Development and Differentiation of Neural Stem and Progenitor Cells on Synthetic and Biologically Based Surfaces

  • Erin N. Boote Jones
  • Donald S. Sakaguchi
  • Surya K. Mallapragada


The response of stem and progenitor cells to material surfaces is of particular interest to the fields of biomedical engineering and regenerative medicine for a number of reasons. It is thought that stem and progenitor cells may represent a new treatment option for diseases of large-scale cell loss or malfunction, particularly in the central nervous system, where the environment is not permissive of tissue regeneration. Before treatments with specific outcomes can be reliably planned, however, the interactions between stem and progenitor cells and their environment must be better understood. This chapter discusses the function of neural stem and progenitor cells, as well as their responses to nonbiodegradable and biodegradable polymers, and to biologically derived proteins, which are used both as coatings on material surfaces and as scaffolds.


Nerve Growth Factor Glial Fibrillary Acidic Protein Neurite Outgrowth Alginate Hydrogel Alginate Lyase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



aminoethyl methacrylate


adult hippocampal progenitor cell


alginate lyase


aligned microfiber


aligned nanofiber


immortalized neural stem cell line from murine postnatal cerebellum


murine embryonic stem cell line expressing green fluorescent protein


oligodendrocyte marker


central nervous system


methacrylated dextran


embryoid body


extracellular matrix


poly(ethylene-co-vinyl alcohol)


fetal mouse cortical cells


glial fibrillary acidic protein


glycerophosphate salt


rat hippocampal progenitor cell line


peptide sequence isoleucine–lysine–valine–alanine–valine


keratin-14, a long α-helical peptide


lysine-alanine sequential polymer


a globular domain of the laminin α3 chain


a polypeptide composed of keratin-14 fused to the LG3 domain


methacrylamide chitosan


colorimetric mitochondrial metabolic activity assay


mature neuron marker


nerve growth factor


neural progenitor cell


neural stem and progenitor cell




N-4-(azidobenzoyloxy)succinimide conjugated to polyallylamine


rat cancer cell line derived from a pheochromocytoma of the adrenal medulla




poly(ethylene glycol)


poly(lactic acid)




poly(lactic-co-glycolic acid)




poly(l-lactic acid)




poly(vinyl alcohol)


retinoic acid


peptide sequence arginine-glycine-aspartate


random microfiber


random nanofiber


murine embryonic stem cell line


scanning electron microscope

human pluripotent embryonic carcinoma cells


class III β-tubulin


terminal deoxynucleotidyl transferase dUTP nick end labeling


peptide sequence tyrosine–isoleucine–glycine–serine–arginine



The authors gratefully acknowledge the NIH (RO1GM072005) for financial support.


  1. 1.
    McKay R. Stem cells in the central nervous system. Science. 1997;276(5309):66–71.CrossRefGoogle Scholar
  2. 2.
    Alvarez-Buylla A, Temple S. Stem cells in the developing and adult nervous system. J Neurobiol. 1998;36(2):105–110.CrossRefGoogle Scholar
  3. 3.
    Gage FH, Coates PW, Palmer TD, Kuhn HG, Fisher LJ, Suhonen JO et al. Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc Natl Acad Sci USA. 1995;92(25):11879–11883.CrossRefGoogle Scholar
  4. 4.
    Weiss S, Dunne C, Hewson J, Wohl C, Wheatley M, Peterson AC et al. Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci. 1996;16(23):7599–7609.Google Scholar
  5. 5.
    Guillaume DJ, Johnson MA, Li XJ, Zhang SC. Human embryonic stem cell-derived neural precursors develop into neurons and integrate into the host brain. J Neurosci Res. 2006;84(6):1165–1176.CrossRefGoogle Scholar
  6. 6.
    Johnson MA, Weick JP, Pearce RA, Zhang SC. Functional neural development from human embryonic stem cells: accelerated synaptic activity via astrocyte coculture. J Neurosci. 2007;27(12):3069–3077.CrossRefGoogle Scholar
  7. 7.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–872.CrossRefGoogle Scholar
  8. 8.
    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–1920.CrossRefGoogle Scholar
  9. 9.
    Coles BL, Angenieux B, Inoue T, Del Rio-Tsonis K, Spence JR, McInnes RR et al. Facile isolation and the characterization of human retinal stem cells. Proc Natl Acad Sci USA. 2004;101(44):15772–15777.CrossRefGoogle Scholar
  10. 10.
    Klassen HJ, Ng TF, Kurimoto Y, Kirov I, Shatos M, Coffey P et al. Multipotent retinal progenitors express developmental markers, differentiate into retinal neurons, and preserve light-mediated behavior. Invest Ophthalmol Vis Sci. 2004;45(11):4167–4173.CrossRefGoogle Scholar
  11. 11.
    Palmer TD, Takahashi J, Gage FH. The adult rat hippocampus contains primordial neural stem cells. Mol Cell Neurosci. 1997;8(6):389–404.CrossRefGoogle Scholar
  12. 12.
    Shihabuddin LS, Ray J, Gage FH. FGF-2 is sufficient to isolate progenitors found in the adult mammalian spinal cord. Exp Neurol. 1997;148(2):577–586.CrossRefGoogle Scholar
  13. 13.
    Keene CD, Ortiz-Gonzalez XR, Jiang Y, Largaespada DA, Verfaillie CM, Low WC. Neural differentiation and incorporation of bone marrow-derived multipotent adult progenitor cells after single cell transplantation into blastocyst stage mouse embryos. Cell Transplant. 2003;12(3):201–213.Google Scholar
  14. 14.
    Mezey E, Key S, Vogelsang G, Szalayova I, Lange GD, Crain B. Transplanted bone marrow generates new neurons in human brains. Proc Natl Acad Sci USA. 2003;100(3):1364–1369.CrossRefGoogle Scholar
  15. 15.
    Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res. 2000;61(4):364–370.CrossRefGoogle Scholar
  16. 16.
    Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y, et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature. 2002;416(6880):542–545.CrossRefGoogle Scholar
  17. 17.
    Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418(6893):41–49.CrossRefGoogle Scholar
  18. 18.
    Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA. 2003;100(10):5807–5812.CrossRefGoogle Scholar
  19. 19.
    Prockop DJ, Azizi SA, Phinney DG, Kopen GC, Schwarz EJ. Potential use of marrow stromal cells as therapeutic vectors for diseases of the central nervous system. Prog Brain Res. 2000;128:293–297.CrossRefGoogle Scholar
  20. 20.
    Toma JG, Akhavan M, Fernandes KJ, Barnabe-Heider F, Sadikot A, Kaplan DR et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol. 2001;3(9):778–784.CrossRefGoogle Scholar
  21. 21.
    Hudis M. Techniques and Applications of Plasma Chemistry. New York: John Wiley, 1974.Google Scholar
  22. 22.
    Young TH, Hung CH. Behavior of embryonic rat cerebral cortical stem cells on the PVA and EVAL substrates. Biomaterials. 2005;26(20):4291–4299.CrossRefGoogle Scholar
  23. 23.
    Tsai RY, McKay RD. Cell contact regulates fate choice by cortical stem cells. J Neurosci. 2000;20(10):3725–3735.Google Scholar
  24. 24.
    Young TH, Hu WW. Covalent bonding of lysine to EVAL membrane surface to improve survival of cultured cerebellar granule neurons. Biomaterials. 2003;24(8):1477–1486.CrossRefGoogle Scholar
  25. 25.
    Gomez N, Chen S, Schmidt CE. Polarization of hippocampal neurons with competitive surface stimuli: contact guidance cues are preferred over chemical ligands. J R Soc Interface. 2007;4(13):223–233.CrossRefGoogle Scholar
  26. 26.
    Song M, Uhrich KE. Optimal micropattern dimensions enhance neurite outgrowth rates, lengths, and orientations. Ann Biomed Eng. 2007;35(10):1812–1820.CrossRefGoogle Scholar
  27. 27.
    Tai HC, Buettner HM. Neurite outgrowth and growth cone morphology on micropatterned surfaces. Biotechnol Prog. 1998;14(3):364–370.CrossRefGoogle Scholar
  28. 28.
    Recknor JB, Sakaguchi DS, Mallapragada SK. Directed growth and selective differentiation of neural progenitor cells on micropatterned polymer substrates. Biomaterials. 2006;27(22):4098–4108.CrossRefGoogle Scholar
  29. 29.
    Recknor JB, Sakaguchi DS, Mallapragada SK. Growth and differentiation of astrocytes and neural progenitor cells on micropatterned polymer films. Ann N Y Acad Sci. 2005;1049:24–27.CrossRefGoogle Scholar
  30. 30.
    Busby W, Cameron NR, Jahoda CA.Emulsion-derived foams (PolyHIPEs) containing poly(epsilon-caprolactone) as matrixes for tissue engineering. Biomacromolecules. 2001;2(1):154–164.CrossRefGoogle Scholar
  31. 31.
    Hayman MW, Smith KH, Cameron NR, Przyborski SA. Growth of human stem cell-derived neurons on solid three-dimensional polymers. J Biochem Biophys Methods. 2005;62(3):231–240.CrossRefGoogle Scholar
  32. 32.
    George PM, Lyckman AW, LaVan DA, Hegde A, Leung Y, Avasare R et al. Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics. Biomaterials. 2005;26(17):3511–3519.CrossRefGoogle Scholar
  33. 33.
    Kotwal A, Schmidt CE. Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials. Biomaterials. 2001;22(10):1055–1064.CrossRefGoogle Scholar
  34. 34.
    Hodgson, AJJ. M. J.; Campbell, T.; Georgevich, A.; Woodhouse, S.; Aoki, T.; Ogata, N.; Wallace, G. G.; Integration of biocomponents with synthetic structures: use of conducting polymer polyelectrolyte composites. Proc SPIE Int Soc Opt Eng. 1996;2716:164–176.Google Scholar
  35. 35.
    Gomez N, Lu Y, Chen S, Schmidt CE. Immobilized nerve growth factor and microtopography have distinct effects on polarization versus axon elongation in hippocampal cells in culture. Biomaterials. 2007;28(2):271–284.CrossRefGoogle Scholar
  36. 36.
    Bhang SH, Lim JS, Choi CY, Kwon YK, Kim BS. The behavior of neural stem cells on biodegradable synthetic polymers. J Biomater Sci Polym Ed. 2007;18(2):223–239.CrossRefGoogle Scholar
  37. 37.
    Wake MC, Gupta PK, Mikos AG. Fabrication of pliable biodegradable polymer foams to engineer soft tissues. Cell Transplant. 1996;5(4):465–473.CrossRefGoogle Scholar
  38. 38.
    Liao CJ, Chen CF, Chen JH, Chiang SF, Lin YJ, Chang KY. Fabrication of porous biodegradable polymer scaffolds using a solvent merging/particulate leaching method. J Biomed Mater Res. 2002;59(4):676–681.CrossRefGoogle Scholar
  39. 39.
    Levenberg S, Burdick JA, Kraehenbuehl T, Langer R. Neurotrophin-induced differentiation of human embryonic stem cells on three-dimensional polymeric scaffolds. Tissue Eng. 2005;11(3–4):506–512.CrossRefGoogle Scholar
  40. 40.
    Levenberg S, Huang NF, Lavik E, Rogers AB, Itskovitz-Eldor J, Langer R. Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds. Proc Natl Acad Sci USA. 2003;100(22):12741–12746.CrossRefGoogle Scholar
  41. 41.
    Yang F, Xu CY, Kotaki M, Wang S, Ramakrishna S. Characterization of neural stem cells on electrospun poly(l-lactic acid) nanofibrous scaffold. J Biomater Sci Polym Ed. 2004;15(12):1483–1497.CrossRefGoogle Scholar
  42. 42.
    Yang F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials. 2005;26(15):2603–2610.CrossRefGoogle Scholar
  43. 43.
    Brewer GJ, Deshmane S, Ponnusamy E. Precocious axons and improved survival of rat hippocampal neurons on lysine-alanine polymer substrates. J Neurosci Methods. 1998;85(1):13–20.CrossRefGoogle Scholar
  44. 44.
    Wang JH, Hung CH, Young TH. Proliferation and differentiation of neural stem cells on lysine-alanine sequential polymer substrates. Biomaterials. 2006;27(18):3441–3450.CrossRefGoogle Scholar
  45. 45.
    Royce Hynes S, McGregor LM, Ford Rauch M, Lavik EB. Photopolymerized poly(glycol)/poly(l-lysine) hydrogels for the delivery of neural progenitor cells. J Biomater Sci Polym Ed. 2007;18(8):1017–1030.CrossRefGoogle Scholar
  46. 46.
    Nakaji-Hirabayashi T, Kato K, Iwata H. Self-assembling chimeric protein for the construction of biodegradable hydrogels capable of interaction with integrins expressed on neural stem/progenitor cells. Biomacromolecules. 2008;9(5):1411–1416.CrossRefGoogle Scholar
  47. 47.
    Schense JC, Bloch J, Aebischer P, Hubbell JA. Enzymatic incorporation of bioactive peptides into fibrin matrices enhances neurite extension. Nat Biotechnol. 2000;18(4):415–419.CrossRefGoogle Scholar
  48. 48.
    Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler JA, et al Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science. 2004;303(5662):1352–1355.CrossRefGoogle Scholar
  49. 49.
    Schense JC, Hubbell JA. Three-dimensional migration of neurites is mediated by adhesion site density and affinity. J Biol Chem. 2000;275(10):6813–6818.CrossRefGoogle Scholar
  50. 50.
    Cox S, Cole M, Tawil B. Behavior of human dermal fibroblasts in three-dimensional fibrin clots: dependence on fibrinogen and thrombin concentration. Tissue Eng. 2004;10(5–6):942–954.CrossRefGoogle Scholar
  51. 51.
    Bensaid W, Triffitt JT, Blanchat C, Oudina K, Sedel L, Petite H. A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials. 2003;24(14):2497–2502.CrossRefGoogle Scholar
  52. 52.
    Willerth SM, Arendas KJ, Gottlieb DI, Sakiyama-Elbert SE. Optimization of fibrin scaffolds for differentiation of murine embryonic stem cells into neural lineage cells. Biomaterials. 2006;27(36):5990–6003.CrossRefGoogle Scholar
  53. 53.
    Watanabe K, Nakamura M, Okano H, Toyama Y. Establishment of three-dimensional culture of neural stem/progenitor cells in collagen Type-1 Gel. Restor Neurol Neurosci. 2007;25(2):109–117.Google Scholar
  54. 54.
    Balgude AP, Yu X, Szymanski A, Bellamkonda RV. Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures. Biomaterials. 2001;22(10):1077–1084.CrossRefGoogle Scholar
  55. 55.
    Brannvall K, Bergman K, Wallenquist U, Svahn S, Bowden T, Hilborn J et al. Enhanced neuronal differentiation in a three-dimensional collagen-hyaluronan matrix. J Neurosci Res. 2007;85(10):2138–2146.CrossRefGoogle Scholar
  56. 56.
    Deister C, Aljabari S, Schmidt CE. Effects of collagen 1, fibronectin, laminin and hyaluronic acid concentration in multi-component gels on neurite extension. J Biomater Sci Polym Ed. 2007;18(8):983–997.CrossRefGoogle Scholar
  57. 57.
    Yu LM, Kazazian K, Shoichet MS. Peptide surface modification of methacrylamide chitosan for neural tissue engineering applications. J Biomed Mater Res A. 2007;82(1):243–255.Google Scholar
  58. 58.
    Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD et al. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials. 2000;21(21):2155–2161.CrossRefGoogle Scholar
  59. 59.
    Crompton KE, Goud JD, Bellamkonda RV, Gengenbach TR, Finkelstein DI, Horne MK, et al Polylysine-functionalised thermoresponsive chitosan hydrogel for neural tissue engineering. Biomaterials. 2007;28(3):441–449.CrossRefGoogle Scholar
  60. 60.
    Ashton RS, Banerjee A, Punyani S, Schaffer DV, Kane RS. Scaffolds based on degradable alginate hydrogels and poly(lactide-co-glycolide) microspheres for stem cell culture. Biomaterials. 2007;28(36):5518–5525.CrossRefGoogle Scholar
  61. 61.
    Remminghorst U, Rehm BH. Bacterial alginates: from biosynthesis to applications. Biotechnol Lett. 2006;28(21):1701–1712.CrossRefGoogle Scholar
  62. 62.
    Kataoka K, Suzuki Y, Kitada M, Hashimoto T, Chou H, Bai H et al. Alginate enhances elongation of early regenerating axons in spinal cord of young rats. Tissue Eng. 2004;10(3–4):493–504.CrossRefGoogle Scholar
  63. 63.
    Li X, Liu T, Song K, Yao L, Ge D, Bao C, et al Culture of neural stem cells in calcium alginate beads. Biotechnol Prog. 2006;22(6):1683–1689.Google Scholar
  64. 64.
    Prang P, Muller R, Eljaouhari A, Heckmann K, Kunz W, Weber T, et al The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels. Biomaterials. 2006;27(19):3560–3569.Google Scholar
  65. 65.
    Bouhadir KH, Lee KY, Alsberg E, Damm KL, Anderson KW, Mooney DJ. Degradation of partially oxidized alginate and its potential application for tissue engineering. Biotechnol Prog. 2001;17(5):945–950.CrossRefGoogle Scholar
  66. 66.
    Bollag DM. Ion-exchange chromatography. Methods Mol Biol. 1994;36:11–22.Google Scholar
  67. 67.
    Bollag DM. Gel-filtration chromatography. Methods Mol Biol. 1994;36:1–9.Google Scholar
  68. 68.
    Hirtenstein M, Clark J, Lindgren G, Vretblad P. Microcarriers for animal cell culture: a brief review of theory and practice. Dev Biol Stand. 1980;46:109–116.Google Scholar
  69. 69.
    Lévesque SG, Lim RM, Shoichet MS. Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applications. Biomaterials. 2005;26(35):7436–7446.CrossRefGoogle Scholar
  70. 70.
    Lévesque SG, Shoichet MS. Synthesis of cell-adhesive dextran hydrogels and macroporous scaffolds. Biomaterials. 2006;27(30):5277–5285.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Erin N. Boote Jones
    • 1
  • Donald S. Sakaguchi
    • 2
  • Surya K. Mallapragada
    • 1
  1. 1.Department of Chemical and Biological EngineeringIowa State UniversityAmesUSA
  2. 2.Department of Genetics, Development, and Cell BiologyIowa State UniversityAmesUSA

Personalised recommendations