Skip to main content

Animal Models of Ovarian Cancer

  • Chapter
  • First Online:

Part of the book series: Cancer Treatment and Research ((CTAR,volume 149))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Campbell JG. Some unusual gonadal tumours of the fowl. Br J Cancer. 1951;5(1):69--82.

    CAS  PubMed  Google Scholar 

  2. Fredrickson TN. Ovarian tumors of the hen. Environ Health Perspect. 1987;73:35--51.

    CAS  PubMed  Google Scholar 

  3. MacLachlan NJ. Ovarian disorders in domestic animals. Environ Health Perspect. 1987;73:27--33.

    CAS  PubMed  Google Scholar 

  4. Johnson PA, Giles JR. Use of genetic strains of chickens in studies of ovarian cancer. Poult Sci. 2006;85(2):246--250.

    CAS  PubMed  Google Scholar 

  5. Barnes MN, Berry WD, Straughn JM, et al. pilot study of ovarian cancer chemoprevention using medroxyprogesterone acetate in an avian model of spontaneous ovarian carcinogenesis. Gynecol Oncol. 2002;87(1):57--63.

    CAS  PubMed  Google Scholar 

  6. Giles JR, Olson LM, Johnson PA. Characterization of ovarian surface epithelial cells from the hen: a unique model for ovarian cancer. Exp Biol Med (Maywood). 2006;231(11):1718--1725.

    CAS  Google Scholar 

  7. Jackson E, Anderson K, Ashwell C, Petitte J, Mozdziak PE. CA125 expression in spontaneous ovarian adenocarcinomas from laying hens. Gynecol Oncol. 2007;104(1):192--198.

    CAS  PubMed  Google Scholar 

  8. Rodriguez-Burford C, Barnes MN, Berry W, Partridge EE, Grizzle WE. Immunohistochemical expression of molecular markers in an avian model: a potential model for preclinical evaluation of agents for ovarian cancer chemoprevention. Gynecol Oncol. 2001;81(3):373--379.

    CAS  PubMed  Google Scholar 

  9. Hankinson SE, Colditz GA, Hunter DJ, Spencer TL, Rosner B, Stampfer MJ. A quantitative assessment of oral contraceptive use and risk of ovarian cancer. Obstet Gynecol. 1992;80(4):708--714.

    CAS  PubMed  Google Scholar 

  10. Rodriguez GC, Nagarsheth NP, Lee KL, et al. Progestin-induced apoptosis in the Macaque ovarian epithelium: differential regulation of transforming growth factor-beta. J Natl Cancer Inst. 2002;94(1):50--60.

    CAS  PubMed  Google Scholar 

  11. Rodriguez GC, Walmer DK, Cline M, et al. Effect of progestin on the ovarian epithelium of macaques: cancer prevention through apoptosis? J Soc Gynecol Investig. 1998;5(5):271--276.

    CAS  PubMed  Google Scholar 

  12. Brewer M, Ranger-Moore J, Satterfield W, et al. Combination of 4-HPR and oral contraceptive in monkey model of chemoprevention of ovarian cancer. Front Biosci. 2007;12:2260--2268.

    PubMed  Google Scholar 

  13. Brewer M, Baze W, Hill L, et al. Rhesus macaque model for ovarian cancer chemoprevention. Comp Med. 2001;51(5):424--429.

    CAS  PubMed  Google Scholar 

  14. Brewer M, Utzinger U, Satterfield W, et al. Biomarker modulation in a nonhuman rhesus primate model for ovarian cancer chemoprevention. Cancer Epidemiol Biomarkers Prev. 2001;10(8):889--893.

    CAS  PubMed  Google Scholar 

  15. Wright JW, Stouffer RL, Rodland KD. Estrogen inhibits cell cycle progression and retinoblastoma phosphorylation in rhesus ovarian surface epithelial cell culture. Mol Cell Endocrinol. 2003;208(1--2):1--10.

    CAS  PubMed  Google Scholar 

  16. Wright JW, Stouffer RL, Rodland KD. High-dose estrogen and clinical selective estrogen receptor modulators induce growth arrest, p21, and p53 in primate ovarian surface epithelial cells. J Clin Endocrinol Metab. 2005;90(6):3688--3695.

    CAS  PubMed  Google Scholar 

  17. Wright JW, Toth-Fejel S, Stouffer RL, Rodland KD. Proliferation of rhesus ovarian surface epithelial cells in culture: lack of mitogenic response to steroid or gonadotropic hormones. Endocrinology. 2002;143(6):2198--207.

    CAS  PubMed  Google Scholar 

  18. Hsieh FY, Tengstrand E, Lee JW, et al. Drug safety evaluation through biomarker analysis -- a toxicity study in the cynomolgus monkey using an antibody-cytotoxic conjugate against ovarian cancer. Toxicol Appl Pharmacol. 2007;224(1):12--18.

    CAS  PubMed  Google Scholar 

  19. Hassan R, Ebel W, Routhier EL, et al. Preclinical evaluation of MORAb-009, a chimeric antibody targeting tumor-associated mesothelin. Cancer Immun. 2007;7:20.

    PubMed  Google Scholar 

  20. Flanagan SP. ‘Nude,’ a new hairless gene with pleiotropic effects in the mouse. Genet Res. 1966;8(3):295--309.

    CAS  PubMed  Google Scholar 

  21. Bosma GC, Custer RP, Bosma MJ. A severe combined immunodeficiency mutation in the mouse. Nature. 1983;301(5900):527--530.

    CAS  PubMed  Google Scholar 

  22. Davy M, Mossige J, Johannessen JV. Heterologous growth of human ovarian cancer. A new in vivo testing system. Acta Obstet Gynecol Scand. 1977;56(1):55--59.

    CAS  PubMed  Google Scholar 

  23. Freedman RS, Pihl E, Kusyk C, Gallager HS, Rutledge F. Characterization of an ovarian carcinoma cell line. Cancer. 1978;42(5):2352--2359.

    CAS  PubMed  Google Scholar 

  24. Hamilton TC, Young RC, McKoy WM, et al. Characterization of a human ovarian carcinoma cell line (NIH:OVCAR-3) with androgen and estrogen receptors. Cancer Res. 1983;43(11):5379--5389.

    CAS  PubMed  Google Scholar 

  25. Kullander S, Rausing A, Trope C. Human ovarian tumours heterotransplanted to “nude” mice. Acta Obstet Gynecol Scand. 1978;57(2):149--159.

    CAS  PubMed  Google Scholar 

  26. Kiguchi K, Kubota T, Aoki D, et al. A patient-like orthotopic implantation nude mouse model of highly metastatic human ovarian cancer. Clin Exp Metastasis. 1998;16(8):751--756.

    CAS  PubMed  Google Scholar 

  27. Ozols RF, Grotzinger KR, Fisher RI, Myers CE, Young RC. Kinetic characterization and response to chemotherapy in a transplantable murine ovarian cancer. Cancer Res. 1979;39(8):3202--3208.

    CAS  PubMed  Google Scholar 

  28. Ozols RF, Locker GY, Doroshow JH, et al. Chemotherapy for murine ovarian cancer: a rationale for ip therapy with adriamycin. Cancer Treat Rep. 1979;63(2):269--273.

    CAS  PubMed  Google Scholar 

  29. Ozols RF, Locker GY, Doroshow JH, Grotzinger KR, Myers CE, Young RC. Pharmacokinetics of adriamycin and tissue penetration in murine ovarian cancer. Cancer Res. 1979;39(8):3209--3214.

    CAS  PubMed  Google Scholar 

  30. Ozols RF, Young RC, Speyer JL, et al. Phase I and pharmacological studies of adriamycin administered intraperitoneally to patients with ovarian cancer. Cancer Res. 1982;42(10):4265--4269.

    CAS  PubMed  Google Scholar 

  31. Trimble EL, Thompson S, Christian MC, Minasian L. Intraperitoneal chemotherapy for women with epithelial ovarian cancer. Oncologist. 2008;13(4):403--409.

    CAS  PubMed  Google Scholar 

  32. Vergote I, Amant F, Leunen K, et al. Intraperitoneal chemotherapy in patients with advanced ovarian cancer: the con view. Oncologist. 2008;13(4):410--414.

    CAS  PubMed  Google Scholar 

  33. DiSaia PJ, Morrow M, Kanabus J, Piechal W, Townsend DE. Two new tissue culture lines from ovarian cancer. Gynecol Oncol. 1975;3(3):215--219.

    CAS  PubMed  Google Scholar 

  34. Ioachim HL, Dorsett BH, Sabbath M, Barber HR. Electron microscopy, tissue culture, and immunology of ovarian carcinoma. Natl Cancer Inst Monogr. 1975;42:45--62.

    CAS  PubMed  Google Scholar 

  35. Woods LK, Morgan RT, Quinn LA, Moore GE, Semple TU, Stedman KE. Comparison of four new cell lines from patients with adenocarcinoma of the ovary. Cancer Res. 1979;39(11):4449--4459.

    CAS  PubMed  Google Scholar 

  36. Hamilton TC, Young RC, Louie KG, et al. Characterization of a xenograft model of human ovarian carcinoma which produces ascites and intraabdominal carcinomatosis in mice. Cancer Res. 1984;44(11):5286--5290.

    CAS  PubMed  Google Scholar 

  37. Ozols RF, Louie KG, Plowman J, et al. Enhanced melphalan cytotoxicity in human ovarian cancer in vitro and in tumor-bearing nude mice by buthionine sulfoximine depletion of glutathione. Biochem Pharmacol. 1987;36(1):147--153.

    CAS  PubMed  Google Scholar 

  38. Burbridge MF, Kraus-Berthier L, Naze M, Pierre A, Atassi G, Guilbaud N. Biological and pharmacological characterisation of three models of human ovarian carcinoma established in nude mice: use of the CA125 tumour marker to predict antitumour activity. Int J Oncol. 1999;15(6):1155--1162.

    CAS  PubMed  Google Scholar 

  39. Molpus KL, Koelliker D, Atkins L, et al. Characterization of a xenograft model of human ovarian carcinoma which produces intraperitoneal carcinomatosis and metastases in mice. Int J Cancer. 1996;68(5):588--595.

    CAS  PubMed  Google Scholar 

  40. Ward BG, Wallace K, Shepherd JH, Balkwill FR. Intraperitoneal xenografts of human epithelial ovarian cancer in nude mice. Cancer Res. 1987;47(10):2662--2667.

    CAS  PubMed  Google Scholar 

  41. Fu X, Hoffman RM. Human ovarian carcinoma metastatic models constructed in nude mice by orthotopic transplantation of histologically-intact patient specimens. Anticancer Res. 1993;13(2):283--286.

    CAS  PubMed  Google Scholar 

  42. Bao R, Connolly DC, Murphy M, et al. Activation of cancer-specific gene expression by the survivin promoter. J Natl Cancer Inst. 2002;94(7):522--528.

    CAS  PubMed  Google Scholar 

  43. Vanderhyden BC, Shaw TJ, Ethier JF. Animal models of ovarian cancer. Reprod Biol Endocrinol. 2003;1:67.

    PubMed  Google Scholar 

  44. Fidler IJ. Critical factors in the biology of human cancer metastasis: twenty-eighth G.H.A. Clowes memorial award lecture. Cancer Res. 1990;50(19):6130--6138.

    CAS  PubMed  Google Scholar 

  45. Kerbel RS. Human tumor xenografts as predictive preclinical models for anticancer drug activity in humans: better than commonly perceived-but they can be improved. Cancer Biol Ther. 2003;2(4 Suppl 1):S134--139.

    CAS  PubMed  Google Scholar 

  46. Voskoglou-Nomikos T, Pater JL, Seymour L. Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin Cancer Res. 2003;9(11):4227--4239.

    PubMed  Google Scholar 

  47. Nishida T, Sugiyama T, Kataoka A, Ushijima K, Yakushiji M. Histologic characterization of rat ovarian carcinoma induced by intraovarian insertion of a 7,12-dimethylbenz[a]anthracene-coated suture: common epithelial tumors of the ovary in rats? Cancer. 1998;83(5):965--970.

    CAS  PubMed  Google Scholar 

  48. Sekiya S, Endoh N, Kikuchi Y, et al. In vivo and in vitro studies of experimental ovarian adenocarcinoma in rats. Cancer Res. 1979;39(3):1108--1112.

    CAS  PubMed  Google Scholar 

  49. Tunca JC, Erturk E, Erturk E, Bryan GT. Chemical induction of ovarian tumors in rats. Gynecol Oncol. 1985;21(1):54--64.

    CAS  PubMed  Google Scholar 

  50. Stewart SL, Querec TD, Ochman AR, et al. Characterization of a carcinogenesis rat model of ovarian preneoplasia and neoplasia. Cancer Res. 2004;64(22):8177--8183.

    CAS  PubMed  Google Scholar 

  51. Wang Y, Zhang Z, Lu Y, et al. Enhanced susceptibility to chemical induction of ovarian tumors in mice with a germ line p53 mutation. Mol Cancer Res. 2008;6(1):99--109.

    PubMed  Google Scholar 

  52. Silva EG, Tornos C, Deavers M, Kaisman K, Gray K, Gershenson D. Induction of epithelial neoplasms in the ovaries of guinea pigs by estrogenic stimulation. Gynecol Oncol. 1998;71(2):240--246.

    CAS  PubMed  Google Scholar 

  53. Silva EG, Tornos C, Fritsche HA Jr, et al. The induction of benign epithelial neoplasms of the ovaries of guinea pigs by testosterone stimulation: a potential animal model. Mod Pathol. 1997;10(9):879--883.

    CAS  PubMed  Google Scholar 

  54. Fathalla MF. Incessant ovulation -- a factor in ovarian neoplasia? Lancet. 1971;2(7716):163.

    CAS  PubMed  Google Scholar 

  55. Murdoch WJ. Carcinogenic potential of ovulatory genotoxicity. Biol Reprod. 2005;73(4):586--590.

    CAS  PubMed  Google Scholar 

  56. Clow OL, Hurst PR, Fleming JS. Changes in the mouse ovarian surface epithelium with age and ovulation number. Mol Cell Endocrinol. 2002;191(1):105--111.

    CAS  PubMed  Google Scholar 

  57. Tan OL, Hurst PR, Fleming JS. Location of inclusion cysts in mouse ovaries in relation to age, pregnancy, and total ovulation number: implications for ovarian cancer? J Pathol. 2005;205(4):483--490.

    PubMed  Google Scholar 

  58. Auersperg N, Maines-Bandiera SL, Dyck HG. Ovarian carcinogenesis and the biology of ovarian surface epithelium. J Cell Physiol. 1997;173(2):261--265.

    CAS  PubMed  Google Scholar 

  59. Scully RE. Pathology of ovarian cancer precursors. J Cell Biochem Suppl. 1995;23:208--218.

    CAS  PubMed  Google Scholar 

  60. Long JH. The growth in vitro of mouse germinal epithelium. Carnegie Inst Wash Pub Contrib Embryol. 1940;28:89--95.

    Google Scholar 

  61. Hamilton TC, Henderson WJ, Eaton C. Isolation and growth of the rat ovarian germinal epithelium. In: Richards RJ, Rajan KT, eds. Tissue Culture in Medical Research (II). Oxford: Pergamon Press; 1980:237--244.

    Google Scholar 

  62. Adams AT, Auersperg N. Transformation of cultured rat ovarian surface epithelial cells by Kirsten murine sarcoma virus. Cancer Res. 1981;41(6):2063--2072.

    CAS  PubMed  Google Scholar 

  63. Dubeau L, Velicescu M, Sherrod AE, Schreiber G, Holt G. Culture of human fetal ovarian epithelium in a chemically-defined, serum-free medium: a model for ovarian carcinogenesis. Anticancer Res. 1990;10(5A):1233--1240.

    CAS  PubMed  Google Scholar 

  64. Kruk PA, Maines-Bandiera SL, Auersperg N. A simplified method to culture human ovarian surface epithelium. Lab Invest. 1990;63(1):132--136.

    CAS  PubMed  Google Scholar 

  65. Siemens CH, Auersperg N. Serial propagation of human ovarian surface epithelium in tissue culture. J Cell Physiol. 1988;134(3):347--356.

    CAS  PubMed  Google Scholar 

  66. Nicosia SV, Johnson JH, Streibel EJ. Isolation and ultrastructure of rabbit ovarian mesothelium (surface epithelium). Int J Gynecol Pathol. 1984;3(4):348--360.

    CAS  PubMed  Google Scholar 

  67. Nicosia SV, Johnson JH. Surface morphology of ovarian mesothelium (surface epithelium) and of other pelvic and extrapelvic mesothelial sites in the rabbit. Int J Gynecol Pathol. 1984;3(3):249--260.

    CAS  PubMed  Google Scholar 

  68. Kido M, Shibuya M. Isolation and characterization of mouse ovarian surface epithelial cell lines. Pathol Res Pract. 1998;194(10):725--730.

    CAS  PubMed  Google Scholar 

  69. Roby KF, Taylor CC, Sweetwood JP, et al. Development of a syngeneic mouse model for events related to ovarian cancer. Carcinogenesis. 2000;21(4):585--591.

    CAS  PubMed  Google Scholar 

  70. Hoffman AG, Burghardt RC, Tilley R, Auersperg N. An in vitro model of ovarian epithelial carcinogenesis: changes in cell--cell communication and adhesion occurring during neoplastic progression. Int J Cancer. 1993;54(5):828--838.

    CAS  PubMed  Google Scholar 

  71. Adams AT, Auersperg N. A cell line, ROSE 199, derived from normal rat ovarian surface epithelium. Exp Cell Biol. 1985;53(4):181--188.

    CAS  PubMed  Google Scholar 

  72. Chang S, Khoo C, DePinho RA. Modeling chromosomal instability and epithelial carcinogenesis in the telomerase-deficient mouse. Semin Cancer Biol. 2001;11(3):227--239.

    CAS  PubMed  Google Scholar 

  73. Maines-Bandiera SL, Kruk PA, Auersperg N. Simian virus 40-transformed human ovarian surface epithelial cells escape normal growth controls but retain morphogenetic responses to extracellular matrix. Am J Obstet Gynecol. 1992;167(3):729--735.

    CAS  PubMed  Google Scholar 

  74. Tsao SW, Mok SC, Fey EG, et al. Characterization of human ovarian surface epithelial cells immortalized by human papilloma viral oncogenes (HPV-E6E7 ORFs). Exp Cell Res. 1995;218(2):499--507.

    CAS  PubMed  Google Scholar 

  75. Nitta M, Katabuchi H, Ohtake H, Tashiro H, Yamaizumi M, Okamura H. Characterization and tumorigenicity of human ovarian surface epithelial cells immortalized by SV40 large T antigen. Gynecol Oncol. 2001;81(1):10--17.

    CAS  PubMed  Google Scholar 

  76. Gregoire L, Rabah R, Schmelz EM, Munkarah A, Roberts PC, Lancaster WD. Spontaneous malignant transformation of human ovarian surface epithelial cells in vitro. Clin Cancer Res. 2001;7(12):4280--4287.

    CAS  PubMed  Google Scholar 

  77. Godwin AK, Testa JR, Handel LM, et al. Spontaneous transformation of rat ovarian surface epithelial cells: association with cytogenetic changes and implications of repeated ovulation in the etiology of ovarian cancer. J Natl Cancer Inst. 1992;84(8):592--601.

    CAS  PubMed  Google Scholar 

  78. Testa JR, Getts LA, Salazar H, et al. Spontaneous transformation of rat ovarian surface epithelial cells results in well to poorly differentiated tumors with a parallel range of cytogenetic complexity. Cancer Res. 1994;54(10):2778--2784.

    CAS  PubMed  Google Scholar 

  79. Abdollahi A, Bao R, Hamilton TC. LOT1 is a growth suppressor gene down-regulated by the epidermal growth factor receptor ligands and encodes a nuclear zinc-finger protein. Oncogene. 1999;18(47):6477--6487.

    CAS  PubMed  Google Scholar 

  80. Abdollahi A, Getts LA, Sonoda G, et al. Genome scanning detects amplification of the cathepsin B gene (CtsB) in transformed rat ovarian surface epithelial cells. J Soc Gynecol Investig. 1999;6(1):32--40.

    CAS  PubMed  Google Scholar 

  81. Abdollahi A, Godwin AK, Miller PD, et al. Identification of a gene containing zinc-finger motifs based on lost expression in malignantly transformed rat ovarian surface epithelial cells. Cancer Res. 1997;57(10):2029--2034.

    CAS  PubMed  Google Scholar 

  82. Roberts D, Williams SJ, Cvetkovic D, et al. Decreased expression of retinol-binding proteins is associated with malignant transformation of the ovarian surface epithelium. DNA Cell Biol. 2002;21(1):11--19.

    CAS  PubMed  Google Scholar 

  83. Rose GS, Tocco LM, Granger GA, et al. Development and characterization of a clinically useful animal model of epithelial ovarian cancer in the Fischer 344 rat. Am J Obstet Gynecol. 1996;175(3 Pt 1):593--599.

    CAS  PubMed  Google Scholar 

  84. Chen T, Pengetnze Y, Taylor CC. Src inhibition enhances paclitaxel cytotoxicity in ovarian cancer cells by caspase-9-independent activation of caspase-3. Mol Cancer Ther. 2005;4(2):217--224.

    CAS  PubMed  Google Scholar 

  85. George JA, Chen T, Taylor CC. SRC tyrosine kinase and multidrug resistance protein-1 inhibitions act independently but cooperatively to restore paclitaxel sensitivity to paclitaxel-resistant ovarian cancer cells. Cancer Res. 2005;65(22):10381--10388.

    CAS  PubMed  Google Scholar 

  86. Greenaway J, Moorehead R, Shaw P, Petrik J. Epithelial-stromal interaction increases cell proliferation, survival and tumorigenicity in a mouse model of human epithelial ovarian cancer. Gynecol Oncol. 2008;108(2):385--394.

    CAS  PubMed  Google Scholar 

  87. Pengetnze Y, Steed M, Roby KF, Terranova PF, Taylor CC. Src tyrosine kinase promotes survival and resistance to chemotherapeutics in a mouse ovarian cancer cell line. Biochem Biophys Res Commun. 2003;309(2):377--383.

    CAS  PubMed  Google Scholar 

  88. Sanches R, Kuiper M, Penault-Llorca F, Aunoble B, D'Incan C, Bignon YJ. Antitumoral effect of interleukin-12-secreting fibroblasts in a mouse model of ovarian cancer: implications for the use of ovarian cancer biopsy-derived fibroblasts as a vehicle for regional gene therapy. Cancer Gene Ther. 2000;7(5):707--720.

    CAS  PubMed  Google Scholar 

  89. Urzua U, Roby KF, Gangi LM, Cherry JM, Powell JI, Munroe DJ. Transcriptomic analysis of an in vitro murine model of ovarian carcinoma: functional similarity to the human disease and identification of prospective tumoral markers and targets. J Cell Physiol. 2006;206(3):594--602.

    CAS  PubMed  Google Scholar 

  90. Zhang L, Yang N, Garcia JR, et al. Generation of a syngeneic mouse model to study the effects of vascular endothelial growth factor in ovarian carcinoma. Am J Pathol. 2002;161(6):2295--2309.

    CAS  PubMed  Google Scholar 

  91. Zhang L, Yang N, Park JW, et al. Tumor-derived vascular endothelial growth factor up-regulates angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer. Cancer Res. 2003;63(12):3403--3412.

    CAS  PubMed  Google Scholar 

  92. Roberts PC, Mottillo EP, Baxa AC, et al. Sequential molecular and cellular events during neoplastic progression: a mouse syngeneic ovarian cancer model. Neoplasia. 2005;7(10):944--956.

    CAS  PubMed  Google Scholar 

  93. Yee D, Morales FR, Hamilton TC, Von Hoff DD. Expression of insulin-like growth factor I, its binding proteins, and its receptor in ovarian cancer. Cancer Res. 1991;51(19):5107--5112.

    CAS  PubMed  Google Scholar 

  94. Resnicoff M, Ambrose D, Coppola D, Rubin R. Insulin-like growth factor-1 and its receptor mediate the autocrine proliferation of human ovarian carcinoma cell lines. Lab Invest. 1993;69(6):756--760.

    CAS  PubMed  Google Scholar 

  95. Coppola D, Saunders B, Fu L, Mao W, Nicosia SV. The insulin-like growth factor 1 receptor induces transformation and tumorigenicity of ovarian mesothelial cells and down-regulates their Fas-receptor expression. Cancer Res. 1999;59(13):3264--3270.

    CAS  PubMed  Google Scholar 

  96. Hirano S, Ito N, Takahashi S, Tamaya T. Clinical implications of insulin-like growth factors through the presence of their binding proteins and receptors expressed in gynecological cancers. Eur J Gynaecol Oncol. 2004;25(2):187--191.

    CAS  PubMed  Google Scholar 

  97. Ouban A, Muraca P, Yeatman T, Coppola D. Expression and distribution of insulin-like growth factor-1 receptor in human carcinomas. Hum Pathol. 2003;34(8):803--808.

    CAS  PubMed  Google Scholar 

  98. Davies BR, Auersperg N, Worsley SD, Ponder BA. Transfection of rat ovarian surface epithelium with erb-B2/neu induces transformed phenotypes in vitro and the tumorigenic phenotype in vivo. Am J Pathol. 1998;152(1):297--306.

    CAS  PubMed  Google Scholar 

  99. Schumacher JJ, Dings RP, Cosin J, Subramanian IV, Auersperg N, Ramakrishnan S. Modulation of angiogenic phenotype alters tumorigenicity in rat ovarian epithelial cells. Cancer Res. 2007;67(8):3683--3690.

    CAS  PubMed  Google Scholar 

  100. Davies BR, Steele IA, Edmondson RJ, et al. Immortalisation of human ovarian surface epithelium with telomerase and temperature-sensitive SV40 large T antigen. Exp Cell Res. 2003;288(2):390--402.

    CAS  PubMed  Google Scholar 

  101. Liu J, Yang G, Thompson-Lanza JA, et al. A genetically defined model for human ovarian cancer. Cancer Res. 2004;64(5):1655--1663.

    CAS  PubMed  Google Scholar 

  102. Yang G, Rosen DG, Mercado-Uribe I, et al. Knockdown of p53 combined with expression of the catalytic subunit of telomerase is sufficient to immortalize primary human ovarian surface epithelial cells. Carcinogenesis. 2007;28(1):174--182.

    CAS  PubMed  Google Scholar 

  103. Auersperg N, Pan J, Grove BD, et al. E-cadherin induces mesenchymal-to-epithelial transition in human ovarian surface epithelium. Proc Natl Acad Sci U S A. 1999;96(11):6249--6254.

    CAS  PubMed  Google Scholar 

  104. Ong A, Maines-Bandiera SL, Roskelley CD, Auersperg N. An ovarian adenocarcinoma line derived from SV40/E-cadherin-transfected normal human ovarian surface epithelium. Int J Cancer. 2000;85(3):430--437.

    CAS  PubMed  Google Scholar 

  105. Cuatrecasas M, Erill N, Musulen E, Costa I, Matias-Guiu X, Prat J. K-ras mutations in nonmucinous ovarian epithelial tumors: a molecular analysis and clinicopathologic study of 144 patients. Cancer. 1998;82(6):1088--1095.

    CAS  PubMed  Google Scholar 

  106. Cuatrecasas M, Villanueva A, Matias-Guiu X, Prat J. K-ras mutations in mucinous ovarian tumors: a clinicopathologic and molecular study of 95 cases. Cancer. 1997;79(8):1581--1586.

    CAS  PubMed  Google Scholar 

  107. Fujita M, Enomoto T, Inoue M, et al. Alteration of the p53 tumor suppressor gene occurs independently of K-ras activation and more frequently in serous adenocarcinomas than in other common epithelial tumors of the human ovary. Jpn J Cancer Res. 1994;85(12):1247--1256.

    CAS  PubMed  Google Scholar 

  108. Ichikawa Y, Nishida M, Suzuki H, et al. Mutation of K-ras protooncogene is associated with histological subtypes in human mucinous ovarian tumors. Cancer Res. 1994;54(1):33--35.

    CAS  PubMed  Google Scholar 

  109. Mok SC, Bell DA, Knapp RC, et al. Mutation of K-ras protooncogene in human ovarian epithelial tumors of borderline malignancy. Cancer Res. 1993;53(7):1489--1492.

    CAS  PubMed  Google Scholar 

  110. Singer G, Oldt R 3rd, Cohen Y, et al. Mutations in BRAF and KRAS characterize the development of low-grade ovarian serous carcinoma. J Natl Cancer Inst. 2003;95(6):484--486.

    CAS  PubMed  Google Scholar 

  111. Varras MN, Sourvinos G, Diakomanolis E, et al. Detection and clinical correlations of ras gene mutations in human ovarian tumors. Oncology. 1999;56(2):89--96.

    CAS  PubMed  Google Scholar 

  112. Orsulic S. An RCAS-TVA-based approach to designer mouse models. Mamm Genome. 2002;13(10):543--547.

    PubMed  Google Scholar 

  113. Orsulic S, Li Y, Soslow RA, Vitale-Cross LA, Gutkind JS, Varmus HE. Induction of ovarian cancer by defined multiple genetic changes in a mouse model system. Cancer Cell. 2002;1(1):53--62.

    CAS  PubMed  Google Scholar 

  114. Bates P, Young JAT, Varmus HE. A receptor for subgroup A Rous sarcoma virus is related to the low density lipoprotein receptor. Cell. 1993;74(6):1043--1051.

    CAS  PubMed  Google Scholar 

  115. Federspiel MJ, Swing DA, Eagleson B, Reid SW, Hughes SH. Expression of transduced genes in mice generated by infecting blastocysts with avian leukosis virus-based retroviral vectors. Proc Natl Acad Sci U S A. 1996;93(10):4931--4936.

    CAS  PubMed  Google Scholar 

  116. Hughes SH, Greenhouse JJ, Petropoulos CJ, Sutrave P. Adaptor plasmids simplify the insertion of foreign DNA into helper-independent retroviral vectors. J Virol. 1987;61(10):3004--3012.

    CAS  PubMed  Google Scholar 

  117. Du Z, Podsypanina K, Huang S, et al. Introduction of oncogenes into mammary glands in vivo with an avian retroviral vector initiates and promotes carcinogenesis in mouse models. Proc Natl Acad Sci U S A. 2006;103(46):17396--17401.

    CAS  PubMed  Google Scholar 

  118. Fisher GH, Orsulic S, Holland E, et al. Development of a flexible and specific gene delivery system for production of murine tumor models. Oncogene. 1999;18(38):5253--5260.

    CAS  PubMed  Google Scholar 

  119. Fisher GH, Wellen SL, Klimstra D, et al. Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes. Genes Dev. 2001;15(24):3249--3262.

    CAS  PubMed  Google Scholar 

  120. Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, Fuller GN. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet. 2000;25(1):55--57.

    CAS  PubMed  Google Scholar 

  121. Holland EC, Hively WP, DePinho RA, Varmus HE. A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev. 1998;12(23):3675--3685.

    CAS  PubMed  Google Scholar 

  122. Lewis BC, Klimstra DS, Socci ND, Xu S, Koutcher JA, Varmus HE. The absence of p53 promotes metastasis in a novel somatic mouse model for hepatocellular carcinoma. Mol Cell Biol. 2005;25(4):1228--1237.

    CAS  PubMed  Google Scholar 

  123. Lewis BC, Klimstra DS, Varmus HE. The c-myc and PyMT oncogenes induce different tumor types in a somatic mouse model for pancreatic cancer. Genes Dev. 2003;17(24):3127--3138.

    CAS  PubMed  Google Scholar 

  124. Xing D, Orsulic S. A genetically defined mouse ovarian carcinoma model for the molecular characterization of pathway-targeted therapy and tumor resistance. Proc Natl Acad Sci U S A. 2005;102(19):6936--6941.

    CAS  PubMed  Google Scholar 

  125. Xing D, Orsulic S. A mouse model for the molecular characterization of brca1-associated ovarian carcinoma. Cancer Res. 2006;66(18):8949--8953.

    CAS  PubMed  Google Scholar 

  126. Xu X, Wagner KU, Larson D, et al. Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nat Genet. 1999;22(1):37--43.

    CAS  PubMed  Google Scholar 

  127. Jonkers J, Meuwissen R, van der Gulden H, Peterse H, van der Valk M, Berns A. Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat Genet. 2001;29(4):418--425.

    CAS  PubMed  Google Scholar 

  128. Cass I, Baldwin RL, Varkey T, Moslehi R, Narod SA, Karlan BY. Improved survival in women with BRCA-associated ovarian carcinoma. Cancer. 2003;97(9):2187--2195.

    CAS  PubMed  Google Scholar 

  129. Brinster RL, Chen HY, Trumbauer M, Senear AW, Warren R, Palmiter RD. Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs. Cell. 1981;27(1 Pt 2):223--231.

    CAS  PubMed  Google Scholar 

  130. Costantini F, Lacy E. Introduction of a rabbit beta-globin gene into the mouse germ line. Nature. 1981;294(5836):92--94.

    CAS  PubMed  Google Scholar 

  131. Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH. Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci U S A. 1980;77(12):7380--7384.

    CAS  PubMed  Google Scholar 

  132. Wagner EF, Stewart TA, Mintz B. The human beta-globin gene and a functional viral thymidine kinase gene in developing mice. Proc Natl Acad Sci U S A. 1981;78(8):5016--5020.

    CAS  PubMed  Google Scholar 

  133. Hanahan D, Wagner EF, Palmiter RD. The origins of oncomice: a history of the first transgenic mice genetically engineered to develop cancer. Genes Dev. 2007;21(18):2258--2270.

    CAS  PubMed  Google Scholar 

  134. Thomas KR, Capecchi MR. Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature. 1990;346(6287):847--850.

    CAS  PubMed  Google Scholar 

  135. Clarke AR, Maandag ER, van Roon M, et al. Requirement for a functional Rb-1 gene in murine development. Nature. 1992;359(6393):328--330.

    CAS  PubMed  Google Scholar 

  136. Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA. Effects of an Rb mutation in the mouse. Nature. 1992;359(6393):295--300.

    CAS  PubMed  Google Scholar 

  137. Lee EY, Chang CY, Hu N, et al. Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature. 1992;359(6393):288--294.

    CAS  PubMed  Google Scholar 

  138. Jacks T. Tumor suppressor gene mutations in mice. Annu Rev Genet. 1996;30:603--636.

    CAS  PubMed  Google Scholar 

  139. Dutertre M, Gouedard L, Xavier F, et al. Ovarian granulosa cell tumors express a functional membrane receptor for anti-Mullerian hormone in transgenic mice. Endocrinology. 2001;142(9):4040--4046.

    CAS  PubMed  Google Scholar 

  140. Garson K, Macdonald E, Dube M, Bao R, Hamilton TC, Vanderhyden BC. Generation of tumors in transgenic mice expressing the SV40 T antigen under the control of ovarian-specific promoter 1. J Soc Gynecol Investig. 2003;10(4):244--250.

    CAS  PubMed  Google Scholar 

  141. Kananen K, Markkula M, Rainio E, Su JG, Hsueh AJ, Huhtaniemi IT. Gonadal tumorigenesis in transgenic mice bearing the mouse inhibin alpha-subunit promoter/simian virus T-antigen fusion gene: characterization of ovarian tumors and establishment of gonadotropin-responsive granulosa cell lines. Mol Endocrinol. 1995;9(5):616--627.

    CAS  PubMed  Google Scholar 

  142. Keri RA, Lozada KL, Abdul-Karim FW, Nadeau JH, Nilson JH. Luteinizing hormone induction of ovarian tumors: oligogenic differences between mouse strains dictates tumor disposition. Proc Natl Acad Sci U S A. 2000;97(1):383--387.

    CAS  PubMed  Google Scholar 

  143. Rahman NA, Kananen Rilianawati K, Paukku T, et al. Transgenic mouse models for gonadal tumorigenesis. Mol Cell Endocrinol. 1998;145(1--2):167--174.

    CAS  PubMed  Google Scholar 

  144. Risma KA, Clay CM, Nett TM, Wagner T, Yun J, Nilson JH. Targeted overexpression of luteinizing hormone in transgenic mice leads to infertility, polycystic ovaries, and ovarian tumors. Proc Natl Acad Sci U S A. 1995;92(5):1322--1326.

    CAS  PubMed  Google Scholar 

  145. Selvakumaran M, Bao R, Crijns AP, Connolly DC, Weinstein JK, Hamilton TC. Ovarian epithelial cell lineage-specific gene expression using the promoter of a retrovirus-like element. Cancer Res. 2001;61(4):1291--1295.

    CAS  PubMed  Google Scholar 

  146. Josso N, di Clemente N, Gouedard L. Anti-Mullerian hormone and its receptors. Mol Cell Endocrinol. 2001;179(1--2):25--32.

    CAS  PubMed  Google Scholar 

  147. Teixeira J, Maheswaran S, Donahoe PK. Mullerian inhibiting substance: an instructive developmental hormone with diagnostic and possible therapeutic applications. Endocr Rev. 2001;22(5):657--674.

    CAS  PubMed  Google Scholar 

  148. Leung EH, Leung PC, Auersperg N. Differentiation and growth potential of human ovarian surface epithelial cells expressing temperature-sensitive SV40 T antigen. In Vitro Cell Dev Biol Animal. 2001;37(8):515--521.

    CAS  Google Scholar 

  149. Masiakos PT, MacLaughlin DT, Maheswaran S, et al. Human ovarian cancer, cell lines, and primary ascites cells express the human Mullerian inhibiting substance (MIS) type II receptor, bind, and are responsive to MIS. Clin Cancer Res. 1999;5(11):3488--3499.

    CAS  PubMed  Google Scholar 

  150. Connolly DC, Bao R., Nikitin AY, et al. Female mice chimeric for expression of the SV40 TAg under control of the MISIIR promoter develop epithelial ovarian cancer. Cancer Res. 2003;63:1389--1397.

    CAS  PubMed  Google Scholar 

  151. Hensley H, Quinn BA, Wolf RL, et al. Magnetic resonance imaging for detection and determination of tumor volume in a genetically engineered mouse model of ovarian cancer. Cancer Biol Ther. 2007;6(11):1717–1725.

    Google Scholar 

  152. Daikoku T, Tranguch S, Trofimova IN, et al. Cyclooxygenase-1 is overexpressed in multiple genetically engineered mouse models of epithelial ovarian cancer. Cancer Res. 2006;66(5):2527--2531.

    CAS  PubMed  Google Scholar 

  153. Mabuchi S, Altomare DA, Connolly DC, et al. RAD001 (Everolimus) delays tumor onset and progression in a transgenic mouse model of ovarian cancer. Cancer Res. 2007;67(6):2408--2413.

    CAS  PubMed  Google Scholar 

  154. Pieretti-Vanmarcke R, Donahoe PK, Pearsall LA, et al. Mullerian inhibiting substance enhances subclinical doses of chemotherapeutic agents to inhibit human and mouse ovarian cancer. Proc Natl Acad Sci U S A. 2006;103(46):17426--17431.

    CAS  PubMed  Google Scholar 

  155. Pieretti-Vanmarcke R, Donahoe PK, Szotek P, et al. Recombinant human Mullerian inhibiting substance inhibits long-term growth of MIS type II receptor-directed transgenic mouse ovarian cancers in vivo. Clin Cancer Res. 2006;12(5):1593--1598.

    CAS  PubMed  Google Scholar 

  156. Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, et al. Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian inhibiting substance responsiveness. Proc Natl Acad Sci U S A. 2006;103(30):11154--11159.

    CAS  PubMed  Google Scholar 

  157. Connolly DC, Bao R, Nikitin AY, et al. Molecular analyses of a transgenic mouse model of human epithelial ovarian cancer. Proc Annu Meet Am Assoc Cancer Res. 2003;44:957.

    Google Scholar 

  158. Hanahan D. Heritable formation of pancreatic beta-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature. 1985;315(6015):115--122.

    CAS  PubMed  Google Scholar 

  159. Chen J, Tobin GJ, Pipas JM, Van Dyke T. T-antigen mutant activities in vivo: roles of p53 and pRB binding in tumorigenesis of the choroid plexus. Oncogene. 1992;7(6):1167--1175.

    CAS  PubMed  Google Scholar 

  160. Maroulakou IG, Anver M, Garrett L, Green JE. Prostate and mammary adenocarcinoma in transgenic mice carrying a rat C3(1) simian virus 40 large tumor antigen fusion gene. Proc Natl Acad Sci U S A. 1994;91(23):11236--11240.

    CAS  PubMed  Google Scholar 

  161. Greenberg NM, DeMayo F, Finegold MJ, et al. Prostate cancer in a transgenic mouse. Proc Natl Acad Sci U S A. 1995;92(8):3439--3443.

    CAS  PubMed  Google Scholar 

  162. Kasper S, Sheppard PC, Yan Y, et al. Development, progression, and androgen-dependence of prostate tumors in probasin-large T antigen transgenic mice: a model for prostate cancer. Lab Invest. 1998;78(6):i--xv.

    CAS  PubMed  Google Scholar 

  163. Grippo PJ, Sandgren EP. Highly invasive transitional cell carcinoma of the bladder in a simian virus 40 T-antigen transgenic mouse model. Am J Pathol. 2000;157(3):805--813.

    CAS  PubMed  Google Scholar 

  164. Chailley-Heu B, Rambaud C, Barlier-Mur AM, et al. A model of pulmonary adenocarcinoma in transgenic mice expressing the simian virus 40 T antigen driven by the rat Calbindin-D9K (CaBP9K) promoter. J Pathol. 2001;195(4):482--489.

    CAS  PubMed  Google Scholar 

  165. Bergers G, Brekken R, McMahon G, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol. 2000;2(10):737--744.

    CAS  PubMed  Google Scholar 

  166. Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science. 1999;284(5415):808--812.

    CAS  PubMed  Google Scholar 

  167. Casanovas O, Hicklin DJ, Bergers G, Hanahan D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell. 2005;8(4):299--309.

    CAS  PubMed  Google Scholar 

  168. Inoue M, Hager JH, Ferrara N, Gerber HP, Hanahan D. VEGF-A has a critical, nonredundant role in angiogenic switching and pancreatic beta cell carcinogenesis. Cancer Cell. 2002;1(2):193--202.

    CAS  PubMed  Google Scholar 

  169. Nozawa H, Chiu C, Hanahan D. Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci U S A. 2006;103(33):12493--12498.

    CAS  PubMed  Google Scholar 

  170. Du YC, Lewis BC, Hanahan D, Varmus H. Assessing tumor progression factors by somatic gene transfer into a mouse model: Bcl-xL promotes islet tumor cell invasion. PLoS Biol. 2007;5(10):2255--2269.

    CAS  Google Scholar 

  171. Deeb KK, Michalowska AM, Yoon CY, et al. Identification of an integrated SV40 T/t-antigen cancer signature in aggressive human breast, prostate, and lung carcinomas with poor prognosis. Cancer Res. 2007;67(17):8065--8080.

    CAS  PubMed  Google Scholar 

  172. Danilovich N, Roy I, Sairam MR. Ovarian pathology and high incidence of sex cord tumors in follitropin receptor knockout (FORKO) mice. Endocrinology. 2001;142(8):3673--3684.

    CAS  PubMed  Google Scholar 

  173. Chen X, Aravindakshan J, Yang Y, Sairam MR. Early alterations in ovarian surface epithelial cells and induction of ovarian epithelial tumors triggered by loss of FSH receptor. Neoplasia. 2007;9(6):521--531.

    CAS  PubMed  Google Scholar 

  174. Abel MH, Huhtaniemi I, Pakarinen P, Kumar TR, Charlton HM. Age-related uterine and ovarian hypertrophy in FSH receptor knockout and FSHbeta subunit knockout mice. Reproduction. 2003;125(2):165--173.

    CAS  PubMed  Google Scholar 

  175. Jackson EL, Willis N, Mercer K, et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev. 2001;15(24):3243--3248.

    CAS  PubMed  Google Scholar 

  176. Ludwig T, Fisher P, Murty V, Efstratiadis A. Development of mammary adenocarcinomas by tissue-specific knockout of Brca2 in mice. Oncogene. 2001;20(30):3937--3948.

    CAS  PubMed  Google Scholar 

  177. Marino S, Vooijs M, van Der Gulden H, Jonkers J, Berns A. Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev. 2000;14(8):994--1004.

    CAS  PubMed  Google Scholar 

  178. Tuveson DA, Zhu L, Gopinathan A, et al. Mist1-KrasG12D knock-in mice develop mixed differentiation metastatic exocrine pancreatic carcinoma and hepatocellular carcinoma. Cancer Res. 2006;66(1):242--247.

    CAS  PubMed  Google Scholar 

  179. Chodankar R, Kwang S, Sangiorgi F, et al. Cell-nonautonomous induction of ovarian and uterine serous cystadenomas in mice lacking a functional Brca1 in ovarian granulosa cells. Curr Biol. 2005;15(6):561--565.

    CAS  PubMed  Google Scholar 

  180. Clark-Knowles KV, Garson K, Jonkers J, Vanderhyden BC. Conditional inactivation of Brca1 in the mouse ovarian surface epithelium results in an increase in preneoplastic changes. Exp Cell Res. 2007;313(1):133--145.

    CAS  PubMed  Google Scholar 

  181. Dinulescu DM, Ince TA, Quade BJ, Shafer SA, Crowley D, Jacks T. Role of K-ras and Pten in the development of mouse models of endometriosis and endometrioid ovarian cancer. Nat Med. 2005;11(1):63--70.

    CAS  PubMed  Google Scholar 

  182. Flesken-Nikitin A, Choi KC, Eng JP, Shmidt EN, Nikitin AY. Induction of carcinogenesis by concurrent inactivation of p53 and Rb1 in the mouse ovarian surface epithelium. Cancer Res. 2003;63(13):3459--3463.

    CAS  PubMed  Google Scholar 

  183. Wu R, Hendrix-Lucas N, Kuick R, et al. Mouse model of human ovarian endometrioid adenocarcinoma based on somatic defects in the Wnt/beta-catenin and PI3K/Pten signaling pathways. Cancer Cell. 2007;11(4):321--333.

    CAS  PubMed  Google Scholar 

  184. Aunoble B, Sanches R, Didier E, Bignon YJ. Major oncogenes and tumor suppressor genes involved in epithelial ovarian cancer (review). Int J Oncol. 2000;16(3):567--576.

    CAS  PubMed  Google Scholar 

  185. Feeley KM, Wells M. Precursor lesions of ovarian epithelial malignancy. Histopathology. 2001;38(2):87--95.

    CAS  PubMed  Google Scholar 

  186. Farley J, Smith LM, Darcy KM, et al. Cyclin E expression is a significant predictor of survival in advanced, suboptimally debulked ovarian epithelial cancers: a gynecologic oncology group study. Cancer Res. 2003;63(6):1235--1241.

    CAS  PubMed  Google Scholar 

  187. Gras E, Pons C, Machin P, Matias-Guiu X, Prat J. Loss of heterozygosity at the RB-1 locus and pRB immunostaining in epithelial ovarian tumors: a molecular, immunohistochemical, and clinicopathologic study. Int J Gynecol Pathol. 2001;20(4):335--340.

    CAS  PubMed  Google Scholar 

  188. Hashiguchi Y, Tsuda H, Yamamoto K, Inoue T, Ishiko O, Ogita S. Combined analysis of p53 and RB pathways in epithelial ovarian cancer. Hum Pathol. 2001;32(9):988--996.

    CAS  PubMed  Google Scholar 

  189. Havrilesky LJ, Berchuck A. Molecular alterations in sporadic ovarian cancer. In: Rubin SC, Sutton GP, eds. Ovarian Cancer, 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2001:23--42.

    Google Scholar 

  190. Li SB, Schwartz PE, Lee WH, Yang-Feng TL. Allele loss at the retinoblastoma locus in human ovarian cancer. J Natl Cancer Inst. 1991;83(9):637--640.

    CAS  PubMed  Google Scholar 

  191. Tuveson DA, Shaw AT, Willis NA, et al. Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell. 2004;5(4):375--387.

    CAS  PubMed  Google Scholar 

  192. Catasus L, Bussaglia E, Rodrguez I, et al. Molecular genetic alterations in endometrioid carcinomas of the ovary: similar frequency of beta-catenin abnormalities but lower rate of microsatellite instability and PTEN alterations than in uterine endometrioid carcinomas. Hum Pathol. 2004;35(11):1360--1368.

    CAS  PubMed  Google Scholar 

  193. Obata K, Morland SJ, Watson RH, et al. Frequent PTEN/MMAC mutations in endometrioid but not serous or mucinous epithelial ovarian tumors. Cancer Res. 1998;58(10):2095--2097.

    CAS  PubMed  Google Scholar 

  194. Sato N, Tsunoda H, Nishida M, et al. Loss of heterozygosity on 10q23.3 and mutation of the tumor suppressor gene PTEN in benign endometrial cyst of the ovary: possible sequence progression from benign endometrial cyst to endometrioid carcinoma and clear cell carcinoma of the ovary. Cancer Res. 2000;60(24):7052--7056.

    CAS  PubMed  Google Scholar 

  195. Fukunaga M, Nomura K, Ishikawa E, Ushigome S. Ovarian atypical endometriosis: its close association with malignant epithelial tumours. Histopathology. 1997;30(3):249--255.

    CAS  PubMed  Google Scholar 

  196. Erzen M, Rakar S, Klancnik B, Syrjanen K. Endometriosis-associated ovarian carcinoma (EAOC): an entity distinct from other ovarian carcinomas as suggested by a nested case-control study. Gynecol Oncol. 2001;83(1):100--108.

    CAS  PubMed  Google Scholar 

  197. Swiersz LM. Role of endometriosis in cancer and tumor development. Ann N Y Acad Sci. 2002;955:281--292; discussion 93--95, 396--406.

    PubMed  Google Scholar 

  198. Amemiya S, Sekizawa A, Otsuka J, Tachikawa T, Saito H, Okai T. Malignant transformation of endometriosis and genetic alterations of K-ras and microsatellite instability. Int J Gynaecol Obstet. 2004;86(3):371--376.

    CAS  PubMed  Google Scholar 

  199. Otsuka J, Okuda T, Sekizawa A, et al. K-ras mutation may promote carcinogenesis of endometriosis leading to ovarian clear cell carcinoma. Med Electron Microsc. 2004;37(3):188--192.

    PubMed  Google Scholar 

  200. Vercellini P, Trecca D, Oldani S, Fracchiolla NS, Neri A, Crosignani PG. Analysis of p53 and ras gene mutations in endometriosis. Gynecol Obstet Invest. 1994;38(1):70--71.

    CAS  PubMed  Google Scholar 

  201. Caduff RF, Svoboda-Newman SM, Bartos RE, Ferguson AW, Frank TS. Comparative analysis of histologic homologues of endometrial and ovarian carcinoma. Am J Surg Pathol. 1998;22(3):319--326.

    CAS  PubMed  Google Scholar 

  202. Enomoto T, Weghorst CM, Inoue M, Tanizawa O, Rice JM. K-ras activation occurs frequently in mucinous adenocarcinomas and rarely in other common epithelial tumors of the human ovary. Am J Pathol. 1991;139(4):777--785.

    CAS  PubMed  Google Scholar 

  203. Sieben NL, Macropoulos P, Roemen GM, et al. In ovarian neoplasms, BRAF, but not KRAS, mutations are restricted to low-grade serous tumours. J Pathol. 2004;202(3):336--340.

    CAS  PubMed  Google Scholar 

  204. Berchuck A, Heron KA, Carney ME, et al. Frequency of germline and somatic BRCA1 mutations in ovarian cancer. Clin Cancer Res. 1998;4(10):2433--2437.

    CAS  PubMed  Google Scholar 

  205. Pal T, Permuth-Wey J, Betts JA, et al. BRCA1 and BRCA2 mutations account for a large proportion of ovarian carcinoma cases. Cancer. 2005;104(12):2807--2816.

    CAS  PubMed  Google Scholar 

  206. Dubeau L. The cell of origin of ovarian epithelial tumors and the surface epithelium dogma: does the emperor have no clothes? Gynecol Oncol. 1999;72:437--442.

    CAS  PubMed  Google Scholar 

  207. Boyd J, Sonoda Y, Federici MG, et al. Clinicopathologic features of BRCA-linked and sporadic ovarian cancer. JAMA. 2000;283(17):2260--2265.

    CAS  PubMed  Google Scholar 

  208. Rubin SC, Benjamin I, Behbakht K, et al. Clinical and pathological features of ovarian cancer in women with germ-line mutations of BRCA1. N Engl J Med. 1996;335(19):1413--1416.

    CAS  PubMed  Google Scholar 

  209. Olive KP, Tuveson DA. The use of targeted mouse models for preclinical testing of novel cancer therapeutics. Clin Cancer Res. 2006;12(18):5277--5287.

    CAS  PubMed  Google Scholar 

  210. Auzenne E, Ghosh SC, Khodadadian M, et al. Hyaluronic acid-paclitaxel: antitumor efficacy against CD44(+) human ovarian carcinoma xenografts. Neoplasia. 2007;9(6):479--486.

    CAS  PubMed  Google Scholar 

  211. Kim TJ, Ravoori M, Landen CN, et al. Antitumor and antivascular effects of AVE8062 in ovarian carcinoma. Cancer Res. 2007;67(19):9337--9345.

    CAS  PubMed  Google Scholar 

  212. Klostergaard J, Auzenne E, Ghosh S, Farquhar D, Rivera B, Price RE. Magnetic resonance imaging-based prospective detection of intraperitoneal human ovarian carcinoma xenografts treatment response. Int J Gynecol Cancer. 2006;16(Suppl 1):111--117.

    PubMed  Google Scholar 

  213. Sallinen H, Anttila M, Narvainen J, et al. A highly reproducible xenograft model for human ovarian carcinoma and application of MRI and ultrasound in longitudinal follow-up. Gynecol Oncol. 2006;103(1):315--320.

    PubMed  Google Scholar 

  214. Lyshchik A, Hobbs SB, Fleischer AC, et al. Ovarian volume measurements in mice with high-resolution ultrasonography. J Ultrasound Med. 2007;26(10):1419--1425.

    PubMed  Google Scholar 

  215. Leyton J, Lockley M, Aerts JL, et al. Quantifying the activity of adenoviral E1A CR2 deletion mutants using renilla luciferase bioluminescence and 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography imaging. Cancer Res. 2006;66(18):9178--9185.

    CAS  PubMed  Google Scholar 

  216. Chaudhuri TR, Mountz JM, Rogers BE, Partridge EE, Zinn KR. Light-based imaging of green fluorescent protein-positive ovarian cancer xenografts during therapy. Gynecol Oncol. 2001;82(3):581--589.

    CAS  PubMed  Google Scholar 

  217. Subramanian IV, Bui Nguyen TM, Truskinovsky AM, Tolar J, Blazar BR, Ramakrishnan S. Adeno-associated virus-mediated delivery of a mutant endostatin in combination with carboplatin treatment inhibits orthotopic growth of ovarian cancer and improves long-term survival. Cancer Res. 2006;66(8):4319--4328.

    CAS  PubMed  Google Scholar 

  218. Chang CL, Wu TC, Hung CF. Control of human mesothelin-expressing tumors by DNA vaccines. Gene Ther. 2007;14(16):1189--1198.

    CAS  PubMed  Google Scholar 

  219. Guse K, Dias JD, Bauerschmitz GJ, et al. Luciferase imaging for evaluation of oncolytic adenovirus replication in vivo. Gene Ther. 2007;14(11):902--911.

    CAS  PubMed  Google Scholar 

  220. Hung CF, Tsai YC, He L, et al. Vaccinia virus preferentially infects and controls human and murine ovarian tumors in mice. Gene Ther. 2007;14(1):20--29.

    CAS  PubMed  Google Scholar 

  221. Hung CF, Tsai YC, He L, Wu TC. Control of mesothelin-expressing ovarian cancer using adoptive transfer of mesothelin peptide-specific CD8+ T cells. Gene Ther. 2007;14(12):921--929.

    CAS  PubMed  Google Scholar 

  222. Komarova S, Kawakami Y, Stoff-Khalili MA, Curiel DT, Pereboeva L. Mesenchymal progenitor cells as cellular vehicles for delivery of oncolytic adenoviruses. Mol Cancer Ther. 2006;5(3):755--766.

    CAS  PubMed  Google Scholar 

  223. Choy G, O'Connor S, Diehn FE, et al. Comparison of noninvasive fluorescent and bioluminescent small animal optical imaging. Biotechniques. 2003;35(5):1022--1026, 1028–1030.

    CAS  PubMed  Google Scholar 

  224. Tung CH, Mahmood U, Bredow S, Weissleder R. In vivo imaging of proteolytic enzyme activity using a novel molecular reporter. Cancer Res. 2000;60(17):4953--4958.

    CAS  PubMed  Google Scholar 

  225. Bremer C, Tung CH, Weissleder R. In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat Med. 2001;7(6):743--748.

    CAS  PubMed  Google Scholar 

  226. Hama Y, Urano Y, Koyama Y, et al. A target cell-specific activatable fluorescence probe for in vivo molecular imaging of cancer based on a self-quenched avidin-rhodamine conjugate. Cancer Res. 2007;67(6):2791--2799.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise C. Connolly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Connolly, D.C. (2009). Animal Models of Ovarian Cancer. In: Stack, M., Fishman, D. (eds) Ovarian Cancer. Cancer Treatment and Research, vol 149. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-98094-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-98094-2_17

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-98093-5

  • Online ISBN: 978-0-387-98094-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics