The Electrochemistry of Charge Injection at the Electrode/Tissue Interface

  • Daniel R. Merrill
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


The physical basis for electrical stimulation of excitable tissue is presented with emphasis on the fundamental mechanisms of charge injection at the electrode/tissue interface. Faradaic and non-Faradaic charge-transfer mechanisms are presented and contrasted. An electrical model of the electrode/tissue interface is given. The physical basis for the origin of electrode potentials is given. Electrochemical reversibility is discussed. Two-electrode and three-electrode systems are compared. Various methods of controlling charge delivery during pulsing are presented. Commonly used electrode materials and stimulation protocols are reviewed in terms of stimulation efficacy and safety. Principles of stimulation of excitable tissue are reviewed. Mechanisms of damage to tissue and the electrode are reviewed.


Electrode Potential Charge Injection Exchange Current Density Interpulse Interval Excitable Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Merrill DR, Bikson M, Jefferys JGR (2005) Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods 141(2):171–198CrossRefGoogle Scholar
  2. 2.
    Helmholtz von HLF (1853) Ueber einige gesetze der vertheilung elektrischer strome in korperlichen leitern mit anwendung auf die thierisch-elektrischen versuche. Ann Physik 89:211–233Google Scholar
  3. 3.
    Guoy G (1910) Constitution of the electric charge at the surface of an electrolyte. J Physique 9:457–467Google Scholar
  4. 4.
    Chapman DL (1913) A contribution to the theory of electrocapillarity. Philos Mag 25:475–481Google Scholar
  5. 5.
    Stern O (1924) Zur theorie der elektrolytischen doppelschicht. Z Elektrochem 30:508–516Google Scholar
  6. 6.
    Grahame DC (1947) The electrical double layer and the theory of electrocapillarity. Chem Rev 41:441–501CrossRefGoogle Scholar
  7. 7.
    Randles JEB (1947) Rapid electrode reactions. Disc Faraday Soc 1:11–19Google Scholar
  8. 8.
    Gileadi E, Kirowa-Eisner E, Penciner J (1975) Interfacial Electrochemistry: An Experimental Approach. Addison-Wesley, Reading, MA, Section IIGoogle Scholar
  9. 9.
    Bard AJ, Faulkner LR (1980) Electrochemical Methods. John Wiley and Sons, New YorkGoogle Scholar
  10. 10.
    Rand DAJ, Woods R (1974) Cyclic voltammetric studies on iridium electrodes in sulfuric acid solutions. Nature of oxygen layer and metal dissolution. J Electroanal Chem Interfacial Electrochem 55:375–381CrossRefGoogle Scholar
  11. 11.
    Frazer EJ, Woods R (1979) The oxygen evolution reaction on cycled iridium electrodes. J Electroanal Chem 102:127–130Google Scholar
  12. 12.
    Gottesfeld S (1980) The anodic rhodium oxide film:a two-color electrochromic system. J Electrochem Soc 127:272–277CrossRefGoogle Scholar
  13. 13.
    Dautremont-Smith WC (1982) Transition metal oxide electrochromic materials and displays: a review. Part 2. Oxides with anodic coloration. Displays 3(3):67–80CrossRefGoogle Scholar
  14. 14.
    Delahay P (1965) Double Layer and Electrode Kinetics. Interscience Publishers, New YorkGoogle Scholar
  15. 15.
    Pletcher D, Walsh FC (1990) Industrial Electrochemistry, second edition. Chapman and Hall, LondonGoogle Scholar
  16. 16.
    Silbey RJ, Alberty RA (2001) Physical Chemistry, third edition. John Wiley and Sons, New YorkGoogle Scholar
  17. 17.
    Ives DJG, Janz GJ (1961) Reference Electrodes: Theory and Practice. Academic Press, New YorkGoogle Scholar
  18. 18.
    Rand DAJ, Woods R (1971) The nature of adsorbed oxygen on rhodium, palladium, and gold electrodes. J Electroanal Chem Interfacial Electrochem 31:29–38CrossRefGoogle Scholar
  19. 19.
    Michael DJ, Wightman RM (1999) Electrochemical monitoring of biogenic amine neurotransmission in real time. J Pharm Biomed Anal 19:33–46CrossRefGoogle Scholar
  20. 20.
    Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59(5):1609–1623CrossRefGoogle Scholar
  21. 21.
    Stohs SJ (1995) The role of free radicals in toxicity and disease. J Basic Clin Physiol Pharmacol 6(3–4):205–228Google Scholar
  22. 22.
    Hemnani T, Parihar MS (1998) Reactive oxygen species and oxidative DNA damage. Indian J Physiol Pharmacol 42(4):440–452Google Scholar
  23. 23.
    Imlay JA (2003) Pathways of oxidative damage. Annu Rev Microbiol 57:395–418CrossRefGoogle Scholar
  24. 24.
    Bergamini CM, Gambetti S, Dondi A, Cervellati C (2004) Oxygen, reactive oxygen species and tissue damage. Curr Pharm Des 10(14):1611–1626CrossRefGoogle Scholar
  25. 25.
    Donaldson NdN, Donaldson PEK (1986) When are actively balanced biphasic (‘Lilly’) stimulating pulses necessary in a neural prosthesis? I.Historical background, Pt resting potential, dQ studies. Med and Biol Eng and Comput 24:41–49MathSciNetGoogle Scholar
  26. 26.
    Donaldson NdN, Donaldson PEK (1986) When are actively balanced biphasic (‘Lilly’) stimulating pulses necessary in a neural prosthesis? II.pH changes, noxious products, electrode corrosion, discussion. Med and Biol Eng and Comput 24:50–56MathSciNetCrossRefGoogle Scholar
  27. 27.
    Weinman J, Mahler J (1964) An analysis of electrical properties of metal electrodes. Med Electron Biol Eng 2:229–310CrossRefGoogle Scholar
  28. 28.
    Dymond AM, Kaechele LE, Jurist JM, Crandall PH (1970) Brain tissue reaction to some chronically implanted metals. J Neurosurg 33:574–580CrossRefGoogle Scholar
  29. 29.
    Stensaas SS, Stensaas LJ (1978) Histopathological evaluation of materials implanted in the cerebral cortex. Acta Neuropathol 41:145–155CrossRefGoogle Scholar
  30. 30.
    Loeb GE, Walker AE, Vematsu S, Konigsmark BW (1977) Histological reaction to various conductive and dielectric films chronically implanted in the subdural space. J Biomed Mater Res 11(2):195–210CrossRefGoogle Scholar
  31. 31.
    Majji AB, Humayun MS, Weiland JD, Suzuki S, D’Anna SA, deJuan E Jr (1999) Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs. Invest Opthalmol Vis Sci 40(9):2073–2081Google Scholar
  32. 32.
    Chouard CH, Pialoux P (1995) Biocompatibility of cochlear implants. Bull Acad Natl Med 179(3):549–555Google Scholar
  33. 33.
    Niparko JK, Altschuler RA, Xue XL, Wiler JA, Anderson DJ (1989) Surgical implantation and biocompatibility of central nervous system auditory prostheses. Ann Otol Rhinol Laryngol 98(12 Pt 1):965–970Google Scholar
  34. 34.
    Babb TL, Kupfer W (1984) Phagocytic and metabolic reactions to chronically implanted metal brain electrodes. Exp Neurol 86(2):171–182CrossRefGoogle Scholar
  35. 35.
    Fisher G, Sayre GP, Bickford RC (1961) Histological changes in the cat’s brain after introduction of metallic and plastic-coated wire. In: Sheer DE (ed) Electrical Stimulation of the Brain. Univ. of Texas Press, Austin, 55–59Google Scholar
  36. 36.
    Sawyer PN, Srinivasan S (1974) In Ray CD (ed) Medical Engineering. Chicago 1099–1110.Google Scholar
  37. 37.
    Ryhanen J, Kallioinen M, Tuukkanen J, Junila J, Niemela E, Sandvik P, Serlo W (1998) In vivo biocompatibility evaluation of nickel-titanium shape memory alloy: muscle and perineural tissue responses and encapsule membrane thickness. J Biomed Mater Res 41(3):481–488CrossRefGoogle Scholar
  38. 38.
    Bogdanski D, Koller M, Muller D, Muhr G, Bram M, Buchkremer HP, Stover D, Choi J, Epple M (2002) Easy assessment of the biocompatibility of Ni-Ti alloys by in vitro cell culture experiments on a functionally graded Ni-NiTi-Ti material. Biomaterials 22(23):4549–4555CrossRefGoogle Scholar
  39. 39.
    Jones KE, Campbell PK, Normann RA (1992) A glass/silicon composite intracortical electrode array. Ann Biomed Eng 20(4):423–437CrossRefGoogle Scholar
  40. 40.
    Hoogerwerf AC, Wise KD (1994) A three-dimensional microelectrode array for chronic neural recording. IEEE Trans Biomed Eng 41:1136–1146CrossRefGoogle Scholar
  41. 41.
    Rousche PJ, Pellinen DS, Pivin DP, Williams JC, Vetter RJ, Kipke DR (2001) Flexible polyimide-based intracortical electrode arrays with bioactive capability. IEEE Trans Biomed Eng 48(1):361–370CrossRefGoogle Scholar
  42. 42.
    Kennedy PR (1989) The cone electrode:A long-term electrode that records from neurites grown onto its recording surface. J Neurosci Methods 29(3):181–193CrossRefGoogle Scholar
  43. 43.
    Kennedy PR, Bakay RA (1998) Restoration of neural output from a paralyzed patient by a direct brain connection. Neuroreport 9(8):1707–1711CrossRefGoogle Scholar
  44. 44.
    Kennedy PR, Bakay RA, Moore M, Adams K, Montgomery G (1999) Neural activity during acquisition of cursor control in a locked-in patient. Soc Neurosci Abstr 25(1):894Google Scholar
  45. 45.
    Rudge JS, Smith GM, Silver J (1989) An in vitro model of wound healing in the central nervous system: analysis of cell reaction and interaction at different times. Exp Neurol 103:1–16CrossRefGoogle Scholar
  46. 46.
    Turner JN, Shain W, Szarowski DH, Andersen M, Martins S, Isaacson M, Craighead H (1999) Cerebral astrocyte response to micromachined silicon implants. Exp Neurol 156:33–49CrossRefGoogle Scholar
  47. 47.
    Bignami A, Dahl D (1976) The astroglial response to stabbing: immunoflourescence studies with antibodies to astrocyte-specific protein (GFA) in mammalian and sub-mammalian vertebrate. Neuropathol Appl Neurobiol 251:23–43Google Scholar
  48. 48.
    Robblee LS, Rose TL (1990) Electrochemical guidelines for selection of protocols and electrode materials for neural stimulation. In: Agnew WF, McCreery DB (ed) Neural Prostheses: Fundamental Studies. Prentice-Hall, Englewood Cliffs 25–66.Google Scholar
  49. 49.
    Merrill DR (2002) Electrochemical processes occurring on gold in sulfuric acid under neural stimulation conditions, Ph.D. thesis, Case Western Reserve University, Dept. of Biomedical Engineering, Cleveland,OHGoogle Scholar
  50. 50.
    Merrill DR, Stefan IC, Scherson DA, Mortimer JT (2005) Electrochemistry of gold in aqueous sulfuric acid solutions under neural stimulation conditions. J Electrochem Soc 152(7):E212–E221CrossRefGoogle Scholar
  51. 51.
    White RL, Gross TJ (1974) An evaluation of the resistance to electrolysis of metals for use in biostimulation probes. IEEE Trans Biomed Eng BME-21:487–490CrossRefGoogle Scholar
  52. 52.
    Johnson PF, Hench LL (1977) An in vitro analysis of metal electrodes for use in the neural environment. Brain Behav Evol 14:23–45CrossRefGoogle Scholar
  53. 53.
    Brummer SB, McHardy J, Turner MJ (1977) Electrical stimulation with Pt electrodes: Trace analysis for dissolved platinum and other dissolved electrochemical products. Brain Behav Evol 14:10–22CrossRefGoogle Scholar
  54. 54.
    Black RD, Hannaker P (1979) Dissolution of smooth platinum electrodes in biological fluids. Appl Neurophysiol 42:366–374Google Scholar
  55. 55.
    McHardy J, Robblee RS, Marsten M, Brummer SB (1980) Electrical stimulation with platinum electrodes. IV. Factors influencing platinum dissolution in inorganic saline. Biomater B1:129–134CrossRefGoogle Scholar
  56. 56.
    Robblee RS, McHardy J, Marsten M, Brummer SB (1980) Electrical stimulation with platinum electrodes. V. The effects of protein on platinum dissolution. Biomater B1:135–139CrossRefGoogle Scholar
  57. 57.
    Robblee RS, Lefko JL, Brummer SB (1983) Activated iridium: An electrode suitable for reversible charge injection in saline solution. J Electrochem Soc 130:731–733CrossRefGoogle Scholar
  58. 58.
    Robblee RS, McHardy J, Agnew WF, Bullara LA (1983) Electrical stimulation with Pt electrodes. VII. Dissolution of Pt electrodes during electrical stimulation of the cat cerebral cortex. J Neurosci Methods 9:301–308CrossRefGoogle Scholar
  59. 59.
    Tivol WF, Agnew WF, Alvarez RB, Yuen TGH (1987) Characterization of electrode dissolution products on the high voltage electrode microscope. J Neurosci Methods 19:323–337CrossRefGoogle Scholar
  60. 60.
    Rosenberg B, VanCamp L, Krigas T (1965) Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 205:698–699CrossRefGoogle Scholar
  61. 61.
    Rosenberg B (1971) Some biological effects of platinum compounds: New agents for the control of tumours. Platin Met Rev 15:42–51Google Scholar
  62. 62.
    Macquet JP, Theophanides T (1976) DNA-Platinum interactions. Characterization of solid DNA-K2[PtCl4] complexes. Inorg Chim Acta 18:189–194CrossRefGoogle Scholar
  63. 63.
    Brummer SB, Turner MJ (1975) Electrical stimulation of the nervous system: the principle of safe charge injection with noble metal electrodes. Bioelectrochem Bioenerg 2:13–25CrossRefGoogle Scholar
  64. 64.
    Brummer SB, Turner MJ (1977) Electrochemical considerations for safe electrical stimulation of the nervous system with platinum electrodes. IEEE Trans Biomed Eng BME-24:59–63CrossRefGoogle Scholar
  65. 65.
    Brummer SB, Turner MJ (1977) Electrical stimulation with Pt electrodes. I. A method for determination of ‘real’ electrode areas. IEEE Trans Biomed Eng BME-24:436–439CrossRefGoogle Scholar
  66. 66.
    Brummer SB, Turner MJ (1977) Electrical stimulation with Pt electrodes. II. Estimation of maximum surface redox (theoretical non-gassing) limits. IEEE Trans Biomed Eng BME-24:440–443CrossRefGoogle Scholar
  67. 67.
    Rose TL, Robblee LS (1990) Electrical stimulation with Pt electrodes. VIII. Electrochemically safe charge injection limits with 0.2 ms pulses. IEEE Trans Biomed Eng 37(11):1118–1120CrossRefGoogle Scholar
  68. 68.
    Bruckenstein S, Miller B (1970) An experimental study of non-uniform current distribution at rotating disk electrodes. J Electrochem Soc 117:1044–1048CrossRefGoogle Scholar
  69. 69.
    Shepherd RK, Murray MT, Houghton ME, Clark GM (1985) Scanning electron microscopy of chronically stimulated platinum intracochlear electrodes. Biomater 6:237–242CrossRefGoogle Scholar
  70. 70.
    Wiley JD, Webster JJ (1982) Analysis and control of the current distribution under circular dispersive electrodes. IEEE Trans Biomed Eng BME-29:381–385CrossRefGoogle Scholar
  71. 71.
    Zerbino JO, Tacconi NR, Arvia AJ (1978) The activation and deactivation of iridium in acid electrolytes. J Electrochem Soc 125:1266–1276CrossRefGoogle Scholar
  72. 72.
    Mozota J, Conway BE (1983) Surface and bulk processes at oxidized iridium electrodes-I: monolayer stage and transition to reversible multilayer oxide film behavior. Electrochimica Acta 28:1–8CrossRefGoogle Scholar
  73. 73.
    Bak MK, Girvin JP, Hambrecht FT, Kufta CV, Loeb GE, Schmidt EM (1990) Visual sensations produced by intracortical microstimulation of the human occipital cortex. Med Biol Eng Comput 28:257–259CrossRefGoogle Scholar
  74. 74.
    McCreery DB, Yuen TGH, Agnew WF, Bullara LA (1992) Stimulation with chronically implanted microelectrodes in the cochlear nucleus of the cat: histologic and physiologic effects. Hear Res 62:42–56CrossRefGoogle Scholar
  75. 75.
    Loeb GE, Peck RA, Martyniuk J (1995) Toward the ultimate metal microelectrode. J Neurosci Methods 63:175–183CrossRefGoogle Scholar
  76. 76.
    Liu X, McCreery DB, Carter RR, Bullara LA, Yuen TGH, Agnew WF (1999) Stability of the interface between neural tissue and chronically implanted intracortical microelectrodes. IEEE Trans Rehabil Eng 7(3):315–326CrossRefGoogle Scholar
  77. 77.
    Meyer RD, Cogan SF (2001) Electrodeposited iridium oxide for neural stimulation and recording electrodes. IEEE Trans Neural Syst Rehabil Eng 9(1):2–10CrossRefGoogle Scholar
  78. 78.
    Anderson DJ, Najafi K, Tanghe SJ, Evans DA, Levy KL, Hetke JF, Xue X, Zappia JJ, Wise KD (1989) Batch-fabricated thin-film electrodes for stimulation of the central auditory system. IEEE Trans Biomed Eng 36:693–704CrossRefGoogle Scholar
  79. 79.
    Weiland JD, Anderson DJ (2000) Chronic neural stimulation with thin-film, iridium oxide electrodes. IEEE Trans Biomed Eng 47(7):911–918CrossRefGoogle Scholar
  80. 80.
    Beebe X, Rose TL (1988) Charge injection limits of activated iridium oxide electrodes with 0.2 ms pulses in bicarbonate buffered saline. IEEE Trans Biomed Eng BME-35:494–495CrossRefGoogle Scholar
  81. 81.
    Kelliher EM, Rose TL (1989) Evaluation of charge injection properties of thin film redox materials for use as neural stimulation electrodes. Mater Res Soc Symp Proc 110:23–27Google Scholar
  82. 82.
    Agnew WF, Yuen TGH, McCreery DB, Bullara LA (1986) Histopathologic evaluation of prolonged intracortical electrical stimulation. Exp Neurol 92:162–185CrossRefGoogle Scholar
  83. 83.
    Robblee LS, Mangaudis MM, Lasinsky ED, Kimball AG, Brummer SB (1986) Charge injection properties of thermally-prepared iridium oxide films. Mater Res Soc Symp Proc 55:303–310Google Scholar
  84. 84.
    Klein JD, Clauson SL, Cogan SF (1989) Morphology and charge capacity of sputtered iridium oxide films. J Vac Sci Technol A7:3043–3047CrossRefGoogle Scholar
  85. 85.
    Loucks RB, Weinberg H, Smith M (1959) The erosion of electrodes by small currents. Electroenceph Clin Neurophysiol 11:823–826CrossRefGoogle Scholar
  86. 86.
    Greatbatch W, Chardack WM (1968) Myocardial and endocardiac electrodes for chronic implantation. Ann N.Y Acad Sci 148:234–251CrossRefGoogle Scholar
  87. 87.
    McHardy J, Geller D, Brummer SB (1977) An approach to corrosion control during electrical stimulation. Ann Biomed Eng 5:144–149CrossRefGoogle Scholar
  88. 88.
    Scheiner A, Mortimer JT (1990) Imbalanced biphasic electrical stimulation: muscle tissue damage. Ann Biomed Eng 18:407–425CrossRefGoogle Scholar
  89. 89.
    Gotman I (1997) Characteristics of metals used in implants. J Endourol 11(6):383–389CrossRefGoogle Scholar
  90. 90.
    Guyton DL, Hambrecht FT (1973) Capacitor electrode stimulates nerve or muscle without oxidation-reduction reactions. Science 181:74–76CrossRefGoogle Scholar
  91. 91.
    Guyton DL, Hambrecht FT (1974) Theory and design of capacitor electrodes for chronic stimulation. Med and Biol Eng 7:613–620CrossRefGoogle Scholar
  92. 92.
    Rose TL, Kelliher EM, Robblee LS (1985) Assessment of capacitor electrodes for intracortical neural stimulation. J Neurosci Methods 12(3):181–193CrossRefGoogle Scholar
  93. 93.
    Johnson PF, Bernstein JJ, Hunter G, Dawson WW, Hench LL (1977) An in vitro and in vivo analysis of anodized tantalum capacitive electrodes: corrosion response, physiology and histology. J Biomed Mater Res 11:637–656CrossRefGoogle Scholar
  94. 94.
    McCreery DB, Bullara LA, Agnew WF (1986) Neuronal activity evoked by chronically implanted intracortical microelectrodes. Exp Neurol 92:147–161CrossRefGoogle Scholar
  95. 95.
    Hille B (1984) Ionic Channels of Excitable Membranes. Sinauer Associates, Sunderland, MAGoogle Scholar
  96. 96.
    Kandel ER, Schwartz JH, Jessell TM (2000) Principles of Neural Science, fourth ed. McGraw Hill, New YorkGoogle Scholar
  97. 97.
    Chiu SY, Ritchie JM, Rogart RB, Stagg D (1979) A quantitative description of membrane current in rabbit myelinated nerve. J Physiol 292:149–166Google Scholar
  98. 98.
    Sweeney JD, Durand D, Mortimer JT (1987) Modeling of mammalian myelinated nerve for functional neuromuscular stimulation. Proc. 9th Intl. Conf. IEEE-EMBS, 1577–1578Google Scholar
  99. 99.
    Hodgkin AL, Huxley AF (1952) Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol 116:449–472Google Scholar
  100. 100.
    Hodgkin AL, Huxley AF (1952) The Components of membrane conductance in the giant axon of logigo. J Physiol 116:473–496Google Scholar
  101. 101.
    Hodgkin AL, Huxley AF (1952) The dual effect of membrane potential on sodium conductance in the giant axon of logigo. J Physiol 116:497–506Google Scholar
  102. 102.
    Hodgkin AL, Huxley AF (1952) A quantitative description of the membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544Google Scholar
  103. 103.
    McNeal DR (1976) Analysis of a model for excitation of myelinated nerve. IEEE Trans Biomed Eng 23(4):329–337CrossRefGoogle Scholar
  104. 104.
    Ranck JB (1981) In: Patterson MM, Kesner RP (ed) Electrical Stimulation Research Techniques. Academic Press, New York,  chapter 1
  105. 105.
    Mortimer JT (1990) In: Agnew WF, McCreery DB (ed) Neural Prostheses: Fundamental Studies. Prentice-Hall. Englewood Cliffs,  chapter 3.
  106. 106.
    Durand D (1995) In: Bronzino JD (ed) Biomedical Engineering Handbook. CRC Press, Boca Raton, chapter 17Google Scholar
  107. 107.
    van den Honert C, Mortimer JT (1979) Generation of unidirectionally propagated action potentials in a peripheral nerve by brief stimuli. Science 206(4424):1311–1312CrossRefGoogle Scholar
  108. 108.
    van den Honert C, Mortimer JT (1981) A technique for collision block of peripheral nerve: single stimulus analysis. IEEE Trans Biomed Eng 28:373–378CrossRefGoogle Scholar
  109. 109.
    van den Honert C, Mortimer JT (1981) A technique for collision block of peripheral nerve: frequency dependence. IEEE Trans Biomed Eng 28:379–382CrossRefGoogle Scholar
  110. 110.
    Fang Z, Mortimer JT (1991) Selective activation of small motor axons by quasitrapezoidal current pulses. IEEE Trans Biomed Eng 38(2):168–174CrossRefGoogle Scholar
  111. 111.
    Rall W (1977) In: Handbook of Physiology-The Nervous System I, vol.1/Part 1. American Physiological Society,  chapter 3.
  112. 112.
    Rattay F (1989) Analysis of models for extracellular fiber stimulation. IEEE Trans Biomed Eng 36:676–682CrossRefGoogle Scholar
  113. 113.
    McIntyre CC, Grill WM (2002) Extracellular stimulation of central neurons: influence of stimulus waveform and frequency on neuronal output. J Neurophysiol 88(4):1592–1604Google Scholar
  114. 114.
    Lapicque L (1907) Recherches quantitatives sur l’excitation electrique des nerfs traites comme une polarization. J Physiol (Paris) 9:622–635Google Scholar
  115. 115.
    Warman EN, Grill WM, Durand D (1992) Modeling the effects of electric fields on nerve fibers: determination of excitation thresholds. IEEE Trans Biomed Eng 39(12):1244–1254CrossRefGoogle Scholar
  116. 116.
    Plonsey R, Barr RC (1988) Bioelectricity: A Quantitative Approach. Plenum press, New YorkGoogle Scholar
  117. 117.
    McCreery DB, Agnew WF, Yuen TGH, Bullara LA (1990) Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation. IEEE Trans Biomed Eng 37(10):996–1001CrossRefGoogle Scholar
  118. 118.
    Shannon RV (1992) A model of safe levels for electrical stimulation. IEEE Trans Biomed Eng 39(4):424–426CrossRefGoogle Scholar
  119. 119.
    Yuen TGH, Agnew WF, Bullara LA, Jacques S, McCreery DB (1981) Histological evaluation of neural damage from electrical stimulation: considerations for the selection of parameters for clinical application. Neurosurg 9(3):292–299CrossRefGoogle Scholar
  120. 120.
    Agnew WF, McCreery DB, Yuen TGH, Bullara LA (1989) Histologic and physiologic evaluation of electrically stimulated peripheral nerve: considerations for the selection of parameters. Ann Biomed Eng 17:39–60CrossRefGoogle Scholar
  121. 121.
    Bhargava A (1993) Long-term effects of quasi-trapezoidal pulses on the structure and function of sacral anterior roots. M.S. thesis, Case Western Reserve University, Dept. of Biomedical Engineering, Cleveland, OHGoogle Scholar
  122. 122.
    McCreery DB, Agnew WF, Yuen TGH, Bullara LA (1992) Damage in peripheral nerve from continuous electrical stimulation: comparison of two stimulus waveforms. Med Biol Eng Comput 30(1):109–114CrossRefGoogle Scholar
  123. 123.
    Lilly JC, Austin GM, Chambers WW (1952) Threshold movements produced by excitation of cerebral cortex and efferent fibers with some parametric regions of rectangular current pulses (cats and monkeys). J Neurophysiol 15:319–341Google Scholar
  124. 124.
    Lilly JC, Hughes JR, Alvord EC, Garkin TW (1955) Brief noninjurious electric waveforms for stimulation of the brain. Science 121:468–469CrossRefGoogle Scholar
  125. 125.
    Mortimer JT, Shealy CN, Wheeler C (1970) Experimental nondestructive electrical stimulation of the brain and spinal cord. J Neurosurg 32(5):553–559CrossRefGoogle Scholar
  126. 126.
    Pudenz RH, Bullara LA, Dru D, Talalla A (1975) Electrical stimulation of the brain II: effects on the blood-brain barrier. Surg Neurol 4:265–270Google Scholar
  127. 127.
    Pudenz RH, Bullara LA, Jacques P, Hambrecht FT (1975) Electrical stimulation of the brain III: the neural damage model. Surg Neurol 4:389–400Google Scholar
  128. 128.
    Mortimer JT, Kaufman D, Roessmann U (1980) Intramuscular electrical stimulation: tissue damage. Ann Biomed Eng 8:235–244CrossRefGoogle Scholar
  129. 129.
    Ballestrasse CL, Ruggeri RT, Beck TR (1985) Calculations of the pH changes produced in body tissue by a spherical stimulation electrode. Ann Biomed Eng 13:405–424CrossRefGoogle Scholar
  130. 130.
    Chan PH, Yurko M, Fishman R (1982) Phospholipid degradation and cellular edema induced by free radicals in brain slice cortical slices. J Neurochem 38:525–531CrossRefGoogle Scholar
  131. 131.
    Chia LS, Thompson JE, Moscarello MA (1983) Disorder in human myelin induced by superoxide radical: an in vitro investigation. Biochem and Biophys Res Commun 117(1):141–146CrossRefGoogle Scholar
  132. 132.
    Konat G, Wiggins RC (1985) Effect of reactive oxygen species on myelin membrane proteins. J Neurochem 45:1113–1118CrossRefGoogle Scholar
  133. 133.
    Sevanian A (1988) In: Lipid Peroxidation, Membrane Damage, and Phospholipase A2 Action. CRC Reviews, Cellular Antioxidant Defense Mechanisms, Vol.II, 77–95Google Scholar
  134. 134.
    Griot C, Vandevelde RA, Peterhans E, Stocker R (1990) Selective Degeneration of oligiodendrocytes mediated by reactive oxygen species. Free Radic Res Commun 11(4,5):181–193CrossRefGoogle Scholar
  135. 135.
    Buettner GR (1993) The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate. Arch Biochem Biophys 300(2):535–543CrossRefGoogle Scholar
  136. 136.
    Morton SL, Daroux ML, Mortimer JT (1994) The role of oxygen reduction in electrical stimulation of neural tissue. J Electrochem Soc 141:122–130CrossRefGoogle Scholar
  137. 137.
    Furchgott RF (1988) Studies on relaxation of rabbit aorta by sodium nitrite: the basis for the proposal that the acid-activatable inhibitory factor from retractor penis is inorganic nitrite and the endothelium-derived relaxing factor is nitric oxide, vasodilatation. In: Vascular Smooth Muscle, Peptides, Autonomic Nerves and Endothelium. Raven Press, New York, 401–414Google Scholar
  138. 138.
    Ignarro LJ, Byrns RE, Wood KS (1988) Biochemical and pharmacological properties of endothelium-derived relaxing factor and its similarity to nitric oxide radical. In: Vascular Smooth Muscle, Peptides, Autonomic Nerves and Endothelium. Raven Press, New York, 427–436Google Scholar
  139. 139.
    Umans J, Levi R (1995) Nitric oxide in the regulation of blood flow and arterial pressure. Ann Rev Physiol 57:771–790CrossRefGoogle Scholar
  140. 140.
    Azuma H, Ishikawa M, Sekizaki S (1986) Endothelium-dependent Inhibition of Platelet Aggregation. British J Pharm 88:411–415Google Scholar
  141. 141.
    Radomski MW, Palmer RMJ, Moncada S (1987) Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet 2:1057–1058CrossRefGoogle Scholar
  142. 142.
    Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide: Physiology, Pathology and Pharmacology. Pharmacol Rev 43(2):109–142Google Scholar
  143. 143.
    Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624CrossRefGoogle Scholar
  144. 144.
    Rubanyi GM (1988) Vascular Effects of Oxygen Derived Free Radicals. Free Radic Biol and Med 4:107–120CrossRefGoogle Scholar
  145. 145.
    Grill WM, Mortimer JT (1995) Stimulus waveforms for selective neural stimulation. IEEE Eng Med Biol 14:375–385CrossRefGoogle Scholar
  146. 146.
    Fang Z, Mortimer JT (1991) A method to effect physiological recruitment order in electrically activated muscle. IEEE Trans Biomed Eng 38(2):175–179CrossRefGoogle Scholar
  147. 147.
    Grill WM, Mortimer JT (1997) Inversion of the current-distance relationship by transient depolarization. IEEE Trans Biomed Eng 44 (1):001–009CrossRefGoogle Scholar
  148. 148.
    Gluckman BJ, Neel EJ, Netoff TI, Ditto WL, Spano ML, Schiff SJ (1996) Electric field suppression of epileptiform activity in hippocampal slices. J Neurophysiol 76(6):4202–4205Google Scholar
  149. 149.
    Ghai RS, Bikson M, Durand DM (2000) Effects of applied electric fields on low-calcium epileptiform activity in the CA1 region of rat hippocampal slices. J Neurophysiol 84(1):274–280Google Scholar
  150. 150.
    McIntyre CC, Thakor NV (2002) Uncovering the mechanisms of deep brain stimulation for Parkinson’s disease though functional imaging, neural recording, and neural modeling. Crit Rev Biomed Eng 30(4–6):249–281CrossRefGoogle Scholar
  151. 151.
    O’Suilleabhain PE, Frawley W, Giller C, Dewey RB (2003) Tremor response to polarity, voltage, pulsewidth and frequency of thalamic stimulation. Neurology 60(5):786–790CrossRefGoogle Scholar
  152. 152.
    Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2):331–356Google Scholar
  153. 153.
    Gorman PH, Mortimer JT (1983) The effect of stimulus parameters on the recruitment characteristics of direct nerve stimulation. IEEE Trans Biomed Eng BME-30:407–414CrossRefGoogle Scholar
  154. 154.
    Stieglitz T, Meyer JU (1999) Implantable microsystems. Polyimide-based neuroprostheses for interfacing nerves. Med Dev Technol 10(6):28–30Google Scholar
  155. 155.
    Schmidt S, Horch K, Normann R (1993) Biocompatibility of silicon-based electrode arrays implanted into feline cortical tissue. J Biomed Mater Res 27(11):1393–1399CrossRefGoogle Scholar
  156. 156.
    Kristensen BW, Noraberg J, Thiebaud P, Koudelka-Hep M, Zimmer J (2001) Biocompatibility of silicon-based arrays of electrodes coupled to organotypic hippocampal brain slice cultures. Brain Res 896:1–17CrossRefGoogle Scholar
  157. 157.
    Bernstein JJ, Hench LL, Johnson PF, Dawson WW, Hunter G (1977) Electrical stimulation of the cortex with Ta2O5 capacitive electrodes. In: Hambrecht FT, Reswick JB (ed) Functional Electrical Stimulation. Marcel-Dekker, New York, 465–477Google Scholar
  158. 158.
    Donaldson PEK (1974) The stability of tantalum-pentoxide films in vivo. Med Biol Eng 12:131–135CrossRefGoogle Scholar
  159. 159.
    Lagow CH, Sladek KJ, Richardson PC (1971) Anodic insulated tantalum oxide electrocardiograph electrodes. IEEE Trans Biomed Eng 18:162–164CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Alfred E. Mann Foundation for Scientific ResearchSanta ClaritaUSA

Personalised recommendations