Advertisement

Ovarian Cancer pp 109-129 | Cite as

Tumor Suppressor Genes

  • Zhen Lu
  • Robert C. BastJr
Chapter
Part of the Cancer Treatment and Research book series (CTAR, volume 149)

Introduction

A tumor suppressor gene inhibits one or more function(s) required for malignant transformation, including self-sufficiency in growth signals, insensitivity to antigrowth signals, evasion of apoptosis, limitless replicative potential, and tissue invasion and metastasis or sustained angiogenesis. 1 Some tumor suppressor genes are lost in the germ line, whereas the function of other tumor suppressor genes is lost through somatic change. At present, loss of function has been described for some 16 putative tumor suppressor genes in epithelial ovarian cancer (Table 5.1). During oncogenesis, loss of tumor suppressor gene function can occur through deletion, mutation, or epigenetic silencing. Loss of heterozygosity has been observed in 11 putative tumor suppressors, inactivating mutations in four of these genes ( p53, PTEN, BRCA1, and BRCA2), and promoter methylation and silencing in eight. In each case, only a fraction of ovarian cancers from different patients lose the function...

Keywords

Ovarian Cancer Epithelial Ovarian Cancer Ovarian Cancer Cell Ovarian Cancer Cell Line Ovarian Carcinoma Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hanahan D, Weinberg R. The hallmarks of cancer. Cell. 2000;100:57–70.PubMedCrossRefGoogle Scholar
  2. 2.
    Jacobs IJ, Kohler MF, Wiseman R, et al. Clonal origin of epithelial ovarian cancer: analysis by loss of heterozygosity, p53 mutation and X chromosome inactivation. J Natl Cancer Inst. 1992;84:1793–1798.PubMedCrossRefGoogle Scholar
  3. 3.
    Kohler MF, Marks JR, Wiseman RW, et al. Spectrum of mutation and frequency of allelic deletion of the p53 gene in ovarian cancer. J Natl Cancer Inst. 1993;85:1513–1519.PubMedCrossRefGoogle Scholar
  4. 4.
    Baker SJ, Markowitz S, Fearon ER, et al. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science. 1990;249:912–915.PubMedCrossRefGoogle Scholar
  5. 5.
    Yu Y, Xu F, Peng H, et al. NOEY2 (ARHI), an imprinted putative tumor suppressor gene in ovarian and breast carcinomas. Proc Natl Acad Sci USA. 1999;96:214–219.PubMedCrossRefGoogle Scholar
  6. 6.
    Peng H, Xu F, Pershad R, et al. ARHI is the center of allelic deletion on chromosome 1p31 in ovarian and breast cancers. Int J Cancer. 2000;86:690–694.PubMedCrossRefGoogle Scholar
  7. 7.
    Luo RZ, Peng H, Xu F, et al. Genomic structure and promoter characterization of an imprinted tumor suppressor gene ARHI. Biochim Biophys Acta. 2001;1519:216–222.PubMedGoogle Scholar
  8. 8.
    Yuan J, Luo RZ, Fujii S, et al. Aberrant methylation and silencing of ARHI, an imprinted tumor suppressor gene in which the function is lost in breast cancers. Cancer Res. 2003;63:4174–4180.PubMedGoogle Scholar
  9. 9.
    Lu Z, Luo RZ, Peng H, et al. E2F-HDAC complexes negatively regulate the tumor suppressor gene ARHI in breast cancer. Oncogene. 2006;25:230–239.PubMedCrossRefGoogle Scholar
  10. 10.
    Lu Z, Luo RZ, Peng H, et al. Transcriptional and posttranscriptional down-regulation of the imprinted tumor suppressor gene ARHI (DRAS3) in ovarian cancer. Clin Cancer Res. 2006;12:2404–2413.PubMedCrossRefGoogle Scholar
  11. 11.
    Rosen DG, Wang L, Jain AN, et al. Expression of the tumor suppressor gene ARHI in epithelial ovarian cancer is associated with increased expression of p21WAF1/CIP1 and prolonged progression-free survival. Clin Cancer Res. 2004;10:6559–6566.PubMedCrossRefGoogle Scholar
  12. 12.
    Wang L, Hoque A, Luo RZ, et al. Loss of the expression of the tumor suppressor gene ARHI is associated with progression of breast cancer. Clin Cancer Res. 2003;9:3660–3666.PubMedGoogle Scholar
  13. 13.
    Bao JJ, Le XF, Wang RY, et al. Reexpression of the tumor suppressor gene ARHI induces apoptosis in ovarian and breast cancer cells through a caspase-independent calpain-dependent pathway. Cancer Res. 2002;62:7264–7272.PubMedGoogle Scholar
  14. 14.
    Lu Z, Luo RZ, Lu Y, et al. A Ras-related imprinted tumor suppressor gene ARHI regulates autophagy and tumor dormancy in ovarian cancer. J Clin Invest. 2008;118:3917–29.Google Scholar
  15. 15.
    Nishimoto, A, Yu, Y, Lu, Z, et al. ARHI directly inhibits STAT3 translocation and activity in human breast and ovarian cancer cells. Cancer Res. 2005;65:6701–6710.PubMedCrossRefGoogle Scholar
  16. 16.
    Dammann R, Li C, Yoon J-H, et al. Epigenetic inactivation of a RAS association family protein from the lung tumor suppressor locus 3p21.3. Nat Genet. 2000;25:315–319.PubMedCrossRefGoogle Scholar
  17. 17.
    Kok K, Naylor SL, Buys CH. Deletions of the short arm of chromosome 3 in solid tumors and the search for suppressor genes. Adv Cancer Res. 1997;71:27–92.PubMedCrossRefGoogle Scholar
  18. 18.
    Byun D-S, Lee M-G, Chae K-S, et al. Frequent epigenetic inactivation of RASSF1A by aberrant promoter hypermethylation in human gastric adenocarcinoma. Cancer Res. 2001;61:7034–7038.PubMedGoogle Scholar
  19. 19.
    Yoon J-H, Dammann R, Pfeiffer GP. Hypermethylation of the CPG island of the RASSF1A gene in ovarian and renal cell carcinomas. Int J Cancer. 2001;94:212–217.PubMedCrossRefGoogle Scholar
  20. 20.
    Agathanggelou A, Honorio S, Macartney DP, et al. Methylation associated inactivation of RASSF1A from region 3p21.3 in lung, breast and ovarian tumors. Oncogene. 2001;20:1509–1518.PubMedCrossRefGoogle Scholar
  21. 21.
    Burbee DG, Forgacs E, Zochbauer-Muller S, et al. Epigenetic inactivation of RASSF1A in lung and breast cancers phenothype suppression. J Natl Cancer Inst. 2001;93:691–699.PubMedCrossRefGoogle Scholar
  22. 22.
    Dammann R, Takahashi T, Pfeiffer GP. The CpG island of the novel tumor suppressor gene RASSF1A is intensely methylated in primary small cell lung carcinomas. Oncogene. 2001;20:3563–3567.PubMedCrossRefGoogle Scholar
  23. 23.
    Lee M-G, Kim H-Y, Byun D-S, et al. Frequent epigenetic inactivation of RASSF1A in human bladder carcinoma. Cancer Res. 2001;61:6688–6692.PubMedGoogle Scholar
  24. 24.
    Liao X, Siu MK, Chan KY, et al. Hypermethylation of RAS effector related genes and DNA methyltransferase 1 expression in endometrial carcinogenesis. Int J Cancer. 2008;123:296–302.PubMedCrossRefGoogle Scholar
  25. 25.
    Jo H, Kim JW, Kang GH, et al. Association of promoter hypermethylation of the RASSF1A gene with prognostic parameters in endometrial cancer. Oncol Res. 2006;16:205–209.PubMedGoogle Scholar
  26. 26.
    Pijnenborg JM, Dam-de Veen GC, Kisters N, et al. RASSF1A methylation and K-ras and B-raf mutations and recurrent endometrial cancer. Ann Oncol. 2007;18:491–497.PubMedCrossRefGoogle Scholar
  27. 27.
    Vos MD, Ellis CA, Bell A, et al. Ras uses the novel tumor suppressor RASSF1 as an affector to mediate apoptosis. J Biol Chem. 2000;275:35669–35672.PubMedCrossRefGoogle Scholar
  28. 28.
    Shivakumar L, Minna J, Sakamaki T, et al. The RASSF1A tumor suppressor blocks cell cycle progression and inhibits cyclin D1 accumulation. Mol Cell Biol. 2002;22:4309–4318.PubMedCrossRefGoogle Scholar
  29. 29.
    Rauch T, Li H, Wu X, et al. MIRA-assisted microarray analysis, a new technology for the determination of DNA methylation patterns, identifies frequent methylation of homeodomain-containing genes in lung cancer cells. Cancer Res. 2006;66:7939–7947.PubMedCrossRefGoogle Scholar
  30. 30.
    Daigo Y, Nishiwaki T, Kawasoe T, et al. Molecular cloning of a candidate tumor suppressor gene, DLC1, from chromosome 3p21.3. Cancer Res. 1999;59:1966–1972.PubMedGoogle Scholar
  31. 31.
    Kwong J, Lee JY, Wong KK, et al. Candidate tumor-suppressor gene DLEC1 is frequently downregulated by promoter hypermethylation and histone hypoacetylation in human epithelial ovarian cancer. Neoplasia. 2006;8:268–278.PubMedCrossRefGoogle Scholar
  32. 32.
    Swaroop A, Hogan BL, Francke U. Molecular analysis of the cDNA for human SPARC/osteonectin/BM-40: sequence, expression, and localization of the gene to chromosome 5q31-q33. Genomics. 1988;2:37–47.PubMedCrossRefGoogle Scholar
  33. 33.
    Rodríguez-Jiménez FJ, Caldés T, Iniesta P, et al. Overexpression of SPARC protein contrasts with its transcriptional silencing by aberrant hypermethylation of SPARC CpG-rich region in endometrial carcinoma. Oncol Rep. 2007;17:1301–1307.PubMedGoogle Scholar
  34. 34.
    Mok SC, Chan WY, Wong KK, et al. SPARC, an extracellular matrix protein with tumor-suppressing activity in human ovarian epithelial cells. Oncogene. 1996;12:1895–1901.PubMedGoogle Scholar
  35. 35.
    Brown TJ, Shaw PA, Karp X, et al. Activation of SPARC expression in reactive stroma associated with human epithelial ovarian cancer. Gynecol Oncol. 1999;75:25–33.PubMedCrossRefGoogle Scholar
  36. 36.
    Yiu GK, Chan WY, Ng SW, et al. SPARC (secreted protein acidic and rich in cysteine) induces apoptosis in ovarian cancer cells. Am J Pathol. 2001;159:609–622.PubMedGoogle Scholar
  37. 37.
    Said N, Motamed K. Absence of host-secreted protein acidic and rich in cysteine (SPARC) augments peritoneal ovarian carcinomatosis. Am J Pathol. 2005;167:1739–1752.PubMedGoogle Scholar
  38. 38.
    Said NA, Najwer I, Socha MJ, et al. SPARC inhibits LPA-mediated mesothelial-ovarian cancer cell crosstalk. Neoplasia. 2007;9:23–35.PubMedCrossRefGoogle Scholar
  39. 39.
    Said N, Socha MJ, Olearczyk JJ, et al. Normalization of the ovarian cancer microenvironment by SPARC. Mol Cancer Res. 2007;5:1015–1030.PubMedCrossRefGoogle Scholar
  40. 40.
    Xu XX, Yang W, Jackowski S, et al. Cloning of a novel phosphoprotein regulated by colony-stimulating factor 1 shares a domain with the Drosophila disabled gene product. J Biol Chem. 1995;270:14184–14191.PubMedCrossRefGoogle Scholar
  41. 41.
    Mok SC, Chan WY, Wong KK, et al. DOC-2, a candidate tumor suppressor gene in human epithelial ovarian cancer. Oncogene. 1998;16:2381–2387.PubMedCrossRefGoogle Scholar
  42. 42.
    Xu XX, Yi T, Tang B, et al. Disabled-2 (Dab2) is an SH3 domain-binding partner of Grb2. Oncogene. 1998;16:1561–1569.PubMedCrossRefGoogle Scholar
  43. 43.
    Mok SC, Wong KK, Chan RK, et al. Molecular cloning of differentially expressed genes in human epithelial ovarian cancer. Gynecol Oncol. 1994;52:247–252.PubMedCrossRefGoogle Scholar
  44. 44.
    Fazili Z, Sun W, Mittelstaedt S, Cohen C, Xu XX. Disabled-2 inactivation is an early step in ovarian tumorigenicity. Oncogene. 1999;18:3104–3113PubMedCrossRefGoogle Scholar
  45. 45.
    Santin AD, Zhan F, Bellone S, et al. Gene expression profiles in primary ovarian serous papillary tumors and normal ovarian epithelium: identification of candidate molecular markers for ovarian cancer diagnosis and therapy. Int J Cancer. 2004;112:14–25.PubMedCrossRefGoogle Scholar
  46. 46.
    Zhou J, Hsieh JT. The inhibitory role of DOC-2/DAB2 in growth factor receptor-mediated signal cascade. DOC-2/DAB2-mediated inhibition of ERK phosphorylation via binding to Grb2. J Biol Chem. 2001;276:27793–27798.PubMedCrossRefGoogle Scholar
  47. 47.
    Abdollahi A, Bao R, Hamilton TC. LOT1 is a growth suppressor gene downregulated by the epidermal growth factor receptor ligands and encodes a nuclear zinc-finger protein. Oncogene. 1999;18:6477–6487.PubMedCrossRefGoogle Scholar
  48. 48.
    Abdollahi A, Pisarcik D, Roberts D, et al. LOT1 (PLAGL1/ZAC1), the candidate tumor suppressor gene at chromosome 6q24-25, is epigenetically regulated in cancer. J Biol Chem. 2003;278:6041–6049.PubMedCrossRefGoogle Scholar
  49. 49.
    Abdollahi A, Gruver BN, Patriotis C, et al. Identification of epidermal growth factor-responsive genes in normal rat ovarian surface epithelial cells. Biochem Biophys Res Commun. 2003;307:188–197.PubMedCrossRefGoogle Scholar
  50. 50.
    Cvetkovic D, Pisarcik D, Lee C, et al. Altered expression and loss of heterozygosity of the LOT1 gene in ovarian cancer. Gynecol Oncol. 2004;95:449–455.PubMedCrossRefGoogle Scholar
  51. 51.
    Bignone PA, Lee KY, Liu Y, et al. RPS6KA2, a putative tumour suppressor gene at 6q27 in sporadic epithelial ovarian cancer. Oncogene. 2007;26:683–700.PubMedCrossRefGoogle Scholar
  52. 52.
    Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer. 2002;2:489–501.PubMedCrossRefGoogle Scholar
  53. 53.
    Parsons, DW, Wang TL, Samuels Y, et al. Colorectal cancer: mutations in a signaling pathway. Nature. 2005;436:792.PubMedCrossRefGoogle Scholar
  54. 54.
    Yang H, Kong W, He L, et al. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res. 2008;68:425–433.PubMedCrossRefGoogle Scholar
  55. 55.
    Flesken-Nikitin A, Choi KC, Eng JP, et al. Induction of carcinogenesis by concurrent inactivation of p53 and Rb1 in the mouse ovarian surface epithelium. Cancer Res. 2003;63:3459–3463.PubMedGoogle Scholar
  56. 56.
    Obata K, Morland SJ, Watson RH, et al. Frequent PTEN/MMAC mutation in endometrioid but not not serous or mucinous epithelial ovarian tumors. Cancer Res. 1998;58:2095–2097.PubMedGoogle Scholar
  57. 57.
    Sato N, Tsunoda II, Nishida M, et al. Loss of heterozygosity on 10q23.3 and mutation of the tumor suppressor gene PTEN in benign endometrial cyst of the ovary: possible sequence progression from benign endometrial cyst to endometriod carcinoma and clear cell carcinoma of the ovary. Cancer Res. 2000;60:7052–7056.PubMedGoogle Scholar
  58. 58.
    Obata K, Morland SJ, Watson RH, et al. Frequent PTEN/MMAC mutations in endometrioid but not serous or mucinous epithelial ovarian tumors. Cancer Res. 1998;58:2095–2097.PubMedGoogle Scholar
  59. 59.
    Saito M, Okamoto A, Kohno T, et al. Allelic imbalance and mutations of the PTEN gene in ovarian cancer. Int J Cancer. 2000;85:160–165.PubMedGoogle Scholar
  60. 60.
    Kurose K, Zhou XP, Araki T, et al. Frequent loss of PTEN expression is linked to elevated phosphorylated Akt levels, but not associated with p27 and cyclin D1 expression, in primary epithelial ovarian carcinomas. Am J Pathol. 2001;158:2097–2106.PubMedGoogle Scholar
  61. 61.
    Yang H, Kong W, He L, et al. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res. 2008;68:425–433.PubMedCrossRefGoogle Scholar
  62. 62.
    St-Germain ME, Gagnon V, Parent S, et al. Regulation of COX-2 protein expression by Akt in endometrial cancer cells is mediated through NF-kappaB/IkappaB pathway. Mol Cancer. 2004;3:7–18.PubMedCrossRefGoogle Scholar
  63. 63.
    Tanaka M, Grossman HB. In vivo gene therapy of human bladder cancer with PTEN suppresses tumor growth, downregulates phosphorylated Akt, and increases sensitivity to doxorubicin. Gene Ther. 2003;10:1636–1642.PubMedCrossRefGoogle Scholar
  64. 64.
    Hwang PH, Yi HK, Kim DS, et al. Suppression of tumorigenicity and metastasis in B16F10 cells by PTEN/MMAC1/TEP1 gene. Cancer Lett. 2001;172:83–91.PubMedCrossRefGoogle Scholar
  65. 65.
    Huang J, Kontos CD. PTEN modulates vascular endothelial growth factor-mediated signaling and angiogenic effects. J Biol Chem. 2002;277:10760–10766.PubMedCrossRefGoogle Scholar
  66. 66.
    Koul D, Shen R, Garyali A, et al. MMAC/PTEN tumor suppressor gene regulates vascular endothelial growth factor-mediated angiogenesis in prostate cancer. Int J Oncol. 2002;21:469–475.PubMedGoogle Scholar
  67. 67.
    Takei Y, Saga Y, Mizukami H, et al. Overexpression of PTEN in ovarian cancer cells suppresses i.p. dissemination and extends survival in mice. Mol Cancer Ther. 2008;7:704–711.PubMedCrossRefGoogle Scholar
  68. 68.
    Sellar GC, Watt KP, Rabiasz GJ, et al. OPCML at 11q25 is epigenetically inactivated and has tumor-suppressor function in epithelial ovarian cancer. Nat Genet. 2003;34:337–343.PubMedCrossRefGoogle Scholar
  69. 69.
    Teodoridis JM, Hall J, Marsh S, et al. CpG is land methylation of DNA damage response genes in advanced ovarian cancer. Cancer Res. 2005;65:8961–8967.PubMedCrossRefGoogle Scholar
  70. 70.
    Chen H, Ye F, Zhang J, et al. Loss of OPCML expression and the correlation with CpG island methylation and LOH in ovarian serous carcinoma. Eur J Gynaecol Oncol. 2007;28:464–467.PubMedGoogle Scholar
  71. 71.
    Zhang J, Ye F, Chen HZ, et al. Deletion of OPCML gene and promoter methylation in ovarian epithelial carcinoma. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2006;28(2):173–177.PubMedGoogle Scholar
  72. 72.
    Mei FC, Young TW, Liu J, et al. RAS-mediated epigenetic inactivation of OPCML in oncogenic transformation of human ovarian surface epithelial cells. FASEB J. 2006;20:497–499.PubMedGoogle Scholar
  73. 73.
    Tavtigian SV, Simard J, Rommens J, et al. The complete BRCA2 gene and mutations in chromosome 13q-linked kindreds. Nat Genet. 1996;12:333–337.PubMedCrossRefGoogle Scholar
  74. 74.
    Wooster R, Neuhausen SL, Mangion J, et al. Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12–13. Science. 1994;265:2088–2090.PubMedCrossRefGoogle Scholar
  75. 75.
    Pal T, Permuth-Wey J, Betts JA, et al. BRCA1 and BRCA2 mutations account for a large proportion of ovarian carcinoma cases. Cancer. 2005;104:2807–2816.PubMedCrossRefGoogle Scholar
  76. 76.
    Risch HA, McLaughlin JR, Cole DE, et al. Prevalence and penetrance of germline BRCA1 and BRCA2 mutations in a population series of 649 women with ovarian cancer. Am J Hum Genet. 2001;68:700–710.PubMedCrossRefGoogle Scholar
  77. 77.
    Verbruggen MB, Zweemer RP, Piek JM, et al. A case of loss of heterozygosity in the BRCA2 gene of a borderline ovarian tumor: case report and review of literature. Int J Gynecol Cancer. 2007;17:1143–1147.PubMedCrossRefGoogle Scholar
  78. 78.
    Gras E, Cortes J, Diez O, et al. Loss of heterozygosity on chromosome 13q12-q14, BRCA-2 mutations and lack of BRCA-2 promoter hypermethylation in sporadic epithelial ovarian tumors. Cancer. 2001;92:787–795.PubMedCrossRefGoogle Scholar
  79. 79.
    Narod SA, Foulkes WD. BRCA1 and BRCA2: 1994 and beyond. Nat Rev Cancer. 2004;4:665–676.PubMedCrossRefGoogle Scholar
  80. 80.
    Bryant HE, Schultz N, Thomas HD, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005;434:913–917.PubMedCrossRefGoogle Scholar
  81. 81.
    Lee M, Daniels MJ, Venkitaraman AR. Phosphorylation of BRCA2 by the Polo-like kinase Plk1 is regulated by DNA damage and mitotic progression. Oncogene. 2004;23:865–872.PubMedCrossRefGoogle Scholar
  82. 82.
    Calin GA, Trapasso F, Shimizu M, et al. Familial cancer associated with a polymorphism in ARLTS1. N Engl J Med. 2005;352:1667–1676.PubMedCrossRefGoogle Scholar
  83. 83.
    Petrocca F, Iliopoulos D, Qin HR, et al. Alterations of the tumor suppressor gene ARLTS1 in ovarian cancer. Cancer Res. 2006;66:10287–10291.PubMedCrossRefGoogle Scholar
  84. 84.
    Bednarek AK, Keck-Waggoner CL, Daniel RL, et al. WWOX, the FRA16D gene, behaves as a suppressor of tumor growth. Cancer Res. 2001;61:8068–8073.PubMedGoogle Scholar
  85. 85.
    Gourley C, Paige AJ, Taylor KJ, et al. WWOX mRNA expression profile in epithelial ovarian cancer supports the role of WWOX variant 1 as a tumour suppressor, although the role of variant 4 remains unclear. Int J Oncol. 2005;26:1681–1689.PubMedGoogle Scholar
  86. 86.
    Nunez MI, Rosen DG, Ludes-Meyers JH, et al. WWOX protein expression varies among ovarian carcinoma histotypes and correlates with less favorable outcome. BMC Cancer. 2005;5:64.PubMedCrossRefGoogle Scholar
  87. 87.
    Greenblatt MS, Bennett WP, Hollstein M, et al. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 1994;54:4855–4878.PubMedGoogle Scholar
  88. 88.
    Eccles DM, Brett L, Lessells A, et al. Overexpression of the p53 protein and allele loss at 17p13 in ovarian carcinoma. Br J Cancer. 1992;65:40–44.PubMedGoogle Scholar
  89. 89.
    Godwin AK, Vanderveer L, Schultz DC, et al. A common region of deletion on chromosome 17q in both sporadic and familia epithelial ovarian tumors distal to BRCA1. Am J Hum Genet. 1994;55:666–677.PubMedGoogle Scholar
  90. 90.
    Foulkes WD, Black DM, Stamp GW, et al. Very frequent loss of heterozygosity throughout chromosome 17 in sporadic ovarian carcinoma. Int J Cancer. 1993;54:220–225.PubMedCrossRefGoogle Scholar
  91. 91.
    Saretzki G, Hoffmann U, Rohlke P, et al. Identification of allelic losses in benign, borderline, and invasive epithelial ovarian tumors and correlation with clinical outcome. Cancer. 1997;80:1241–1249.PubMedCrossRefGoogle Scholar
  92. 92.
    Phillips N, Ziegler M, Saha B, et al. Allelic loss on chromosome 17 in human ovarian cancer. Int J Cancer. 1993;54:85–91.PubMedCrossRefGoogle Scholar
  93. 93.
    Phillips NJ, Zeigler MR, Deaven LL. A cDNA from the ovarian cancer critical region of deletion on chromosome 17p13.3. Cancer Lett. 1996;102:85–90.PubMedCrossRefGoogle Scholar
  94. 94.
    Baker SJ, Preisinger AC, Jessup JM, et al. p53 gene mutations occur in combination with 17p allelic deletions as late events in colorectal tumorigenesis. Cancer Res. 1990;50:7717–7722.PubMedGoogle Scholar
  95. 95.
    Runnebaum IB, Kieback DG, Mobus VJ, et al. Subcellular localization of accumulated p53 in ovarian cancer cells. Gynecol Oncol. 1996;61:266–271PubMedCrossRefGoogle Scholar
  96. 96.
    Casey G, Lopez ME, Ramos JC, et al. DNA sequence analysis of exons 2 through 11 and immunohistochemical staining are required to detect all known p53 alterations in human malignancies. Oncogene. 1996;13:1971–1981.PubMedGoogle Scholar
  97. 97.
    Berchuck A, Kohler MF, Marks JR, et al. The p53 tumor suppressor gene frequently is altered in gynecologic cancers. Am J Obstet Gynecol. 1994;170:246–252.PubMedGoogle Scholar
  98. 98.
    Wenham RM, Lancaster JM, Berchuck A. Molecular aspects of ovarian cancer. Best Pract Res Clin Obstet Gynaecol. 2002;16:483–497.PubMedCrossRefGoogle Scholar
  99. 99.
    Hartmann LC, Podratz KC, Keeney GL, et al. Prognostic significance of p53 immunostaining in epithelial ovarian cancer. J Clin Oncol. 1994;12:64–69.PubMedGoogle Scholar
  100. 100.
    Berchuck A, Kohler MF, Hopkins MP, et al. Overexpression of p53 is not a feature of benign and early-stage borderline epithelial ovarian tumors. Gynecol Oncol. 1994;52:232–236.PubMedCrossRefGoogle Scholar
  101. 101.
    Berchuck A, Kohler MF, Marks JR, et al. The p53 tumor suppressor gene frequently is altered in gynecologic cancers. Am J Obstet Gynecol. 1994;170:246–252.PubMedGoogle Scholar
  102. 102.
    Singer G, Stohr R, Cope L, et al. Patterns of p53 mutations separate ovarian serous borderline tumor and low- and high-grade carcinomas and provide support for a new model of ovarian carcinogenesis: a mutational analysis with immunohistochemical correlation. Am J Surg Pathol. 2005;29:218–240.PubMedCrossRefGoogle Scholar
  103. 103.
    Curtin JC, Spinella MJ. p53 in human embryonal carcinoma: identification of a transferable, transcriptional repression domain in the N-termianl region of p53. Oncogene. 2005;24:1481–1490.PubMedCrossRefGoogle Scholar
  104. 104.
    D'Souza S, Xin H, Walter S, et al. The gene encoding p202, an interferon-inducible nagtive regulator of the p53 tumor suppressor, is a target of p53-mdiated transcriptional repression. J Biol Chem. 2001;276:298–305.PubMedCrossRefGoogle Scholar
  105. 105.
    Hummond EM, Giaccia AJ. The role of p53 in hypoxia-induced apoptosis. Biochem Biophys Res Commun. 2005;331:718–725.CrossRefGoogle Scholar
  106. 106.
    Hoffman WH, Biade S, Zilfou JT, et al. Transcriptional repression of the anti-apoptotic surviving gene by wild type p53. J Biol Chem. 2002;277;3247–3257.PubMedCrossRefGoogle Scholar
  107. 107.
    Imbriano C, Gurtner A, Cocchiarella F, et al. Direct p53 transcriptional repression : in vivo analysis of CCAAT-containing G2/M promoters. Mol Cell Biol. 2005;25:3737–3751.PubMedCrossRefGoogle Scholar
  108. 108.
    Sigal A, Rotter V. Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res. 2000;60:6788–6793.PubMedGoogle Scholar
  109. 109.
    Chene P. In vitro analysis of the dominant negative effect of p53 mutants. J Mol Biol. 1998;281:205–209.PubMedCrossRefGoogle Scholar
  110. 110.
    Kern SE, Pietenpol JA, Thiagalingam S, et al. Oncogenic forms of p53 inhibit p53-regulated gene expression. Science. 1992;256:827–830.PubMedCrossRefGoogle Scholar
  111. 111.
    Shaulian E, Zauberman A, Ginsberg D, et al. Identification of a minimal transforming domain of p53: negative dominance through abrogation of sequence-specific DNA binding. Mol Cell Biol. 1992;12:5581–5592.PubMedGoogle Scholar
  112. 112.
    Unger T, Mietz JA, Scheffner M, et al. Functional domains of wild-type and mutant p53 proteins involved in transcriptional regulation, transdominant inhibition and transformation suppression. Mol Cell Biol. 1993;13:5186–5194.PubMedGoogle Scholar
  113. 113.
    Blagosklonny MV. P53 from complexity to simplicity: mutant p53 stabilization, gain-of-function, and dominant-negative effect. FASEB J. 2000;14:1901–1907.PubMedCrossRefGoogle Scholar
  114. 114.
    Feng Z, Zhang H, Levine AJ, et al. The coordinate regulation of the p53 and mTOP pathways in cells. Proc Natl Acad Sci USA. 2005;102:8204–8209.PubMedCrossRefGoogle Scholar
  115. 115.
    Bommer GT, Gerin I, Feng Y, et al. P53-Mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol. 2007;17:1298–1307.PubMedCrossRefGoogle Scholar
  116. 116.
    Chang TC, Wentzel EA, Kent OA, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell. 2007;26:745–752.PubMedCrossRefGoogle Scholar
  117. 117.
    He L, He X, Lim LP, et al. A microRNA component of the p53 tumor suppressor network. Nature. 2007;447:1130–1134.PubMedCrossRefGoogle Scholar
  118. 118.
    Tarasov V, Jung P, Verdoodt B, et al. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing:miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle. 2007;6:1586–1593.PubMedCrossRefGoogle Scholar
  119. 119.
    Bruening W, Prowse AH, Schultz DC, et al. Expression of OVCA1, a candidate tumor suppressor, is reduced in tumors and inhibits growth of ovarian cancer cells. Proc Natl Acad Sci USA. 2001;98:11417–11422.CrossRefGoogle Scholar
  120. 120.
    Albertsen HM, Smith SA, Mazoyer S, et al. A physical map and candidate genes in the BRCA1 region on chromosome 17q12–21. Nat Genet. 1994;7:472–479.PubMedCrossRefGoogle Scholar
  121. 121.
    Hall JM, Lee MK, Newman B, et al. Linkage of early-onset familial breast cancer to chromosome 17q21. Science. 1990;250:1684–1689.PubMedCrossRefGoogle Scholar
  122. 122.
    Miki Y, Swensen J, Shattuck-Eidens D, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994;266:66–71.PubMedCrossRefGoogle Scholar
  123. 123.
    Wooster R, Neuhausen SL, Mangion J, et al. Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12–13. Science. 1994;265:2088–2090.PubMedCrossRefGoogle Scholar
  124. 124.
    Pal T, Permuth-Wey J, Betts JA, et al. BRCA1 and BRCA2 mutations account for a large proportion of ovarian carcinoma cases. Cancer. 2005;104:2807–2816.PubMedCrossRefGoogle Scholar
  125. 125.
    Risch HA, McLaughlin JR, Cole DE, et al. Prevalence and penetrance of germline BRCA1 and BRCA2 mutations in a population series of 649 women with ovarian cancer. Am J Hum Genet. 2001;68:700–710.PubMedCrossRefGoogle Scholar
  126. 126.
    Merajver SD, Pham TM, Caduff RF, et al. Somatic mutations in the BRCA1 gene in sporadic ovarian tumours. Nat Genet. 1995;9:439–443.PubMedCrossRefGoogle Scholar
  127. 127.
    Bozzetti C, Bortesi B, Merisio C. Loss of heterozygosity (LOH) in ovarian cancer. Int J Gynaecol Obstet. 2004;85:294–295.PubMedCrossRefGoogle Scholar
  128. 128.
    Cass I, Baldwin RL, Varkey T, et al. Improved survival in women with BRCA-associated ovarian carcinoma. Cancer 2003;97:2187–2195.PubMedCrossRefGoogle Scholar
  129. 129.
    Esteller M, Silva JM, Dominguez G, et al. Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst. 2000;92:564–569.PubMedCrossRefGoogle Scholar
  130. 130.
    Futreal PA, Liu Q, Shattuck-Eidens D, et al. BRCA1 mutations in primary breast and ovarian carcinomas. Science. 1994;266:120–122.PubMedCrossRefGoogle Scholar
  131. 131.
    Thrall M, Gallion HH, Kryscio R, et al. BRCA1 expression in a large series of sporadic ovarian carcinomas: a Gynecologic Oncology Group study. Int J Gynecol Cancer. 2006,16:166–171.PubMedCrossRefGoogle Scholar
  132. 132.
    Wiley A, Katsaros D, Chen H, et al. Aberrant promoter methylation of multiple genes in malignant ovarian tumors and in ovarian tumors with low malignant potential. Cancer. 2006;107:299–308.PubMedCrossRefGoogle Scholar
  133. 133.
    Welcsh PL, King MC. BRCA1 and BRCA2 and the genetic of breast and ovarian cancer. Hum Mol Genet. 2001;10;705–710.PubMedCrossRefGoogle Scholar
  134. 134.
    Zheng W, Luo F, Lu JJ, et al. Reduction of BRCA1 expression in sporadic ovarian cancer. Gynecol Oncol. 2000;76:294–300.PubMedCrossRefGoogle Scholar
  135. 135.
    Russell PA, Pharoah PD, De Foy K, et al. Frequent loss of BRCA1 mRNA and protein expression in sporadic ovarian cancers. Int J Cancer. 2000;87:317–321.PubMedCrossRefGoogle Scholar
  136. 136.
    Tibbetts RS, Cortez D, Brumbaugh KM, et al. Functional interactions between BRCA1 and the checkpoint kinase ATR during genotoxic stress. Genes Dev. 2000;14:2989–3002.PubMedCrossRefGoogle Scholar
  137. 137.
    Xu B, Kim S, Kastan MB. Involvement of Brca1 in S-phase and G(2)-phase checkpoints after ionizing irradiation. Mol Cell Biol. 2001;21:3445–3450.PubMedCrossRefGoogle Scholar
  138. 138.
    Xu X, Weaver Z, Linke SP, et al. Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol Cell. 1999;3:389–395.PubMedCrossRefGoogle Scholar
  139. 139.
    Cortez D, Wang Y, Qin J, et al. Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science. 1999;286:1162–1166.PubMedCrossRefGoogle Scholar
  140. 140.
    Yarden RI, Pardo-Reoyo S, Sgagias M, et al. BRCA1 regulates the G2/M checkpoint by activating Chk1 kinase upon DNA damage. Nat Genet. 2002;30:285–289.PubMedCrossRefGoogle Scholar
  141. 141.
    Reedy MB, Hang T, Gallion H, et al. Antisense inhibition of BRCA1 expression and molecular analysis of hereditary tumors indicate that functional inactivation of the p53 DNA damage response pathway is required for BRCA-associated tumorigenesis. Gynecol Oncol. 2001;81:441–446.PubMedCrossRefGoogle Scholar
  142. 142.
    Moynahan ME, Cui TY, Jasin M. Homologydirected DNA repair, mitomycin-c resistance, and chromosome stability is restored with correction of a Brca1 mutation. Cancer Res. 2001;61:4842–4850.PubMedGoogle Scholar
  143. 143.
    Deng CX, Scott F. Role of the tumor suppressor gene Brca1 in genetic stability and mammary gland tumor formation. Oncogene. 2000;19:1059–1064.PubMedCrossRefGoogle Scholar
  144. 144.
    Kim J, Ashworth L, Branscomb E, et al. The human homolog of a mouse-imprinted gene, PEG3, maps to a zinc finger gene-rich region of human chromosome. PCR Meth Appl. 1997;7:532–540.Google Scholar
  145. 145.
    Li LL, Szeto IYY, Cattanach BM, et al. Organization and parent-of-origin-specific methylation of imprinted PEG3 gene on mouse proximal chromosome 7. Genomics. 2000;63:333–340.PubMedCrossRefGoogle Scholar
  146. 146.
    Yamaguchi A, Taniguchi M, Hori O, et al. PEG3/Pw1 is involved in p53-mediated cell death pathway in brain ischemia/hypoxia. J Biol Chem. 2002;277:623–629.PubMedCrossRefGoogle Scholar
  147. 147.
    Feng W, Marquez RT, Lu Z, et al. Imprinted tumor suppressor genes ARHI and PEG3 are the most frequently down-regulated in human ovarian cancers by loss of heterozygosity and promoter methylation. Cancer. 2008;112:1489–1502.PubMedCrossRefGoogle Scholar
  148. 148.
    Dowdy SC, Gostout BS, Shridhar V, et al. Biallelic methylation and silencing of paternally expressed gene 3 (PEG3) in gynecologic cancer cell lines. Gynecol Oncol. 2005;99:126–134.PubMedCrossRefGoogle Scholar
  149. 149.
    Fitzgerald J, Bateman JF. Why mice have lost genes for COL21A1, STK17A, GPR145 and AHRI: evidence for gene deletion at evolutionary breakpoints in the rodent lineage. Trends Genet. 2004;20:408–4012.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Experimental Therapeutics, M.D. Anderson Cancer CenterUniversity of TexasHoustonUSA
  2. 2.Department of Experimental Therapeutics, Harry Carrothers Wiess Distinguished University Chair in Cancer Research, M.D. Anderson Cancer CenterUniversity of TexasHoustonUSA

Personalised recommendations