The Pixelised Wavelet Filtering Method to Study Waves and Oscillations in Time Sequences of Solar Atmospheric Images


Pixelised wavelet filtering (PWF) for the determination of the spatial, temporal, and phase structure of oscillation sources in temporal sequences of 2D images, based upon the continuous wavelet transform, has been designed and tested. The PWF method allows us to obtain information about the presence of propagating and nonpropagating waves in the data and localise them precisely in time and in space. The method is tested on the data sets obtained in microwaves with the Nobeyama Radioheliograph and in the EUV with TRACE. The method reveals fine spatial structuring of the sources of 3-, 5-, and 15-minute periodicities in the microwave and EUV emission generated in sunspot atmospheres. In addition, the PWF method provides us with unique information about the temporal variability of the power, amplitude, and phase narrowband maps of the observed oscillations and waves. The applicability of the method to the analysis of coronal wave phenomena is discussed.


Solar Phys Empirical Mode Decomposition Wavelet Spectrum Data Cube Singular Spectrum Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baudin, F., Bocchialini, K., Koutchmy, S.: 1996, Astron. Astrophys. 314, L9. ADSGoogle Scholar
  2. Christopoulou, E.B., Skodras, A., Georgakilas, A.A., Koutchmy, S.: 2003, Astrophys. J. 591, 416. CrossRefADSGoogle Scholar
  3. De Moortel, I., Hood, A.W., Ireland, J.: 2002, Astron. Astrophys. 381, 311. CrossRefADSGoogle Scholar
  4. De Moortel, I., Ireland, J., Walsh, R.W.: 2000, Astron. Astrophys. 355, L23. ADSGoogle Scholar
  5. De Moortel, I., McAteer, R.T.J.: 2004, Solar Phys. 223, 1. CrossRefADSGoogle Scholar
  6. Gelfreikh, G.B., Grechnev, V., Kosugi, T., Shibasaki, K.: 1999, Solar Phys. 185, 177. CrossRefADSGoogle Scholar
  7. Golyandina, N., Nekrutkin, V., Zhiglyavsky, A.: 2001, Analysis of Time Series Structure. SSA and Related Techniques, Chapman and Hall/CRC, London/Boca Raton. MATHCrossRefGoogle Scholar
  8. Grechnev, V.V.: 2003, Solar Phys. 213, 103. CrossRefADSGoogle Scholar
  9. Huang, N.E., Shen, Z., Long, S.R.: 1999, Annu. Rev. Fluid Mech. 31, 417. CrossRefADSMathSciNetGoogle Scholar
  10. Ireland, J., Walsh, R.W., Harrison, R.A., Priest, E.R.: 1999, Astron. Astrophys. 347, 355. ADSGoogle Scholar
  11. King, D.B., Nakariakov, V.M., Deluca, E.E., Golub, L., McClements, K.G.: 2003, Astron. Astrophys. 404, L1. CrossRefADSGoogle Scholar
  12. Marsh, M.S., Walsh, R.W., De Moortel, I., Ireland, J.: 2003, Astron. Astrophys. 404, L37. CrossRefADSGoogle Scholar
  13. Meyer, Y., Roques, S. (eds.): 1993, Proceedings of the International Conference: Wavelets and Applications, Editions Frontieres, Gif-sur-Yvette. Google Scholar
  14. Milovanov, A.V., Zelenyj, L.M.: 1993, Phys. Fluids B 5, 2609. CrossRefADSMathSciNetGoogle Scholar
  15. Nakariakov, V.M., King, D.B.: 2007, Solar Phys. 241, 397. CrossRefADSGoogle Scholar
  16. Nakariakov, V.M., Verwichte, E.: 2005, Living Rev. Solar Phys. 2, 3. ADSGoogle Scholar
  17. Nindos, A., Alissandrakis, C.E., Gelfreikh, G.B., Bogod, V.M., Gontikakis, C.: 2002, Astron. Astrophys. 386, 658. CrossRefADSGoogle Scholar
  18. Terradas, J., Oliver, R., Ballester, J.L.: 2004, Astrophys. J. 614, 435. CrossRefADSGoogle Scholar
  19. Torrence, C., Compo, G.P.: 1998, Bull. Am. Meteorol. Soc. 79, 61. CrossRefADSGoogle Scholar
  20. Weng, H., Lau, K.-M.: 1994, J. Atmos. Sci. 51, 2523. CrossRefADSGoogle Scholar
  21. Zhugzhda, Y.D., Balthasar, H., Staude, J.: 2000, Astron. Astrophys. 355, 347. ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Institute of Solar-Terrestrial PhysicsIrkutskRussia
  2. 2.Physics DepartmentUniversity of WarwickCoventryUK

Personalised recommendations