Biomarker Targets and Novel Therapeutics

  • Mary Clouser
  • Lisa M. Hess
  • Setsuko K. Chambers
Part of the Cancer Treatment and Research book series (CTAR, volume 149)


Vascular Endothelial Growth Factor Ovarian Cancer Epidermal Growth Factor Receptor Epithelial Ovarian Cancer Ovarian Cancer Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Harries M, Gore M. Part I. Chemotherapy for epithelial ovarian cancer-treatment at first diagnosis. Lancet Oncol. 2002;3(9):529–536.CrossRefPubMedGoogle Scholar
  2. 2.
    Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58(2):71–96.CrossRefPubMedGoogle Scholar
  3. 3.
    Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58:71–96.Google Scholar
  4. 4.
    Goodman MT, Correa CN, Tung KH, et al. Stage at diagnosis of ovarian cancer in the United States, 1992–1997. Cancer. 2003;97(10 Suppl):2648–2659.CrossRefPubMedGoogle Scholar
  5. 5.
    Bristow RE, Tomacruz RS, Armstrong DK, Trimble EL, Montz FJ. Survival effect of maximal cytoreductive surgery for advanced ovarian carcinoma during the platinum era: a meta-analysis. J Clin Oncol. 2002;20(5):1248–1259.CrossRefPubMedGoogle Scholar
  6. 6.
    McGuire WP, Hoskins WJ, Brady MF, et al. Cyclophosphamide and cisplatin compared with paclitaxel and cisplatin in patients with stage III and stage IV ovarian cancer. N Engl J Med. 1996;334(1):1–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Ozols RF, Bundy BN, Greer BE, et al. Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study. J Clin Oncol. 2003;21(17):3194–3200.CrossRefPubMedGoogle Scholar
  8. 8.
    Alberts DS, Liu PY, Hannigan EV, et al. Intraperitoneal cisplatin plus intravenous cyclophosphamide versus intravenous cisplatin plus intravenous cyclophosphamide for stage III ovarian cancer. N Engl J Med. 1996;335(26):1950–1955.CrossRefPubMedGoogle Scholar
  9. 9.
    Armstrong DK, Bundy B, Wenzel L, et al. Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N Engl J Med. 2006;354(1):34–43.CrossRefPubMedGoogle Scholar
  10. 10.
    Markman M, Bundy BN, Alberts DS, et al. Phase III trial of standard-dose intravenous cisplatin plus paclitaxel versus moderately high-dose carboplatin followed by intravenous paclitaxel and intraperitoneal cisplatin in small-volume stage III ovarian carcinoma: an intergroup study of the Gynecologic Oncology Group, Southwestern Oncology Group, and Eastern Cooperative Oncology Group. J Clin Oncol. 2001;19(4):1001–1007.PubMedGoogle Scholar
  11. 11.
    Hess LM, Benham-Hutchins M, Herzog TJ, et al. A meta-analysis of the efficacy of intraperitoneal cisplatin for the front-line treatment of ovarian cancer. Int J Gynecol Cancer. 2007;17(3):561–570.CrossRefPubMedGoogle Scholar
  12. 12.
    Markman M, Liu PY, Wilczynski S, et al. Phase III randomized trial of 12 versus 3 months of maintenance paclitaxel in patients with advanced ovarian cancer after complete response to platinum and paclitaxel-based chemotherapy: a Southwest Oncology Group and Gynecologic Oncology Group trial. J Clin Oncol. 2003;21(13):2460–2465.CrossRefPubMedGoogle Scholar
  13. 13.
    Demetri GD, von Mehren M, Blanke CD, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med. 2002;347(7):472–480.CrossRefPubMedGoogle Scholar
  14. 14.
    Miller K, Wang M, Gralow J, et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med. 2007;357(26):2666–2676.CrossRefPubMedGoogle Scholar
  15. 15.
    Landen CN Jr, Birrer MJ, Sood AK. Early events in the pathogenesis of epithelial ovarian cancer. J Clin Oncol. 2008;26(6):995–1005.CrossRefPubMedGoogle Scholar
  16. 16.
    Wong KK, Lu KH, Malpica A, Bodurka DC, Shvartsman HS, Schmandt RE, et al. Significantly greater expression of ER, PR, and ECAD in advanced-stage low-grade ovarian serous carcinoma as revealed by immunohistochemical analysis. Int J Gynecol Pathol. 2007;26(4):404–409.CrossRefPubMedGoogle Scholar
  17. 17.
    Kar R, Sen S, Singh A, et al. Role of apoptotic regulators in human epithelial ovarian cancer. Cancer Biol Ther. 2007;6(7):1101–5.Google Scholar
  18. 18.
    Nakanishi Y, Kodama J, Yoshinouchi M, et al. The expression of vascular endothelial growth factor and transforming growth factor-beta associates with angiogenesis in epithelial ovarian cancer. Int J Gynecol Pathol. 1997;16(3):256–262.CrossRefPubMedGoogle Scholar
  19. 19.
    Yoneda J, Kuniyasu H, Crispens MA, Price JE, Bucana CD, Fidler IJ. Expression of angiogenesis-related genes and progression of human ovarian carcinomas in nude mice. J Natl Cancer Inst. 1998;90(6):447–454.CrossRefPubMedGoogle Scholar
  20. 20.
    Conejo-Garcia JR, Benencia F, Courreges MC, et al. Tumor-infiltrating dendritic cell precursors recruited by a beta-defensin contribute to vasculogenesis under the influence of Vegf-A. Nat Med. 2004;10(9):950–958.CrossRefPubMedGoogle Scholar
  21. 21.
    Fischer-Colbrie J, Witt A, Heinzl H, et al. EGFR and steroid receptors in ovarian carcinoma: comparison with prognostic parameters and outcome of patients. Anticancer Res. 1997;17(1B):613–619.PubMedGoogle Scholar
  22. 22.
    Berchuck A, Kamel A, Whitaker R, et al. Overexpression of HER-2/neu is associated with poor survival in advanced epithelial ovarian cancer. Cancer Res. 1990;50(13):4087–4091.PubMedGoogle Scholar
  23. 23.
    Vermeij J, Teugels E, Bourgain C, et al. Genomic activation of the EGFR and HER2-neu genes in a significant proportion of invasive epithelial ovarian cancers. BMC Cancer. 2008;8:3.Google Scholar
  24. 24.
    Rubin SC, Finstad CL, Wong GY, Almadrones L, Plante M, Lloyd KO. Prognostic significance of HER-2/neu expression in advanced epithelial ovarian cancer: a multivariate analysis. Am J Obstet Gynecol. 1993;168(1 Pt 1):162–169.PubMedGoogle Scholar
  25. 25.
    Dabrow MB, Francesco MR, McBrearty FX, Caradonna S. The effects of platelet-derived growth factor and receptor on normal and neoplastic human ovarian surface epithelium. Gynecol Oncol. 1998;71(1):29–37.CrossRefPubMedGoogle Scholar
  26. 26.
    Dewar AL, Zannettino AC, Hughes TP, Lyons AB. Inhibition of c-fms by imatinib: expanding the spectrum of treatment. Cell Cycle. 2005;4(7):851–853.PubMedGoogle Scholar
  27. 27.
    Dewar AL, Cambareri AC, Zannettino AC, et al. Macrophage colony-stimulating factor receptor c-fms is a novel target of imatinib. Blood. 2005;105(8):3127–3132.CrossRefPubMedGoogle Scholar
  28. 28.
    Garcia AA, Hirte H, Fleming G, et al. Phase II clinical trial of bevacizumab and low-dose metronomic oral cyclophosphamide in recurrent ovarian cancer: a trial of the California, Chicago, and Princess Margaret Hospital phase II consortia. J Clin Oncol. 2008;26(1):76–82.CrossRefPubMedGoogle Scholar
  29. 29.
    Chura JC, Van Iseghem K, Downs LSJ, Carson LF, Judson PL. Bevacizumab plus cyclophosphamide in heavily pretreated patients with recurrent ovarian cancer. Gynecol Oncol. 2007;107:326–330.CrossRefPubMedGoogle Scholar
  30. 30.
    Cannistra SA, Matulonis UA, Penson RT, et al. Phase II study of bevacizumab in patients with platinum-resistant ovarian cancer or peritoneal serous cancer. J Clin Oncol. 2007;25(33):5180–5186.CrossRefPubMedGoogle Scholar
  31. 31.
    Burger RA, Sill MW, Monk BJ, Greer BE, Sorosky JI. Phase II trial of bevacizumab in persistent or recurrent epithelial ovarian cancer or primary peritoneal cancer: a Gynecologic Oncology Group Study. J Clin Oncol. 2007;25:5150–5152.CrossRefGoogle Scholar
  32. 32.
    Herbst RS. (Tarceva): an update on the clinical trial program. Semin Oncol. 2003;30:34–46.PubMedGoogle Scholar
  33. 33.
    Schilder RJ, Sill MW, Chen X, et al. Phase II study of gefitinib in patients with relapsed or persistent ovarian or primary peritoneal carcinoma and evaluation of epidermal growth factor receptor mutations and immunohistochemical expression: a Gynecologic Oncology Group Study. Clin Cancer Res. 2005;11(15):5539–5548.CrossRefPubMedGoogle Scholar
  34. 34.
    Secord AA, Blessing JA, Armstrong DK, et al. Phase II trial of cetuximab and carboplatin in relapsed platinum-sensitive ovarian cancer and evaluation of epidermal growth factor receptor expression: a Gynecologic Oncology Group study. Gynecol Oncol. 2008;108(3):493–499.CrossRefPubMedGoogle Scholar
  35. 35.
    Alberts DS, Liu PY, Wilczynski SP, et al. Phase II trial of imatinib mesylate in recurrent, biomarker positive, ovarian cancer (Southwest Oncology Group Protocol S0211). Int J Gynecol Cancer. 2007;17(4):784–788.CrossRefPubMedGoogle Scholar
  36. 36.
    Gordon MS, Matei D, Aghajanian C, et al. Clinical activity of pertuzumab (rhuMAb 2C4), a HER dimerization inhibitor, in advanced ovarian cancer: potential predictive relationship with tumor HER2 activation status. J Clin Oncol. 2006;24(26):4324–4332.CrossRefPubMedGoogle Scholar
  37. 37.
    Makhija S, Glenn D, Ueland F, et al. Results from a phase II randomized, placebo-controlled, double-blind trial suggest improved PFS with the additon of pertuzumab to gemcitabine in patients with platinum-resistant ovarian, fallopian tube, or primary peritoneal cancer. J Clin Oncol. 2007;25(18S).Google Scholar
  38. 38.
    Palayekar MJ, Herzog TJThe emerging role of epidermal growth factor receptor inhibitors in ovarian cancer. Int J Gynecol Cancer. 2008;18(5):879–90.Google Scholar
  39. 39.
    Minami H, Nakagawa K, Kawada K, et al A phase I study of GW572016 in patients with solid tumors. J Clin Oncol. 2004;22(14S).Google Scholar
  40. 40.
    Chu Q, Goldstein L, Murray N, et al A phase I, open-label study of the safety, tolerability and pharmacokinetics of lapatinib (GW572016) in combination with letrozole in cancer patients. J Clin Oncol. 2005;16S.Google Scholar
  41. 41.
    Kimball KJ, Numnum TN, Estes JM, Kirby TO, Barnes MN, Alvarez RD A phase I trial of lapatinib in combination with carboplatin in patients with platinum sensitive recurrent epithelial ovarian cancer. J Clin Oncol. 2007;25(18S).Google Scholar
  42. 42.
    Wong KK, Fracasso PM, Bukowski RM, et al HKI-272, an irreversible pan erbB rceptor tyrosine kinase inhibitor: preliminary phase 1 results in patients with solid tumors: ASCO Annual Meeting Proceedings Part I. J Clin Oncol. 2006;24(18S).Google Scholar
  43. 43.
    Campos S, Hamid O, Seiden MV, et al. Multicenter, randomized phase II trial of oral CI-1033 for previously treated advanced ovarian cancer. J Clin Oncol. 2005;23(24):5597–5604.CrossRefPubMedGoogle Scholar
  44. 44.
    Madhusudan S, Tamir A, Bates N, et al. A multicenter phase I gene therapy clinical trial involving intraperitoneal administration of E1A-lipid complex in patients with recurrent epithelial ovarian cancer overexpressing HER-2/neu oncogene. Clin Cancer Res. 2004;10(9):2986–2996.CrossRefPubMedGoogle Scholar
  45. 45.
    Lee CP, Attard G, Poupard L, et al. A phase I study of BIBF 1120, an orally active triple angiokinase inhibitor (VEGFR, PDGFR, FGFR) in patients with advanced solid malignancies: ASCO Annual Meeting Proceedings. J Clin Oncol. 2005;23(16S).Google Scholar
  46. 46.
    Seiden MV, Burris HA, Matulonis U, et al. A phase II trial of EMD72000 (matuzumab), a humanized anti-EGFR monoclonal antibody, in patients with platinum-resistant ovarian and primary peritoneal malignancies. Gynecol Oncol. 2007;104(3):727–731.CrossRefPubMedGoogle Scholar
  47. 47.
    Woenckhaus J, Steger K, Sturm K, Munstedt K, Franke FE, Fenic I. Prognostic value of PIK3CA and phosphorylated AKT expression in ovarian cancer. Virchows Arch. 2007;450(4):387–395.CrossRefPubMedGoogle Scholar
  48. 48.
    Lee S, Choi EJ, Jin C, Kim DH. Activation of PI3K/AKT pathway by PTEN reduction and PIK3CA mRNA amplification contributes to cisplatin resistance in an ovarian cancer cell line. Gynecol Oncol. 2005;97(1):26–34.CrossRefPubMedGoogle Scholar
  49. 49.
    Zhang L, Huang J, Yang N, Greshock J, Liang S, Hasegawa K, et al. Integrative genomic analysis of phosphatidylinositol 3'-kinase family identifies PIK3R3 as a potential therapeutic target in epithelial ovarian cancer. Clin Cancer Res. 2007;13(18 Pt 1):5314–5321.CrossRefPubMedGoogle Scholar
  50. 50.
    Ramirez PT, Landen CN Jr, Coleman RL, Milam MR, Levenback C, Johnston TA, et al. Phase I trial of the proteasome inhibitor bortezomib in combination with carboplatin in patients with platinum- and taxane-resistant ovarian cancer. Gynecol Oncol. 2008;108(1):68–71.CrossRefPubMedGoogle Scholar
  51. 51.
    Frankel A, Man S, Elliott P, Adams J, Kerbel RS. Lack of multicellular drug resistance observed in human ovarian and prostate carcinoma treated with the proteasome inhibitor PS-341. Clin Cancer Res. 2000;6(9):3719–3728.PubMedGoogle Scholar
  52. 52.
    Aghajanian C, Dizon DS, Sabbatini P, Raizer JJ, Dupont J, Spriggs DR. Phase I trial of bortezomib and carboplatin in recurrent ovarian or primary peritoneal cancer. J Clin Oncol. 2005;23(25):5943–5949.CrossRefPubMedGoogle Scholar
  53. 53.
    Kavan P, Melnychuk D, Langleben A, et al. Phase I study of ECO-4601, a novel Ras pathway inhibitor. ASCO Annual Meeting Proceedings Part I. J Clin Oncol 2007;25(18S).Google Scholar
  54. 54.
    Kuhn W, Schmalfeldt B, Reuning U, et al. Prognostic significance of urokinase (uPA) and its inhibitor PAI-1 for survival in advanced ovarian carcinoma stage FIGO IIIc. Br J Cancer. 1999;79(11–12):1746–1751.CrossRefPubMedGoogle Scholar
  55. 55.
    Chambers SK, Ivins CM, Carcangiu ML. Plasminogen activator inhibitor-1 is an independent poor prognostic factor for survival in advanced stage epithelial ovarian cancer patients. Int J Cancer. 1998;79(5):449–454.CrossRefPubMedGoogle Scholar
  56. 56.
    Chambers SK, Ivins CM, Carcangiu ML. Urokinase-type plasminogen activator in epithelial ovarian cancer: a poor prognostic factor, associated with advanced stage. Int J Gynecol Cancer. 1998;8:242–250.CrossRefGoogle Scholar
  57. 57.
    van der Burg ME, Henzen-Logmans SC, Berns EM, van Putten WL, Klijn JG, Foekens JA. Expression of urokinase-type plasminogen activator (uPA) and its inhibitor PAI-1 in benign, borderline, malignant primary and metastatic ovarian tumors. Int J Cancer. 1996;69(6):475–479.CrossRefPubMedGoogle Scholar
  58. 58.
    Saldanha RG, Molloy MP, Bdeir K, et al. Proteomic identification of lynchpin urokinase plasminogen activator receptor protein interactions associated with epithelial cancer malignancy. J Proteome Res. 2007;6(3):1016–1028.CrossRefPubMedGoogle Scholar
  59. 59.
    Chambers SK, Wang Y, Gertz RE, Kacinski BM. Macrophage colony-stimulating factor mediates invasion of ovarian cancer cells through urokinase. Cancer Res. 1995;55(7):1578–1585.PubMedGoogle Scholar
  60. 60.
    Hussain MM, Kotz H, Minasian L, et al. Phase II trial of carboxyamidotriazole in patients with relapsed epithelial ovarian cancer. J Clin Oncol. 2003;21(23):4356–4363.CrossRefPubMedGoogle Scholar
  61. 61.
    Berkenblit A, Matulonis UA, Kroener JF, et al. A6, a urokinase plasminogen activator (uPA)-derived peptide in patients with advanced gynecologic cancer: a phase I trial. Gynecol Oncol. 2005;99(1):50–7.CrossRefPubMedGoogle Scholar
  62. 62.
    Ghamande S, Silverman MH, Gold MA, et al. A phase II randomized, double-blind, placebo-controlled trial of clinical activity and safety of Å6 in patients with asymptomatic CA 125 progression of epithelial ovarian, fallopian tube, or primary peritoneal cancer. ASCO Annual Meeting Proceedings Part I. J Clin Oncol 2007;25(18S).Google Scholar
  63. 63.
    Odunsi K, Sabbatini P. Harnessing the immune system for ovarian cancer therapy. Am J Reprod Immunol. 2008;59(1):62–74.CrossRefPubMedGoogle Scholar
  64. 64.
    Hung CF, Wu TC, Monie A, Roden R. Antigen-specific immunotherapy of cervical and ovarian cancer. Immunol Rev. 2008;222:43–69.CrossRefPubMedGoogle Scholar
  65. 65.
    Odunsi K, Qian F, Matsuzaki J, et al. Vaccination with an NY-ESO-1 peptide of HLA class I/II specificities induces integrated humoral and T cell responses in ovarian cancer. Proc Natl Acad Sci USA. 2007;104(31):12837–12842.CrossRefPubMedGoogle Scholar
  66. 66.
    Zhang L, Conejo-Garcia JR, Katsaros D, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003;348(3):203–213.CrossRefPubMedGoogle Scholar
  67. 67.
    Wang Y, Kristensen GB, Borresen-Dale AL, Helland A. TP53 mutations and codon 72 genotype -- impact on survival among ovarian cancer patients. Ann Oncol. 2007;18(5):964–966.CrossRefPubMedGoogle Scholar
  68. 68.
    Bennett M, Macdonald K, Chan SW, Luzio JP, Simari R, Weissberg P. Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Science. 1998;282(5387):290–293.CrossRefPubMedGoogle Scholar
  69. 69.
    Zeimet AG, Marth C. Why did p53 gene therapy fail in ovarian cancer? Lancet Oncol. 2003;4(7):415–422.CrossRefPubMedGoogle Scholar
  70. 70.
    Lambeck A, Leffers N, Hoogeboom BN, et al. P53-specific T cell responses in patients with malignant and benign ovarian tumors: implications for p53 based immunotherapy. Int J Cancer. 2007;121(3):606–614.CrossRefPubMedGoogle Scholar
  71. 71.
    Hassan R, Ho M. Mesothelin targeted cancer immunotherapy. Eur J Cancer. 2008;44(1):46–53.CrossRefPubMedGoogle Scholar
  72. 72.
    Oregovomab: anti-CA-125 monoclonal antibody B43.13 -- AltaRex, B43.13, MAb B43.13, monoclonal antibody B43.13. Drugs R D. 2006;7(6):379–383.Google Scholar
  73. 73.
    Berek JS, Taylor PT, Nicodemus CF. CA125 velocity at relapse is a highly significant predictor of survival post relapse: results of a 5-year follow-up survey to a randomized placebo-controlled study of maintenance oregovomab immunotherapy in advanced ovarian cancer. J Immunother. 2008;31(2):207–214.CrossRefPubMedGoogle Scholar
  74. 74.
    Sabbatini P, Odunsi K. Immunologic approaches to ovarian cancer treatment. J Clin Oncol. 2007;25(20):2884–2893.CrossRefPubMedGoogle Scholar
  75. 75.
    Odunsi K, Jungbluth AA, Stockert E, et al. NY-ESO-1 and LAGE-1 cancer-testis antigens are potential targets for immunotherapy in epithelial ovarian cancer. Cancer Res. 2003;63(18):6076–6083.PubMedGoogle Scholar
  76. 76.
    Merritt WM, Thaker PH, Landen CN Jr, et al. Analysis of EphA2 expression and mutant p53 in ovarian carcinoma. Cancer Biol Ther. 2006;5(10):1357–1360.PubMedGoogle Scholar
  77. 77.
    Lu C, Shahzad MM, Wang H, et al. EphA2 overexpression promotes ovarian cancer growth. Cancer Biol Ther. 2008;7(7):1098–103.Google Scholar
  78. 78.
    Li AJ, Karlan BY. Genetic factors in ovarian carcinoma. Curr Oncol Rep. 2001;3(1):27–32.CrossRefPubMedGoogle Scholar
  79. 79.
    Jasonni VM, Amadori A, Gentile G, Alesi L. Potential role of growth factors in ovarian cancer. Front Biosci. 1996;1:g24--g29.Google Scholar
  80. 80.
    Chambers SK, Kacinski BM, Ivins CM, Carcangiu ML. Overexpression of epithelial macrophage colony-stimulating factor (CSF-1) and CSF-1 receptor: a poor prognostic factor in epithelial ovarian cancer, contrasted with a protective effect of stromal CSF-1. Clin Cancer Res. 1997;3(6):999–1007.PubMedGoogle Scholar
  81. 81.
    Arbel R, Rojansky N, Klein BY, et al. Inhibitors that target protein kinases for the treatment of ovarian carcinoma. Am J Obstet Gynecol. 2003;188(5):1283–1290.CrossRefPubMedGoogle Scholar
  82. 82.
    Posadas EM, Kwitkowski V, Kotz HL, et al. A prospective analysis of imatinib-induced c-KIT modulation in ovarian cancer: a phase II clinical study with proteomic profiling. Cancer. 2007;110(2):309–317.CrossRefPubMedGoogle Scholar
  83. 83.
    Marks JR, Davidoff AM, Kerns BJ, et al. Overexpression and mutation of p53 in epithelial ovarian cancer. Cancer Res. 1991;51(11):2979–2984.PubMedGoogle Scholar
  84. 84.
    Eltabbakh GH, Belinson JL, Kennedy AW, et al. p53 overexpression is not an independent prognostic factor for patients with primary ovarian epithelial cancer. Cancer. 1997;80(5):892–898.CrossRefPubMedGoogle Scholar
  85. 85.
    Bartel F, Jung J, Bohnke A, et al. Both germ line and somatic genetics of the p53 pathway affect ovarian cancer incidence and survival. Clin Cancer Res. 2008;14(1):89–96.CrossRefPubMedGoogle Scholar
  86. 86.
    Giordano G, Azzoni C, D'Adda T, Merisio C. P16(INK4a) overexpression independent of human papilloma virus (HPV) infection in rare subtypes of endometrial carcinomas. Pathol Res Pract. 2007;203(7):533–538.CrossRefPubMedGoogle Scholar
  87. 87.
    Meade-Tollin L, Martinez JD. Loss of p53 and overexpression of EphA2 predict poor prognosis for ovarian cancer patients. Cancer Biol Ther. 2007;6(2):288–289.CrossRefPubMedGoogle Scholar
  88. 88.
    Tuefferd M, Couturier J, Penault-Llorca F, et al. HER2 status in ovarian carcinomas: a multicenter GINECO study of 320 patients. PLoSONE. 2007;2(11):e1138.Google Scholar
  89. 89.
    Pils D, Pinter A, Reibenwein J, et al. In ovarian cancer the prognostic influence of HER2/neu is not dependent on the CXCR4/SDF-1 signalling pathway. Br J Cancer. 2007;96(3):485–491.CrossRefPubMedGoogle Scholar
  90. 90.
    Steffensen KD, Waldstrom M, Jeppesen U, Jakobsen E, Brandslund I, Jakobsen A. The prognostic importance of cyclooxygenase 2 and HER2 expression in epithelial ovarian cancer. Int J Gynecol Cancer. 2007;17(4):798–807.CrossRefPubMedGoogle Scholar
  91. 91.
    Kommoss F, Wolfle J, Bauknecht T, et al. Co-expression of M-CSF transcripts and protein, FMS (M-CSF receptor) transcripts and protein, and steroid receptor content in adenocarcinomas of the ovary. J Pathol. 1994;174(2):111–119.CrossRefPubMedGoogle Scholar
  92. 92.
    Kacinski BM, Carter D, Mittal K, et al. Ovarian adenocarcinomas express fms-complementary transcripts and fms antigen, often with coexpression of CSF-1. Am J Pathol. 1990;137(1):135–147.PubMedGoogle Scholar
  93. 93.
    Toy EP, Azodi M, Folk NL, Zito CM, Zeiss CJ, Chambers SK. Enhanced ovarian cancer tumorigenesis and metastasis by the macrophage colony-stimulating factor. Neoplasisa. 2005;11(2):136–44.CrossRefPubMedGoogle Scholar
  94. 94.
    Kacinski BM, Carter D, Kohorn EI, et al. Oncogene expression in vivo by ovarian adenocarcinomas and mixed-mullerian tumors. Yale J Biol Med. 1989;62(4):379–392.PubMedGoogle Scholar
  95. 95.
    Moser TL, Young TN, Rodriguez GC, Pizzo SV, Bast RC Jr, Stack MS. Secretion of extracellular matrix-degrading proteinases is increased in epithelial ovarian carcinoma. Int J Cancer. 1994;56(4):552–559.CrossRefPubMedGoogle Scholar
  96. 96.
    Konecny G, Untch M, Pihan A, et al. Association of urokinase-type plasminogen activator and its inhibitor with disease progression and prognosis in ovarian cancer. Clin Cancer Res. 2001;7(6):1743–1749.PubMedGoogle Scholar
  97. 97.
    Bruening W, Prowse AH, Schultz DC, Holgado-Madruga M, Wong A, Godwin AK. Expression of OVCA1, a candidate tumor suppressor, is reduced in tumors and inhibits growth of ovarian cancer cells. Cancer Res. 1999;59(19):4973–4983.PubMedGoogle Scholar
  98. 98.
    Jensen MR, Helin K. OVCA1: emerging as a bona fide tumor suppressor. Genes Dev. 2004;18(3):245–248.CrossRefPubMedGoogle Scholar
  99. 99.
    Schultz DC, Vanderveer L, Berman DB, Hamilton TC, Wong AJ, Godwin AK. Identification of two candidate tumor suppressor genes on chromosome 17p13.3. Cancer Res. 1996;56(9):1997–2002.PubMedGoogle Scholar
  100. 100.
    Yu Y, Xu F, Peng H, et al. NOEY2 (ARHI), an imprinted putative tumor suppressor gene in ovarian and breast carcinomas. Proc Natl Acad Sci USA. 1999;96(1):214–219.CrossRefPubMedGoogle Scholar
  101. 101.
    Lu Z, Luo RZ, Peng H, et al. Transcriptional and posttranscriptional down-regulation of the imprinted tumor suppressor gene ARHI (DRAS3) in ovarian cancer. Clin Cancer Res. 2006;12(8):2404–2413.CrossRefPubMedGoogle Scholar
  102. 102.
    Feng W, Marquez RT, Lu Z, et al. Imprinted tumor suppressor genes ARHI and PEG3 are the most frequently down-regulated in human ovarian cancers by loss of heterozygosity and promoter methylation. Cancer. 2008;112(7):1489–1502.CrossRefPubMedGoogle Scholar
  103. 103.
    Cvetkovic D, Pisarcik D, Lee C, Hamilton TC, Abdollahi A. Altered expression and loss of heterozygosity of the LOT1 gene in ovarian cancer. Gynecol Oncol. 2004;95(3):449–455.CrossRefPubMedGoogle Scholar
  104. 104.
    Mok SC, Chan WY, Wong KK, et al. DOC-2, a candidate tumor suppressor gene in human epithelial ovarian cancer. Oncogene. 1998;16(18):2381–2387.CrossRefPubMedGoogle Scholar
  105. 105.
    Paley PJ, Goff BA, Gown AM, Greer BE, Sage EH. Alterations in SPARC and VEGF immunoreactivity in epithelial ovarian cancer. Gynecol Oncol. 2000;78(3 Pt 1):336–341.CrossRefPubMedGoogle Scholar
  106. 106.
    Brown TJ, Shaw PA, Karp X, Huynh MH, Begley H, Ringuette MJ. Activation of SPARC expression in reactive stroma associated with human epithelial ovarian cancer. Gynecol Oncol. 1999;75(1):25–33.CrossRefPubMedGoogle Scholar
  107. 107.
    Kolasa IK, Rembiszewska A, Janiec-Jankowska A, et al. PTEN mutation, expression and LOH at its locus in ovarian carcinomas. Relation to TP53, K-RAS and BRCA1 mutations. Gynecol Oncol. 2006;103(2):692–697.CrossRefPubMedGoogle Scholar
  108. 108.
    Obata K, Morland SJ, Watson RH, et al. Frequent PTEN/MMAC mutations in endometrioid but not serous or mucinous epithelial ovarian tumors. Cancer Res. 1998;58(10):2095–2097.PubMedGoogle Scholar
  109. 109.
    Lee JS, Choi YD, Choi C, Lee MC, Park CS, Min KW. Expression of PTEN in ovarian epithelial tumors and its relation to tumor behavior and growth. Anal Quant Cytol Histol. 2005;27(4):202–210.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Mary Clouser
    • 1
  • Lisa M. Hess
    • 1
  • Setsuko K. Chambers
    • 1
  1. 1.Division of Women’s Cancers, Arizona Cancer CenterThe University of ArizonaTucsonUSA

Personalised recommendations