Skip to main content

Duality and a Farkas lemma for integer programs

  • Chapter
  • First Online:
Optimization

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 32))

Abstract

We consider the integer program \(\max \{c x\,|\,Ax=b,x \in {\bf N}^n\}\). A formal parallel between linear programming and continuous integration, and discrete summation, shows that a natural duality for integer programs can be derived from the \({\bf Z}\)-transform and Brion and Vergne’s counting formula. Along the same lines, we also provide a discrete Farkas lemma and show that the existence of a nonnegative integral solution \(x\in{\bf N}^n\) to \(Ax=b\) can be tested via a linear program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Aardal, R. Weismantel and L. A. Wolsey, Non-standard approaches to integer programming, Discrete Appl. Math. 123 (2002), 5–74.

    Article  MATH  MathSciNet  Google Scholar 

  2. W. W. Adams and P. Loustaunau, An Introduction to Gröbner Bases (American Mathematical Society, Providence, RI, 1994).

    MATH  Google Scholar 

  3. F. Bacelli, G. Cohen, G. J. Olsder and J.-P. Quadrat, Synchronization and Linearity (John Wiley & Sons, Chichester, 1992).

    Google Scholar 

  4. A. I. Barvinok, Computing the volume, counting integral points and exponential sums, Discrete Comp. Geom. 10 (1993), 123–141.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. I. Barvinok and J. E. Pommersheim, An algorithmic theory of lattice points in polyhedra, in New Perspectives in Algebraic Combinatorics, MSRI Publications 38 (1999), 91–147.

    MathSciNet  Google Scholar 

  6. C. E. Blair and R. G. Jeroslow, The value function of an integer program, Math. Programming 23 (1982), 237–273.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Brion and M. Vergne, Residue formulae, vector partition functions and lattice points in rational polytopes, J. Amer. Math. Soc. 10 (1997), 797–833.

    Article  MATH  MathSciNet  Google Scholar 

  8. J. B. Conway, Functions of a Complex Variable I, 2nd ed. (Springer, New York, 1978).

    Google Scholar 

  9. D. den Hertog, Interior Point Approach to Linear, Quadratic and Convex Programming (Kluwer Academic Publishers, Dordrecht, 1994).

    MATH  Google Scholar 

  10. O. Güler, Barrier functions in interior point methods, Math. Oper. Res. 21 (1996), 860–885.

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Iosevich, Curvature, combinatorics, and the Fourier transform, Notices Amer. Math. Soc. 48 (2001), 577–583.

    MATH  MathSciNet  Google Scholar 

  12. A. Khovanskii and A. Pukhlikov, A Riemann-Roch theorem for integrals and sums of quasipolynomials over virtual polytopes, St. Petersburg Math. J. 4 (1993), 789–812.

    MathSciNet  Google Scholar 

  13. J. B. Lasserre and E. S. Zeron, A Laplace transform algorithm for the volume of a convex polytope, JACM 48 (2001), 1126–1140.

    Article  MathSciNet  Google Scholar 

  14. J. B. Lasserre and E. S. Zeron, An alternative algorithm for counting integral points in a convex polytope, Math. Oper. Res. 30 (2005), 597–614.

    Google Scholar 

  15. J. B. Lasserre, La valeur optimale des programmes entiers, C. R. Acad. Sci. Paris Ser. I Math. 335 (2002), 863–866.

    MATH  MathSciNet  Google Scholar 

  16. J. B. Lasserre, Generating functions and duality for integer programs, Discrete Optim. 1 (2004), 167–187.

    Google Scholar 

  17. G. L. Litvinov, V. P. Maslov and G. B. Shpiz, Linear functionals on idempotent spaces: An algebraic approach, Dokl. Akad. Nauk. 58 (1998), 389–391.

    MathSciNet  Google Scholar 

  18. D. S. Mitrinović, J. Sándor and B. Crstici, Handbook of Number Theory (Kluwer Academic Publishers, Dordrecht, 1996).

    Google Scholar 

  19. A. Schrijver, Theory of Linear and Integer Programming (John Wiley & Sons, Chichester, 1986).

    MATH  Google Scholar 

  20. V. A. Truong and L. Tunçel, Geometry of homogeneous convex cones, duality mapping, and optimal self-concordant barriers, Research report COOR #2002-15 (2002), University of Waterloo, Waterloo, Canada.

    Google Scholar 

  21. L. A. Wolsey, Integer programming duality: Price functions and sensitivity analysis, Math. Programming 20 (1981), 173–195.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean B. Lasserre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag New York

About this chapter

Cite this chapter

Lasserre, J.B. (2009). Duality and a Farkas lemma for integer programs. In: Pearce, C., Hunt, E. (eds) Optimization. Springer Optimization and Its Applications, vol 32. Springer, New York, NY. https://doi.org/10.1007/978-0-387-98096-6_2

Download citation

Publish with us

Policies and ethics