K, Geckeler KE. Fabrication of silver nanoparticles in hydrogel networks. Macromol Rapid Commun 2006;27(16):1346–1354.CrossRefGoogle Scholar
  57. 57.
    Murthy PSK, Murali Mohan Y, Varaprasad K, Sreedhar B, Mohana Raju K. First successful design of semi-IPN hydrogel-silver nanocomposites: a facile approach for antibacterial application. J Colloid Interface Sci 2008;318(2):217–224.CrossRefGoogle Scholar
  58. 58.
    Thomas V, Yallapu MM, Sreedhar B, Bajpai SK. A versatile strategy to fabricate hydrogel-silver nanocomposites and investigation of their antimicrobial activity. J Colloid Interface Sci 2007;315(1):389–395.CrossRefGoogle Scholar
  59. 59.
    Satarkar NS, Hilt JZ. Nanocomposite hydrogels as remote controlled drug delivery systems. Acta Biomater 2008;4:11–16.CrossRefGoogle Scholar
  60. 60.
    Ang KL, Venkatraman S, Ramanujan RV. Magnetic PNIPA hydrogels for hyperthermia applications in cancer therapy. Mater Sci Eng C 2007;27(3):347–351.CrossRefGoogle Scholar
  61. 61.
    Babincová M, Leszczynska D, Sourivong P, Cicmanec P, Babinec P. Superparamagnetic gel as a novel material for electromagnetically induced hyperthermia. J Magn Magn Mater 2001;225(1–2):109–112.CrossRefGoogle Scholar
  62. 62.
    Lao LL, Ramanujan RV. Magnetic and hydrogel composite materials for hyperthermia applications. J Mater Sci Mater Med 2004;15:1061–1064.CrossRefGoogle Scholar
  63. 63.
    Hoare TR, Kohane DS. Hydrogels in drug delivery: progress and challenges. Polymer 2008;49(8):1993–2007.CrossRefGoogle Scholar
  64. 64.
    Lin C-C, Metters AT. Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev 2006;58(12–13):1379–1408.CrossRefGoogle Scholar
  65. 65.
    Kikuchi A, Okano T. Pulsatile drug release control using hydrogels. Adv Drug Deliv Rev 2002;54:53–77.CrossRefGoogle Scholar
  66. 66.
    Kost J, Langer R. Responsive polymeric delivery systems. Adv Drug Deliv Rev 2001;46:125–148.CrossRefGoogle Scholar
  67. 67.
    Bussemer T, Otto I, Bodmeier R. Pulsatile drug-delivery systems. Crit Rev Ther Drug Carrier Syst 2001;18(5):433–458.Google Scholar
  68. 68.
    Edelman ER, Kost J, Bobeck H, Langer R. Regulation of drug release from polymer matrices by oscillating magnetic fields. J Biomed Mater Res 1985;19(1):67–83.CrossRefGoogle Scholar
  69. 69.
    Hsieh DS, Langer R, Folkman J. Magnetic modulation of release of macromolecules from polymers. Proc Natl Acad Sci U S A 1981;78(3):1863–1867.CrossRefGoogle Scholar
  70. 70.
    Kost J, Wolfrum J, Langer R. Magnetically enhanced insulin release in diabetic rats. J Biomed Mater Res 1987;21:1367–1373.CrossRefGoogle Scholar
  71. 71.
    Vaishnava PP, Tackett R, Dixit A, Sudakar C, Naik R, Lawes G. Magnetic relaxation and dissipative heating in ferrofluids. J Appl Phys 2007;102:063914.CrossRefGoogle Scholar
  72. 72.
    Hirsch L, Gobin A, Lowery A, Tam F, Drezek R, Halas N, et al Metal nanoshells. Ann Biomed Eng 2006;34(1):15–22.CrossRefGoogle Scholar
  73. 73.
    Sershen SR, Mensing GA, Ng M, Halas NJ, Beebe DJ, West JL. Independent optical control of microfluidic valves formed from optomechanically responsive nanocomposite hydrogels. Adv Mater 2005;17(11):1366–1368.CrossRefGoogle Scholar
  74. 74.
    Haraguchi K, Takehisa T. Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater 2002;14(16):1120–1124.CrossRefGoogle Scholar
  75. 75.
    Ma J, Xu Y, Zhang Q, Zha L, Liang B. Preparation and characterization of pH- and temperature-responsive semi-IPN hydrogels of carboxymethyl chitosan with poly (N-isopropyl acrylamide) crosslinked by clay. Colloid Polym Sci 2007;285(4):479–484.CrossRefGoogle Scholar
  76. 76.
    Xiang Y, Peng Z, Chen D. A new polymer/clay nano-composite hydrogel with improved response rate and tensile mechanical properties. Eur Polym J 2006;42(9):2125–2132.CrossRefGoogle Scholar
  77. 77.
    Kokabi M, Sirousazar M, Hassan ZM. PVA-clay nanocomposite hydrogels for wound dressing. Eur Polym J 2007;43(3):773–781.CrossRefGoogle Scholar
  78. 78.
    Haraguchi K, Li H-J. Control of the coil-to-globule transition and ultrahigh mechanical properties of PNIPA in nanocomposite hydrogels. Angew Chem Int Ed 2005;44(40):6500–6504.CrossRefGoogle Scholar
  79. 79.
    Haraguchi K, Li HJ, Matsuda K, Takehisa T, Elliott E. Mechanism of forming organic/inorganic network structures during in-situ free-radical polymerization in PNIPA-clay nanocomposite hydrogels. Macromolecules 2005;38(8):3482–3490.CrossRefGoogle Scholar
  80. 80.
    Cancedda R, Giannoni P, Mastrogiacomo M. A tissue engineering approach to bone repair in large animal models and in clinical practice. Biomaterials 2007;28(29):4240–4250.CrossRefGoogle Scholar
  81. 81.
    Stevens MM. Biomaterials for bone tissue engineering. Mater Today 2008;11(5):18–25.CrossRefGoogle Scholar
  82. 82.
    Stevens MM, George JH. Exploring and engineering the cell surface interface. Science 2005;310(5751):1135–1138.CrossRefGoogle Scholar
  83. 83.
    Yuan HP, Van den Doel M, Li SH, Van Blitterswijk CA, De Groot K, De Bruijn JD. A comparison of the osteoinductive potential of two calcium phosphate ceramics implanted intramuscularly in goats. J Mater Sci Mater Med 2002;13(12):1271–1275.CrossRefGoogle Scholar
  84. 84.
    Ge ZG, Jin ZX, Cao T. Manufacture of degradable polymeric scaffolds for bone regeneration. Biomed Mater 2008;3(2):22001.CrossRefGoogle Scholar
  85. 85.
    Chung C, Burdick JA. Engineering cartilage tissue. Adv Drug Deliv Rev 2008;60(2):243–262.CrossRefGoogle Scholar
  86. 86.
    Schulz RM, Bader A. Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes. Eur Biophys J 2007;36(4–5):539–568.CrossRefGoogle Scholar
  87. 87.
    Pereira MM, Jones JR, Orefice RL, Hench LL. Preparation of bioactive glass-polyvinyl alcohol hybrid foams by the sol-gel method. J Mater Sci Mater Med 2005;16(11):1045–1050.CrossRefGoogle Scholar
  88. 88.
    Legeais JM, Renard G. A second generation of artificial cornea (Biokpro II). Biomaterials 1998;19(16):1517–1522.CrossRefGoogle Scholar
  89. 89.
    Sinha A, Das G, Sharma BK, Roy RP, Pramanick AK, Nayar S. Poly(vinyl alcohol)-hydroxyapatite biomimetic scaffold for tissue regeneration. Mater Sci Eng C 2007;27(1):70–74.CrossRefGoogle Scholar
  90. 90.
    Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 2004;275(1):177–182.CrossRefGoogle Scholar
  91. 91.
    Saravanan P, Padmanabha Raju M, Alam S. A study on synthesis and properties of Ag nanoparticles immobilized polyacrylamide hydrogel composites. Mater Chem Phys 2007;103(2–3):278–282.CrossRefGoogle Scholar
  92. 92.
    Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T, et al The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol 2002;43(1):33–56.CrossRefGoogle Scholar
  93. 93.
    Coffey DS, Getzenberg RH, DeWeese TL. Hyperthermic biology and cancer therapies: a hypothesis for the “Lance Armstrong effect”. JAMA 2006;296(4):445–448.CrossRefGoogle Scholar
  94. 94.
    Horsman MR, Overgaard J. Hyperthermia: a potent enhancer of radiotherapy. Clin Oncol 2007;19(6):418–426.CrossRefGoogle Scholar
  95. 95.
    Meyer DE, Shin BC, Kong GA, Dewhirst MW, Chilkoti A. Drug targeting using thermally responsive polymers and local hyperthermia. J Control Release 2001;74(1–3):213–224.CrossRefGoogle Scholar
  96. 96.
    Vihola H, Laukkanen A, Valtola L, Tenhu H, Hirvonen J. Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly(N-vinylcaprolactam). Biomaterials 2005;26(16):3055–3064.CrossRefGoogle Scholar
  97. 97.
    Wick P, Manser P, Limbach LK, Dettlaff-Weglikowska U, Krumeich F, Roth S, et al The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 2007;168(2):121–131.CrossRefGoogle Scholar
  98. 98.
    Müller K, Skepper JN, Posfai M, Trivedi R, Howarth S, Corot C, et al Effect of ultrasmall superparamagnetic iron oxide nanoparticles (Ferumoxtran-10) on human monocyte-macrophages in vitro. Biomaterials 2007;28(9):1629–1642.CrossRefGoogle Scholar
  99. 99.
    Kirchner C, Liedl T, Kudera S, Pellegrino T, MunozJavier A, Gaub HE, et al Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 2005;5(2):331–338.CrossRefGoogle Scholar
  100. 100.
    Wang X, Du Y, Luo J. Biopolymer/montmorillonite nanocomposite: preparation, drug-controlled release property and cytotoxicity. Nanotechnology 2008;19(6):065707.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Nitin S. Satarkar
    • 1
  • Ashley M. Hawkins
    • 1
  • J. Zach Hilt
    • 1
  1. 1.Department of Chemical and Materials EngineeringUniversity of KentuckyLexingtonUSA

Personalised recommendations