Skip to main content

Convergence of truncates in l 1 optimal feedback control 61

  • Chapter
  • First Online:
Optimization

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 32))

  • 2727 Accesses

Abstract

Existing design methodologies based on infinite-dimensional linear programming generally require an iterative process often involving progressive increase of truncation length, in order to achieve a desired accuracy. In this chapter we consider the fundamental problem of determining a priori estimates of the truncation length sufficient for attainment of a given accuracy in the optimal objective value of certain infinite-dimensional linear programs arising in optimal feedback control. The treatment here also allows us to consider objective functions lacking interiority of domain, a problem which often arises in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Attouch, Variational Convergence for Functions and Operators, Applicable Mathematics Series (Pitman, London, 1984).

    Google Scholar 

  2. H. Attouch and R. J.–B. Wets, (1991), Quantitative stability of variational systems: I. The epigraphical distance, Trans. Amer. Math. Soc., 328 (1991), 695–729.

    Article  MATH  MathSciNet  Google Scholar 

  3. H. Attouch and R. J.–B. Wets, (1993), Quantitative stability of variational systems: II. A framework for nonlinear conditioning, SIAM J. Optim., 3, No. 2 (1993), 359–381.

    Article  MATH  MathSciNet  Google Scholar 

  4. H. Attouch and R. J.–B. Wets, Quantitative stability of variational systems: III. ∈–approximate solutions, Math. Programming, 61 (1993), 197–214.

    Article  MathSciNet  Google Scholar 

  5. D. Azé and J.–P. Penot, Operations on convergent families of sets and functions, Optimization, 21, No. 4 (1990), 521–534.

    Article  MATH  MathSciNet  Google Scholar 

  6. S. P. Boyd and C. H. Barratt, Linear Controller Design: Limits of Performance (Prentice–Hall, Englewood Cliffs, NJ 1991).

    MATH  Google Scholar 

  7. G. Beer, Topologies on Closed and Closed Convex Sets, Mathematics and its Applications, 268 (Kluwer Academic Publishers, Dordrecht, 1993).

    Google Scholar 

  8. J. M. Borwein and A. S. Lewis, Partially–finite convex programming, Part I: Quasi relative interiors and duality theory, Math. Programming, 57 (1992), 15–48.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. A. Dahleh and J. B. Pearson, l 1-Optimal feedback controllers for MIMO discrete–time systems, IEEE Trans. Automat. Control, AC-32 (1987), 314–322.

    Article  Google Scholar 

  10. M. A. Dahleh and I. J. Diaz-Bobillo, Control of Uncertain Systems: A Linear Programming Approach (Prentice–Hall, Englewood Cliffs, NJ 1995).

    MATH  Google Scholar 

  11. G. Deodhare and M. Vidyasagar, Control system design by infinite linear programming, Internat. J. Control, 55, No. 6 (1992), 1351–1380.

    Article  MATH  MathSciNet  Google Scholar 

  12. C. A. Desoer and M. Vidyasagar, Feedback Systems: Input–Output Properties (Academic Press, New York, 1975).

    MATH  Google Scholar 

  13. A. C. Eberhard and R. B. Wenczel, Epi–distance convergence of parametrised sums of convex functions in non–reflexive spaces, J. Convex Anal., 7, No. 1 (2000), 47–71.

    MATH  MathSciNet  Google Scholar 

  14. N. Elia and M. A. Dahleh, Controller design with multiple objectives, IEEE Trans. Automat. Control, AC-42, No. 5 (1997), 596–613.

    Article  MathSciNet  Google Scholar 

  15. R. D. Hill, A. C. Eberhard, R. B. Wenczel and M. E. Halpern, Fundamental limitations on the time–domain shaping of response to a fixed input, IEEE Trans. Automat. Control, AC-47, No. 7 (2002), 1078–1090.

    Article  MathSciNet  Google Scholar 

  16. R. B. Holmes, Geometric Functional Analysis and its Applications, Graduate Texts in Mathematics, 24 (Springer-Verlag, New York, 1975).

    Google Scholar 

  17. V. Jeyakumar, Duality and infinite–dimensional optimization, Nonlinear Analysis: Theory, Methods and Applications, 15, (1990), 1111–1122.

    Article  MATH  MathSciNet  Google Scholar 

  18. V. Jeyakumar and H. Wolkowicz, Generalizations of Slater’s constraint qualification for infinite convex programs, Math. Programming, 57 (1992), 85–102.

    Article  MATH  MathSciNet  Google Scholar 

  19. J. S. McDonald and J. B. Pearson, l 1–Optimal control of multivariable systems with output norm constraints, Automatica J. IFAC, 27, No. 2 (1991), 317–329.

    Article  MATH  MathSciNet  Google Scholar 

  20. R. T. Rockafellar, Conjugate Duality and Optimization (SIAM, Philadelphia, PA, 1974).

    MATH  Google Scholar 

  21. R. T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, NJ, 1970).

    MATH  Google Scholar 

  22. R. T. Rockafellar and R. J.–B. Wets, Variational systems, an introduction, Multifunctions and Integrands, G. Salinetti (Ed.), Springer-Verlag Lecture Notes in Mathematics No. 1091 (1984), 1–54.

    Google Scholar 

  23. H. Rotstein, Convergence of optimal control problems with an H –norm constraint, Automatica J. IFAC, 33, No. 3 (1997), 355–367.

    Article  MATH  MathSciNet  Google Scholar 

  24. M. Vidyasagar, Control System Synthesis (MIT Press, Cambridge MA, 1985).

    MATH  Google Scholar 

  25. M. Vidyasagar, Optimal rejection of persistent bounded disturbances, IEEE Trans. Automat. Control, AC-31 (1986), 527–534.

    Article  MATH  MathSciNet  Google Scholar 

  26. R. B. Wenczel, PhD Thesis, Department of Mathematics, RMIT, 1999.

    Google Scholar 

  27. R. B. Wenczel, A. C. Eberhard and R. D. Hill, Comments on “Controller design with multiple objectives,” IEEE Trans. Automat. Control, 45, No. 11 (2000), 2197–2198.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag New York

About this chapter

Cite this chapter

Wenczel, R., Eberhard, A., Hill, R. (2009). Convergence of truncates in l 1 optimal feedback control 61. In: Pearce, C., Hunt, E. (eds) Optimization. Springer Optimization and Its Applications, vol 32. Springer, New York, NY. https://doi.org/10.1007/978-0-387-98096-6_4

Download citation

Publish with us

Policies and ethics