Skip to main content

Conducting Polymers in Neural Stimulation Applications

  • Chapter
  • First Online:
Implantable Neural Prostheses 2

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

With advances in neural prostheses, the demand for high-resolution and site-specific stimulation is driving microelectrode research to develop electrodes that are much smaller in area and longer in lifetime. For such arrays, the choice of electrode material has become increasingly important. Currently, most neural stimulation devices use platinum, iridium oxide, or titanium nitride electrodes. Although those metal electrodes have low electrode impedance, high charge injection capability, and high corrosion resistance, the neural interface between solid metal and soft tissue has undesilable characteristics. Recently, several conducting polymers, also known as inherently conducting polymers (ICPs), have been explored as new electrode materials for neural interfaces. Polypyrrole (PPy), polyaniline (PANi), and poly(3,4-ethylenedioxythiophene) (PEDOT) polymers may offer the organic, improved bionic interface that is necessary to promote biocompatibility in neural stimulation applications. While conducting polymers hold much promise in biomedical applications, more research is needed to further understand the properties of these materials. Factors such as electrode impedance, polymer volume changes under electrical stimulation, charge injection capability, biocompatibility, and long-term stability are of significant importance and may pose as challenges in the future success of conducting polymers in biomedical applications.

This chapter looks into the current research and challenges for conducting polymers and their applications in neural stimulation electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Middlebrooks JC, Bierer JA, Snyder RL (2005) Cochlear implants: The view from the brain. Curr Opin Neurobiol 15:488–493

    Article  Google Scholar 

  2. Clark GM (2006) The multiple-channel cochlear implant: The interface between sound and the central nervous system for hearing, speech, and language in deaf people—a personal perspective. Philos Trans R Soc Lond B 361:791–810

    Article  Google Scholar 

  3. Giszter SF (2008) Spinal cord injury: Present and future therapeutic devices and prostheses. Neurotherapeutics 5:147–162

    Article  Google Scholar 

  4. North RB (2008) Neural interface devices: Spinal cord stimulation technology. Proc IEEE 96:1108–1119

    Article  Google Scholar 

  5. Cameron T (2004) Safety and efficacy of spinal cord stimulation for the treatment of chronic pain: A 20-year literature review. J Neurosurg 100:254–267

    Google Scholar 

  6. Rise MT (2000) Instrumentation for neuromodulation. J Arc Med 31:237–247

    Google Scholar 

  7. Perlmutter JS, Mink JW (2006) Deep brain stimulation. Annu Rev Neuro. 29:229–257

    Article  Google Scholar 

  8. Diamond A, Jankovic J (2005) The effect of deep brain stimulation on quality of life in movement disorders. J Neurol 76:1188–1193

    Google Scholar 

  9. Bittar RG, Kar-Purkayastha I, Owen SL et al (2005) Deep brain stimulation for pain relief: A meta-analysis. J Clin Neurosci 12:515–519

    Article  Google Scholar 

  10. Volkmann J (2004) Deep brain stimulation for the treatment of Parkinson’s disease. J Clin Neurophysiol 21:6–17

    Article  Google Scholar 

  11. Humayun MS, Weiland JD, Fuji GY et al (2003) Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision Res 43:2573–2581

    Article  Google Scholar 

  12. Weiland JD, Liu WT, Humayun MS (2005) Retinal prosthesis. Annu Rev Biomed Eng 7:361–401

    Article  Google Scholar 

  13. Schwartz AB (2004) Cortical neural prosthetics. Annu Rev Neurosci 27:487–507

    Article  Google Scholar 

  14. Friehs GM, Zerris VA, Ojakangas CL et al (2004) Brain-machine and brain-computer interfaces. Stroke 35:2702–2705

    Article  Google Scholar 

  15. Zrenner E (2002) Will retinal implants restore vision? Science 295(5557):1022–1025

    Article  Google Scholar 

  16. Maynard EM (2001) Visual prostheses. Annu Rev Biomed Eng 3:145–168

    Article  Google Scholar 

  17. Greenberg RJ (2000) Visual prostheses: A Review. Neuromodulation 3(3):161–165

    Article  Google Scholar 

  18. Weiland JD, Humayun MS (2008) Visual prosthesis. Proc IEEE 96:1076–1084

    Article  Google Scholar 

  19. Margalit E, Maia M, Weiland JD et al (2002) Retinal prosthesis for the blind. Surv Ophthalmol 47:335–356

    Article  Google Scholar 

  20. Rizzo J, Wyatt J, Humayun M et al (2001) Retinal prosthesis: An encouraging first decade with major challenges ahead. Ophthalmology 108(1):13–14

    Article  Google Scholar 

  21. Butterwick AF, Vankov A, Huie P et al (2006) Dynamic range of safe electrical stimulation of the retina SPIE Proceedings, Ophthalmic Technologies XVI, SPIE 6138:1–8

    Google Scholar 

  22. Cui XY, Hetke JF, Wiler JA et al (2001) Electrochemical deposition and characterization of conducting polymer polypyrrole/PSS on multichannel neural probes. Sens Actuators A93:8–18

    Article  Google Scholar 

  23. Cui X, Lee VA, Raphael Y et al (2001) Surface modification of neural recording electrodes with conducting polymer/biomolecule blends. J Biomed Mater Res 56:261–272

    Article  Google Scholar 

  24. Cui XY, Martin DC (2003) Electrochemical deposition and characterization of poly(3,4-ethylenedioxythiophene) on neural microelectrode arrays. Sens Actuators B Chem 89:92–102

    Article  Google Scholar 

  25. Cui, XY, Martin DC (2003) Fuzzy gold electrodes for lowering impedance and improving adhesion with electrodeposited conducting polymer films. Sens Actuators A: Phys 103:384–394

    Article  Google Scholar 

  26. Xiao YH, Cui XY, Martin DC (2004) Electrochemical polymerization and properties of PEDOT/S-EDOT on neural microelectrode arrays. J Electroanal Chem 573:43–48

    Article  Google Scholar 

  27. Yang JY, Martin DC (2004) Microporous conducting polymers on neural microelectrode arrays II. Physical characterization. Sens Actuators A Phys 113A:204–211

    Article  Google Scholar 

  28. Kim DH, Abidian M, Martin DC (2004) Conducting polymers grown in hydrogel scaffolds coated on neural prosthetic devices. J Biomed Mater Res 71A:577–585

    Article  Google Scholar 

  29. Cui XY, Wiler J, Dzamann M et al (2003) In vivo studies of polypyrrole/peptide coated neural probes. Biomaterials 24:777–787

    Article  Google Scholar 

  30. Kim DH, Sequerah C, Hendricks JL et al (2007) Effect of immobilized nerve growth factor (NGF) on conductive polymers electrical properties and cellular response. Adv Funct Mater 17:79–86

    Article  Google Scholar 

  31. Yamato H, Ohwa M, Wernet W (1995) Stability of polypyrrole and poly(3,4-ethylenedioxythiophene) for biosensor application. J Electroanal Chem 397:163–170

    Article  Google Scholar 

  32. Ludwig KA, Uram JD, Yang JY et al (2006) Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylemedioxythiophene) (PEDOT) film. J Neural Eng 3:59–70

    Article  Google Scholar 

  33. Cui X, Zhou D (2007) Poly (3,4-ethylenedioxythiophene) for Chronic neural stimulation. IEEE Trans Neural Syst Rehabil Eng 15:502–508

    Article  Google Scholar 

  34. Cogan SF (2008) Neural stimulation and recording electrodes. Annu Rev Biomed Eng 10:14.1–14.35

    Article  Google Scholar 

  35. Robblee LS, Rose TL (1990) Electrochemical guidelines for selection of protocols and electrode materials for neural stimulation. In: Agnew WF, McCreery DB (eds) Neural Prostheses: Fundamental Studies, pp. 25–66. Englewood Cliffs, NJ, Prentice Hall

    Google Scholar 

  36. McCreery DB, Agnew WF, Yuen TG et al (1990) Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation. IEEE Trans Biomed Eng 37:996–1001

    Article  Google Scholar 

  37. Brummer SB, Turner MJ (1977) Electrochemical considerations for safe electrical stimulation of the nervous system with platinum electrodes. IEEE Trans Biomed Eng 24:59–63

    Article  Google Scholar 

  38. Merrill DR, Bikson M, Jefferys J (2005) Electrical stimulation of excitable tissue: Design of efficacious and safe protocols. J Neurosci Met 141:71–198

    Google Scholar 

  39. Bard A, Faulkner L (1980) Electrochemical Methods. Chapter 1, Wiley, New York

    Google Scholar 

  40. Rodger DC, Fong AJ, Li W (2008) Flexible parylene-based multielectrode array technology for high-density neural stimulation and recording. Sens Actuators B: Chem 132:449–460

    Article  Google Scholar 

  41. Brummer SB, Robblee LS, Hambrecht FT (1983) Criteria for selecting electrodes for electrical stimulation: Theoretical and practical considerations. Ann NY Acad Sci 405:159–171

    Article  Google Scholar 

  42. Robblee LS, McHardy J, Agnew WF (1983) Electrical stimulation with Pt electrodes. VII. Dissolution of pt electrodes during electrical stimulation of the cat cerebral cortex. J Neurosci Methods 9:310–318

    Article  Google Scholar 

  43. Rose TL, Robblee LS (1990) Electrical stimulation with pt electrodes. VIII. Electrochemically safe charge injection limits with 0.2 ms pulses. IEEE Trans Biomed Eng 37:1118–1120

    Article  Google Scholar 

  44. Humayun MS, de Juan E Jr, Weiland JD (1999) Pattern electrical stimulation of the human retina. Vision Res 39:2569–2576

    Article  Google Scholar 

  45. Huang CQ, Carter PM, Shepherd PK (2001) Stimulus induced pH changes in cochlear implants—an in vitro and in vivo study. Ann Biomed Eng 29:791–802

    Article  Google Scholar 

  46. Mortimer JT, Kaufman D, Roessman U (1980) Intramuscular electrical stimulation tissue damage. Ann Biomed Eng 8:235–244

    Article  Google Scholar 

  47. Hu Z, Zhou D, Greenberg R et al (2006) Nanopowder molding method for creating implantable high-aspect-ratio electrodes on thin flexible substrates. Biomaterials 27:2009–2017

    Article  Google Scholar 

  48. Weiland JD, Anderson DJ, Humayun MS (2002) In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes. IEEE Trans Biomed Eng 49:1574–1579

    Article  Google Scholar 

  49. Guenther E, Troger B, Schlosshauer B et el (1999) Long-term survival of retinal cell cultures on retinal implant materials. Vision Res 39:3988–3994

    Article  Google Scholar 

  50. Weiland JD, Anderson J (2000) Chronic neural stimulation with thin-film, iridium oxide electrodes. IEEE Trans Biomed Eng 47:911–918

    Article  Google Scholar 

  51. Cogan SF, Guzelian AA, Agnew WF et al (2004) Over-pulsing degrades activated iridium oxide films used for intracortical neural stimulation. J Neurosci Methods 137:141–150

    Article  Google Scholar 

  52. Wallace G, Spinks G (2007) Conducting polymers – bridging the bionic interface. Soft Matter 3:665–671

    Article  Google Scholar 

  53. George PM, Lyckman AW, LaVan DA et al (2005) Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics. Biomaterials 26:3511–3519

    Article  Google Scholar 

  54. Adhikari B, Majumdar S (2004) Polymers in sensor applications. Prog Polym Sci 29:699–766

    Article  Google Scholar 

  55. Ramakrishnan S (1997) Conducting polymers from a laboratory curiosity to the market place. Resonance 2:48–58

    Article  Google Scholar 

  56. Shirakawa H, Louis EJ, MacDiarmid AG (1977) Synthesis of electrically conductive organic polymers:Halogen derivatives of polyacetylene (CH)x, J Chem Soc Chem Commun 16:578–580

    Article  Google Scholar 

  57. Alan G. MacDiarmid AG (2002) Synthetic metals: A novel role for organic polymers. Synth met 125:11–22

    Google Scholar 

  58. Ateh DD, Navsaria HA, P. Vadgama P (2006) Polypyrrole-based conducting polymers and interactions with biological tissues. J R Soc Interface 3:741–752

    Article  Google Scholar 

  59. Simpson J, Kirchmeyer S, Reuter K (2005) Advances and applications of inherently conductive polymer technologies based on poly(3,4-ethylenedioxythiophene) AIMCAL Fall Technical Conference and 19th International Vacuum Web Coating Conference, Session 5: Advances in Technology, October 16–20, 2005, Myrtle Beach, South Carolina

    Google Scholar 

  60. Guimard NK, Gomez N, Schmidt CE (2007) Conducting polymers in biomedical engineering. Prog Polym Sci 32:876–921

    Article  Google Scholar 

  61. Schmidt CE, Shastri VR, Vacanti JP et al (1997) Stimulation of neurite outgrowth using an electrically conducting polymer. Proc Natl Acad Sci 94:8948–8953

    Article  Google Scholar 

  62. Xiao YH, Cui XY, Hancock JM, et al (2004) Electrochemical polymerization of poly(hydroxymethylated-3,4-ethylenedioxythiophene) (PEDOT-MeOH) on multichannel neural probes. Sens Actuators B Chem 99:437–43

    Article  Google Scholar 

  63. Kumar D, Sharma RC (1998) Advances in conductive polymers. Eur Polym J 34:1053–1060

    Article  Google Scholar 

  64. Inzelt G, Pineri M, Schultze JW et al (2000) Electron and proton conducting polymers: Recent developments and prospects. Electrochim Acta 45:2403–2421

    Article  Google Scholar 

  65. Kang HR, Jo NJ (2006) Solid-state conducting polymer actuator based on electrochemically-deposited polypyrrole and solid polymer electrolyte. High Perform Polym 18:665–678

    Article  Google Scholar 

  66. Skotheim TA, Elsenbaumer RL, Reynolds JR (1997) Handbook of Conducting Polymers, Vols. 1–2, Marcel Dekker, New York

    Google Scholar 

  67. Mottaghitalab V, Xi B, Spinks GM et al (2006) Polyaniline fibers containing single walled carbon nanotubes: Enhanced performance artificial muscles. Synth Met 156:796–803

    Article  Google Scholar 

  68. Aziz EF, Vollmer A, Eisebitt S et al (2007) Localized charge transfer in a molecularly doped conducting polymer. Adv Mater 19: 3257–3260

    Article  Google Scholar 

  69. Dietrich M, Heinze J, Heywang G et al (1994) Electrochemical studies on poly(3,4-ethylenedioxithiophene) and related materials. J Electroanal Chem 369:87–92

    Article  Google Scholar 

  70. Morvant MC, Reynolds JR (1998) In situ conductivity studies of poly(3,4-ethylenedioxythiophene). Synth Met 92:57–61

    Article  Google Scholar 

  71. Hillman AR, Daisley SJ, Bruckenstein S (2008) Ion and solvent transfers and trapping phenomena during n-doping of PEDOT films. Electrochim Acta 53:3763–3771

    Article  Google Scholar 

  72. Armes SP (1987) Optimum reaction conditions for the polymerization of pyrrole by iron (III) chloride in aqueous solution. Synth Met 20:365–371

    Article  Google Scholar 

  73. Duchet J, Legras R, Demoustier-Champagne S (1998) Chemical synthesis of polypyrrole: Structure-properties relationship. Synth Met 98:113–122

    Article  Google Scholar 

  74. Otero TF, Sansinena JM (1995) Artificial muscles based on conducting polymers. Bioelectroch Bioener 38:411–414

    Article  Google Scholar 

  75. LaVan DA, George PM, Langer R (2003) Simple, three-dimensional microfabrication of electrodeposited structures. Angew Chem 42:1262–1265

    Article  Google Scholar 

  76. Nishizawa M, Nozaki H, Kaji H (2007) Electrodeposition of anchored polypyrrole film on microelectrodes and stimulation of cultured cardiac myocytes. Biomaterials 28:1480–1485

    Article  Google Scholar 

  77. Wadhwa R, Lagenaur CF, Cui XT (2006) Electrochemically controlled release of dexamethasone from conducting polymer polypyrrole coated electrode. J Control Release 110:531–541

    Article  Google Scholar 

  78. Martins NCT, Silva T, Montemor MF et al (2008) Electrodeposition and characterization of polypyrrole films on aluminum alloy 6061-T6. Electrochimica Acta 53:4754–4763

    Article  Google Scholar 

  79. Lewis TW, Spinks GM, Wallace GG et al (2001) Investigation of the applied potential limits for polypyrrole when employed as the active components of a two-electrode device, Synth Met 122:379–385

    Article  Google Scholar 

  80. Herrasti P, Diaz L, Ocon P et al (2004) Electrochemical and mechanical properties of polypyrrole coatings on steel. Electrochim Acta 49:3693–3699

    Article  Google Scholar 

  81. Choi S, Park S (2002) Electrochemistry of conductive polymers XXVI. Effects of electrolytes and growth methods on polyaniline morphology. J Electrochem Soc 149:E26–E34

    Article  Google Scholar 

  82. Widge A, Jeffries-El M, Cui X (2007) Self-assembled monolayers of polythiophene conductive polymers improve biocompatibility and electrical impedance of neural electrodes. Biosens and Bioelectron 22:1723–1732

    Article  Google Scholar 

  83. Malhotra BD, Chaubey A, Singh SP (2006) Prospects of conducting polymers in biosensors. Analytica Chimica Acta 578:59–74

    Article  Google Scholar 

  84. Ramanavicius A, Kausaite A, Ramanavicien A (2005) Polypyrrole-coated glucose oxidase nanoparticles for biosensor design. Sens Actuators B 111–112:532–539

    Article  Google Scholar 

  85. Schmidt CE, Leach JB (2003) Neural tissue engineering: Strategies for repair and regeneration. Annu Rev Biomed Eng 5:293–347

    Article  Google Scholar 

  86. Abidian MR, Kim DH, Martin DC (2006) Conducting-polymer nanotubes for controlled drug release. Adv Mat 18:405–409

    Article  Google Scholar 

  87. Thompson BC, Simon E. Moulton SE, Ding J (2006) Optimising the incorporation and release of a neurotrophic factor using conducting polypyrrole. J Control Release 116:285–294

    Article  Google Scholar 

  88. Teles FRR, Fonseca LP (2008) Applications of polymers for biomolecule immobilization in electrochemical biosensors. Mater Sci Eng, C. doi:10.1016/j.msec.2008.04.010

    Google Scholar 

  89. Lange U, Roznyatovskaya NV, Mirsky VM (2008) Conducting polymers in chemical sensors and arrays. Anal Chim Acta 614:1–26

    Article  Google Scholar 

  90. Rohwerder M, Michalik A (2007) Conducting polymers for corrosion protection: What makes the difference between failure and success? Electrochim Acta 53:1300–1313

    Article  Google Scholar 

  91. de Marcos S, Wolfbeis OS (1996) Optical sensing of pH based on polypyrrole films. Analytica Chimica Acta 334:149–153

    Article  Google Scholar 

  92. Jin Z, Su Y, Duan Y (2000) An improved optical pH sensor based on polyaniline. Sens Actuators B: Chem 71:118–122

    Article  Google Scholar 

  93. Liao YH, Chou JC (2008) Comparison of polypyrrole-conducting polymer and Ag/AgCl reference electrodes Used for ruthenium dioxide pH electrode. J Electrochem Soc 155:J257–J262

    Article  Google Scholar 

  94. Cogan SF, Peramunage D, Smirnov A et al (2007) Polyethylenedioxythiophene (PEDOT) coatings for neural stimulation and recording electrodes. Mater Res Soc Meet, (Abstr. QQ2.7), Nov. 26–30, 2007, Boston

    Google Scholar 

  95. Innis PC, Moulton SE, Wallace GG (2007) Biomedical applications of inherently conducting polymers (ICPs) in Skotheim T (ed) Conjugated Polymers: Processing and applications, Handbook of Conducting Polymers, 3rd edn. CRC press, New York

    Google Scholar 

  96. Green RA, Poole-Warren LA, Lovell NH (2007) Novel Neural interface for vision prosthesis electrodes: Improving electrical and mechanical properties through layering. Proceedings 3rd International IEEE/EMBS Conference on Neural Engineering, pp. 97–100

    Google Scholar 

  97. Green RA, Lovell NH, Wallace GG et al (2008) Conducting polymers for neural interfaces: Challenges in developing an effective long-term implant. Biomaterials 29:3393–3399

    Article  Google Scholar 

  98. Stauffer WR, Bi B, Cui XT (2007) Conducting polymer based neurochemical release system. In Biomedical Engineering Society Meeting, Los Angeles, CA

    Google Scholar 

  99. Stauffer WR, Cui XT (2006) Polypyrrole doped with 2 peptide sequences from laminin. Biomaterials 27:2405–2413

    Article  Google Scholar 

  100. Richardson-Burns SM, Hendricks JL, Foster B et al (2007) Polymerization of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) around living neural cells. Biomaterials 28:1539–1552

    Article  Google Scholar 

  101. Richardson-Burns SM, Hendricks JL, Martin DC (2007) Electrochemical polymerization of conducting polymers in living neural tissue. J Neural Eng 4:L6–L13

    Article  Google Scholar 

  102. Ito Y, Yagi T, Ohnishi Y et al (2002) A study on conductive polymer electrodes for stimulating the nervous system. Int J Appl Electromagnetics Mech 14:347–352

    Google Scholar 

  103. Yang JY, Martin DC (2006) Impedance spectroscopy and nanoindentation of conducting poly(3,4-ethylenedioxythiophene) coatings on microfabricated neural prosthetic devices. J Mater Res 21(5):1124–1132

    Article  Google Scholar 

  104. Abidian MR, Martin DC (2008) Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes. Biomaterials 29:1273–1283

    Article  Google Scholar 

  105. Abidian MR, Martin DC (2009) Multifunctional nanobiomaterials for neural interfaces. Adv Funct Mater, 19:573–585

    Google Scholar 

  106. Tolstopyatova EG, Sazonova SN, Malev VV (2005) Electrochemical impedance spectroscopy of poly(3-methylthiophene) and poly(3-octylthiophene) film electrodes. Electrochim Acta 50:1565–1571

    Article  Google Scholar 

  107. Bobacka J, Lewenstam A, Ivaska A (2000) Electrochemical impedance spectroscopy of oxidized poly(3,4-ethylenedioxythiophene) film electrodes in aqueous solutions. J Electroanal Chem 489:17–27

    Article  Google Scholar 

  108. Macdonald JR (1987) Impedance Spectroscopy: Emphasizing Solid Materials and Systems. New York, Wiley

    Google Scholar 

  109. Macdonald JR (1992) Impedance spectroscopy. J Ann Biomed Eng 20:289–305

    Article  Google Scholar 

  110. Otero TF, Lopez Cascales JJ, Vazquez Arenas G (2007) Mechanical characterization of free-standing polypyrrole film. Mater Sci Eng C27:18–22

    Article  Google Scholar 

  111. Bloor D, Hercliffe RD, Galiotis CG et al (1985) Electronic Properties of Polymers and Related Compounds, Springer-Verlang, Berlin, p. 179

    Google Scholar 

  112. Wallace GG, et al (2003) Conductive Electroactive Polymer, Intelligent Materials Systems, CRC Press, Boca Raton, FL

    Google Scholar 

  113. Xu H, Wang C, Wang CL et al (2006) Polymer actuator valves toward controlled drug delivery application. Biosens Bioelectron. 21:2094–2099

    Google Scholar 

  114. Norlin A, Pan J, Leygrafa C (2005) Investigation of electrochemical behavior of stimulation/sensing materials for pacemaker electrode applications I. Pt, Ti, and TiN coated electrodes. J Electrochem Soc 152:J7–J15

    Article  Google Scholar 

  115. Williams RL, Doherty PJ (1994) A preliminary assessment of poly(pyrrole) in nerve guide studies. J Mater Sci Mater Med 5:429–433

    Article  Google Scholar 

  116. Kamalesh S, Tan P, Wang J et al (2000) Biocompatibility of electroactive polymers in tissues. J Biomed Mater Res 52:467–478

    Article  Google Scholar 

  117. Wang X, Gu X, Yuan C et al (2004) Evaluation of PPy with biological tissues biocompatibility of polypyrrole in vitro and in vivo. J Biomed Mater Res 68A:411–422

    Article  Google Scholar 

  118. Bidez PR III , Li S, Macdiarmid AG et al (2006) Polyaniline, an electroactive polymer, supports adhesion and proliferation of cardiac myoblasts. J Biomater Sci Polymer Edn 17:199–212

    Article  Google Scholar 

  119. Wangnd KN, Wang CH, Dong YQ et al (1999) In vivo tissue response to polyaniline. Synth Met 102:1313–1314

    Article  Google Scholar 

  120. Farrington AM, Slater JM (1997) Prediction and characterization of the charge/size exclusion properties of over-oxidized poly(pyrrole) films. Electroanalytical 9:843–847

    Article  Google Scholar 

  121. Gao ZQ, Zi MX, chen BS (1994) the influence of overoxidation treatment on the permeability of polypyrrole film. J Electroanal chem 373:141–148

    Google Scholar 

  122. Shiigi H, Kishimoto M, Yakabe, H et al (2002) Highly selective molecularly imprinted overoxidized polypyrrole colloids: One step preparation technique. Anal Sci 18:41–44

    Article  Google Scholar 

  123. Smela E, Inganas O, Lundstrom I (1995) Controlled folding of micrometer-size structures. Sci 268:1735–1738

    Article  Google Scholar 

  124. Smela E (1998) Thiol-modified pyrrole monomers: 4. Electrochemical deposition of polypyrrole over 1-(2-thioethyl)pyrrole. Langmuir 14:2996–3002

    Article  Google Scholar 

  125. Smela E (1999) Microfabrication of PPy microactuators and other conjugated polymer devices. J. Micromech. Microeng 9:1–18

    Article  Google Scholar 

  126. Smela, E, Zuccarello G, Kariis H et al (1998) Thiol-modified pyrrole monomers: 1. Synthesis, characterization, and polymerization of 1-(2-thioethyl) pyrrole and 3-(2-thioethyl)pyrrole. Langmuir 14:2970–2975

    Article  Google Scholar 

  127. Liu Y, Gan Q, Baig S et al (2007) Improving PPy adhesion by surface roughening. J. Phys. Chem. C 111:11329–11338

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David D. Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zhou, D.D., Cui, X.T., Hines, A., Greenberg, R.J. (2009). Conducting Polymers in Neural Stimulation Applications. In: Zhou, D., Greenbaum, E. (eds) Implantable Neural Prostheses 2. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-0-387-98120-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-98120-8_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98119-2

  • Online ISBN: 978-0-387-98120-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics