Skip to main content

Microchip-Embedded Capacitors for Implantable Neural Stimulators

  • Chapter
  • First Online:
Implantable Neural Prostheses 2

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 2546 Accesses

Abstract

Miniaturization of microchips for implantation in the human body (e.g., microchip for the artificial retina to restore sight to people blinded by retina photoreceptors degeneration) requires the integration of high-capacitance (≥ 10 μF) energy-storage capacitors into the microchip. These capacitors would be based on high-dielectric constant layers, preferably made of materials that are bioinert (not affected by human body fluids) and are biocompatible (do not elicit adverse reactions in the human body). This chapter focuses on reviewing the work being done at Argonne National Laboratory (Materials Science Division and Center for Nanoscale Materials) to develop high-capacitance microchip-embedded capacitors based on novel high-K dielectric layers (TiAlOx or TiO2/Al2O3 superlattices). The microchip-embedded capacitor provides energy storage and electromagnetic signal coupling needed for neural stimulations. Advances in neural prostheses such as artificial retinas and cochlear implants require miniaturization of device size to minimize tissue damage and improve device/tissue interfaces in the human body. Therefore, development of microchip-embedded capacitors is critical to achieve full-implantable biomedical device miniaturization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Robertson J (2004) High dielectric constant oxides. Eur Phys J Appl Phys 28:265.

    Article  Google Scholar 

  2. Robertson J (2006) High dielectric constant gate oxides for metal oxide Si transistors. Rep Prog Phys 69: 327.

    Article  Google Scholar 

  3. Wilk G, Wallace RM, Anthony JM (2001) High-gate dielectrics: Current status and materials properties considerations. J Appl Phys 89:5243.

    Article  Google Scholar 

  4. Wallace RM, Wilk GD (2003) High-κ dielectric materials for microelectronics. Crit Rev Solid State Mater Sci 28:231.

    Article  Google Scholar 

  5. Wallace RM, High dielectric constant gate oxides (private communication).

    Google Scholar 

  6. Huff H, Gilmer D (eds) (2004) High K Gate Dielectrics. Berlin: Springer.

    Google Scholar 

  7. Houssa M (ed) (2003) High Dielectric Constant Materials: VLSI MOSFET Applications. London: IOP.

    Google Scholar 

  8. Demkov AA, Navrotsky A (eds) (2005) Materials Fundamentals of Gate Oxides. Dordrecht: Springer.

    Google Scholar 

  9. Sugizaki T, Kohayashi M, Ishidao M et al. (2003) Novel Multi-bit SONOS Type Flash Memory Using a High-k Charge Trapping Layer. Symposium on VLSl Technology Digest of Technical Papers, p. 27.

    Google Scholar 

  10. Sim H, Samantaray CB, Lee T et al. (2004) Electrical and structural characteristics of high-k gate dielectrics with epitaxial Si3N4 interfacial layer on Si(111). Jpn J Appl Phys Part 1 43(12):7926.

    Article  Google Scholar 

  11. Klein TM, Niu D, Epling WS et al. (1999) Evidence of aluminum silicate formation during chemical vapor deposition of amorphous Al2O3 thin films on Si(100). Appl Phys Lett 75:4001.

    Article  Google Scholar 

  12. Gusev EP, Copel M, Cartier E et al. (2000) High-resolution depth profiling in ultrathin Al2O3 films on Si. Appl Phys Lett. 76(2):176.

    Article  Google Scholar 

  13. Chin A, Wu YH, Chen SB et al. (2000) High quality La2O3 and Al2O3 gate dielectrics with equivalent oxide thickness 5–10 Å. Tech Dig VLSI Symp, p. 16.

    Google Scholar 

  14. Roy PK, Kizilyalli IC (1998) Stacked high-gate dielectric for gigascale integration of metal–oxide–semiconductor technologies. Appl Phys Lett 72:2835.

    Article  Google Scholar 

  15. Lu Q, Park D, Kalnitsky A et al. (1998) Leakage current comparison between ultrathin Ta2O5 films and conventional gate dielectrics. IEEE Electron Device Lett 19:341.

    Article  Google Scholar 

  16. Fleming RM, Lang DV, Jones CDW et al. (2000) Defect dominated charge transport in amorphous Ta2O5 thin films. J Appl Phys 88:850.

    Article  Google Scholar 

  17. Kadoshima M, Hratani M, Shimamoto Y et al. (2003) Rutile-type TiO2 thin film for high-k gate insulator. Thin Solid Films 424(2):224.

    Article  Google Scholar 

  18. Bera MK, Maiti CK (2007) Charge trapping properties of ultra-thin TiO2 films on strained-Si. Semicond Sci Technol 22:774.

    Article  Google Scholar 

  19. Yu Z, Ramdani J, Curless JA et al. (2000) Epitaxial oxide thin films on Si (001). J Vac Sci Technol B 18:2139.

    Article  Google Scholar 

  20. McKee RA, Walker FJ, Chisholm MF (1998) Crystalline oxides on silicon: The first five monolayers. Phys Rev Lett 81:3014.

    Article  Google Scholar 

  21. Robertson J, Xiong K, Falabretti B (2005) Point defects in ZrO2 high K gate oxide. IEEE Trans Device Mater Reliab 5(1):84.

    Article  Google Scholar 

  22. Huang AP, Fu RKY, Chu PK et al. (2005) Plasma nitridation and microstructure of high-k ZrO2 thin films fabricated by cathodic arc deposition. J Crys Growth 277:422.

    Article  Google Scholar 

  23. Nishikawa T, Otsuka T, Morita K (2002) Reduction of leakage current by HfO2 high K dielectric film stacked on the ferroelectric layer of a MFIS structure. Integr Ferroelectr 48(1):41.

    Article  Google Scholar 

  24. Chatterjee S, Kuo Y, Lu J et al. (2006) Electrical reliability aspects of HfO2 high-k gate dielectrics with TaN metal gate electrodes under constant voltage stress. Microelectron Reliab 46(1):69.

    Article  Google Scholar 

  25. Aoyama T, Sugita Y, Morisaki Y et al. (2002) CMOSFETs using HfO2 High-k gate dielectrics. Proc Symp Semicond Integr Circ Technol 63:6.

    Google Scholar 

  26. Iwai H et al. (2002) Advanced gate dielectric materials for sub-100 nm CMOS. Tech Digest Int Electron Devices Meeting (IEEE).

    Google Scholar 

  27. Busani T, Devine RA (2005) The importance of network structure in high-K dielectrics: LaAlO3, Pr2O3, and Ta2O5. J Appl Phys 98:044102.

    Article  Google Scholar 

  28. Shao QY, Li AD, Cheng JB et al. (2005) Growth behavior of high k LaAlO3 films on Si by metalorganic chemical vapor deposition for alternative gate dielectric application. Appl Surf Sci 250(1)4:14.

    Article  Google Scholar 

  29. Robertson J (2000) Band offsets of wide-band-gap oxides and implications for future electronic devices. J Vac Sci Technol B 18:1785–1791.

    Article  Google Scholar 

  30. Osburn CM, Kim I, Han SK et al. (2002) Vertically scaled MOSFET gate stacks and junctions: How far are we likely to go? IBM J Res Dev 46:299.

    Article  Google Scholar 

  31. Auciello O, Fan W, Kabius B et al. (2005) New TiAl alloy high-K dielectric layer for next generation integrated circuit gates. Appl Phys Lett 86:1.

    Article  Google Scholar 

  32. Tripp MK, Fabreguette F, Herrmann CF et al. (2005) Multilayer coating method for x-ray reflectivity enhancement of polysilicon micro-mirrors at 1.54 Å wavelength, Micromachining Technology for Micro-Optics and Nano-Optics III. Johnson EG, Nordin GP, Suleski TJ (eds) Proceedings of SPIE Vol. 5720 (SPIE), Bellingham, WA, 241.

    Google Scholar 

  33. Dillon AC, Ott AW, George SM et al. (1995) Surface chemistry of Al2O3 deposition using Al(CH3)3 and H2O in a binary reaction sequence. Surf Sci 322:230.

    Article  Google Scholar 

  34. Lakomaa EL, Haukka S, Suntola S (1992) Atomic layer growth of TiO2 on silica. Appl Surf Sci 60/61:742.

    Article  Google Scholar 

Download references

Acknowledgments

The author wishes to acknowledge support from the U. S. Department of Energy, BES-Materials Science for work in the Materials Science Division, under contract W-31-109-ENG-38. The work at the Center for Nanoscale Materials and at the Electron Microscopy Center for Materials Research at Argonne National Laboratory was supported by the U.S. Department of Energy-Office of Science under Contract No. DE-AC02-06CH11357 by U Chicago Argonne, LLC. The author also acknowledges the many colleagues and postdoctorals who have made substantial contributions to the work discussed in this chapter over the years, namely: J.A. Carlisle, W. Fan, B. Kabius, R. Baragiola, and E.A. Irene.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orlando Auciello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Auciello, O. (2009). Microchip-Embedded Capacitors for Implantable Neural Stimulators. In: Zhou, D., Greenbaum, E. (eds) Implantable Neural Prostheses 2. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-0-387-98120-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-98120-8_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98119-2

  • Online ISBN: 978-0-387-98120-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics