Ovarian Cancer pp 353-391 | Cite as

Animal Models of Ovarian Cancer

  • Denise C. ConnollyEmail author
Part of the Cancer Treatment and Research book series (CTAR, volume 149)


As contributors have discussed in previous chapters, our understanding of epithelial ovarian cancer (EOC) biology and clinical management of ovarian cancer patients has improved significantly over the years. Yet in spite of all of our advances, the overall improvements in patient outcomes have been incremental. The majority of patients are still diagnosed at advanced stage when the probability of disease recurrence and complications that ultimately result in death are quite high. The typical late-stage diagnosis of EOC is associated with a complex array of genetic and epigenetic alterations present in tumors. As a result, it has been difficult to determine the sequence of events that are involved in tumor initiation, progression, and maintenance. In addition, there are several morphologic variants of EOC including multiple histologic subtypes (e.g., serous, endometrioid, mucinous, clear cell, mixed Müllerian tumors) as well as tumors of low malignant potential. Most...


Epithelial Ovarian Cancer Ovarian Tumor Ovarian Surface Epithelium Ovarian Surface Epithelium Cell Serous Epithelial Ovarian Cancer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Campbell JG. Some unusual gonadal tumours of the fowl. Br J Cancer. 1951;5(1):69--82.PubMedGoogle Scholar
  2. 2.
    Fredrickson TN. Ovarian tumors of the hen. Environ Health Perspect. 1987;73:35--51.PubMedGoogle Scholar
  3. 3.
    MacLachlan NJ. Ovarian disorders in domestic animals. Environ Health Perspect. 1987;73:27--33.PubMedGoogle Scholar
  4. 4.
    Johnson PA, Giles JR. Use of genetic strains of chickens in studies of ovarian cancer. Poult Sci. 2006;85(2):246--250.PubMedGoogle Scholar
  5. 5.
    Barnes MN, Berry WD, Straughn JM, et al. pilot study of ovarian cancer chemoprevention using medroxyprogesterone acetate in an avian model of spontaneous ovarian carcinogenesis. Gynecol Oncol. 2002;87(1):57--63.PubMedGoogle Scholar
  6. 6.
    Giles JR, Olson LM, Johnson PA. Characterization of ovarian surface epithelial cells from the hen: a unique model for ovarian cancer. Exp Biol Med (Maywood). 2006;231(11):1718--1725.Google Scholar
  7. 7.
    Jackson E, Anderson K, Ashwell C, Petitte J, Mozdziak PE. CA125 expression in spontaneous ovarian adenocarcinomas from laying hens. Gynecol Oncol. 2007;104(1):192--198.PubMedGoogle Scholar
  8. 8.
    Rodriguez-Burford C, Barnes MN, Berry W, Partridge EE, Grizzle WE. Immunohistochemical expression of molecular markers in an avian model: a potential model for preclinical evaluation of agents for ovarian cancer chemoprevention. Gynecol Oncol. 2001;81(3):373--379.PubMedGoogle Scholar
  9. 9.
    Hankinson SE, Colditz GA, Hunter DJ, Spencer TL, Rosner B, Stampfer MJ. A quantitative assessment of oral contraceptive use and risk of ovarian cancer. Obstet Gynecol. 1992;80(4):708--714.PubMedGoogle Scholar
  10. 10.
    Rodriguez GC, Nagarsheth NP, Lee KL, et al. Progestin-induced apoptosis in the Macaque ovarian epithelium: differential regulation of transforming growth factor-beta. J Natl Cancer Inst. 2002;94(1):50--60.PubMedGoogle Scholar
  11. 11.
    Rodriguez GC, Walmer DK, Cline M, et al. Effect of progestin on the ovarian epithelium of macaques: cancer prevention through apoptosis? J Soc Gynecol Investig. 1998;5(5):271--276.PubMedGoogle Scholar
  12. 12.
    Brewer M, Ranger-Moore J, Satterfield W, et al. Combination of 4-HPR and oral contraceptive in monkey model of chemoprevention of ovarian cancer. Front Biosci. 2007;12:2260--2268.PubMedGoogle Scholar
  13. 13.
    Brewer M, Baze W, Hill L, et al. Rhesus macaque model for ovarian cancer chemoprevention. Comp Med. 2001;51(5):424--429.PubMedGoogle Scholar
  14. 14.
    Brewer M, Utzinger U, Satterfield W, et al. Biomarker modulation in a nonhuman rhesus primate model for ovarian cancer chemoprevention. Cancer Epidemiol Biomarkers Prev. 2001;10(8):889--893.PubMedGoogle Scholar
  15. 15.
    Wright JW, Stouffer RL, Rodland KD. Estrogen inhibits cell cycle progression and retinoblastoma phosphorylation in rhesus ovarian surface epithelial cell culture. Mol Cell Endocrinol. 2003;208(1--2):1--10.PubMedGoogle Scholar
  16. 16.
    Wright JW, Stouffer RL, Rodland KD. High-dose estrogen and clinical selective estrogen receptor modulators induce growth arrest, p21, and p53 in primate ovarian surface epithelial cells. J Clin Endocrinol Metab. 2005;90(6):3688--3695.PubMedGoogle Scholar
  17. 17.
    Wright JW, Toth-Fejel S, Stouffer RL, Rodland KD. Proliferation of rhesus ovarian surface epithelial cells in culture: lack of mitogenic response to steroid or gonadotropic hormones. Endocrinology. 2002;143(6):2198--207.PubMedGoogle Scholar
  18. 18.
    Hsieh FY, Tengstrand E, Lee JW, et al. Drug safety evaluation through biomarker analysis -- a toxicity study in the cynomolgus monkey using an antibody-cytotoxic conjugate against ovarian cancer. Toxicol Appl Pharmacol. 2007;224(1):12--18.PubMedGoogle Scholar
  19. 19.
    Hassan R, Ebel W, Routhier EL, et al. Preclinical evaluation of MORAb-009, a chimeric antibody targeting tumor-associated mesothelin. Cancer Immun. 2007;7:20.PubMedGoogle Scholar
  20. 20.
    Flanagan SP. ‘Nude,’ a new hairless gene with pleiotropic effects in the mouse. Genet Res. 1966;8(3):295--309.PubMedGoogle Scholar
  21. 21.
    Bosma GC, Custer RP, Bosma MJ. A severe combined immunodeficiency mutation in the mouse. Nature. 1983;301(5900):527--530.PubMedGoogle Scholar
  22. 22.
    Davy M, Mossige J, Johannessen JV. Heterologous growth of human ovarian cancer. A new in vivo testing system. Acta Obstet Gynecol Scand. 1977;56(1):55--59.PubMedGoogle Scholar
  23. 23.
    Freedman RS, Pihl E, Kusyk C, Gallager HS, Rutledge F. Characterization of an ovarian carcinoma cell line. Cancer. 1978;42(5):2352--2359.PubMedGoogle Scholar
  24. 24.
    Hamilton TC, Young RC, McKoy WM, et al. Characterization of a human ovarian carcinoma cell line (NIH:OVCAR-3) with androgen and estrogen receptors. Cancer Res. 1983;43(11):5379--5389.PubMedGoogle Scholar
  25. 25.
    Kullander S, Rausing A, Trope C. Human ovarian tumours heterotransplanted to “nude” mice. Acta Obstet Gynecol Scand. 1978;57(2):149--159.PubMedGoogle Scholar
  26. 26.
    Kiguchi K, Kubota T, Aoki D, et al. A patient-like orthotopic implantation nude mouse model of highly metastatic human ovarian cancer. Clin Exp Metastasis. 1998;16(8):751--756.PubMedGoogle Scholar
  27. 27.
    Ozols RF, Grotzinger KR, Fisher RI, Myers CE, Young RC. Kinetic characterization and response to chemotherapy in a transplantable murine ovarian cancer. Cancer Res. 1979;39(8):3202--3208.PubMedGoogle Scholar
  28. 28.
    Ozols RF, Locker GY, Doroshow JH, et al. Chemotherapy for murine ovarian cancer: a rationale for ip therapy with adriamycin. Cancer Treat Rep. 1979;63(2):269--273.PubMedGoogle Scholar
  29. 29.
    Ozols RF, Locker GY, Doroshow JH, Grotzinger KR, Myers CE, Young RC. Pharmacokinetics of adriamycin and tissue penetration in murine ovarian cancer. Cancer Res. 1979;39(8):3209--3214.PubMedGoogle Scholar
  30. 30.
    Ozols RF, Young RC, Speyer JL, et al. Phase I and pharmacological studies of adriamycin administered intraperitoneally to patients with ovarian cancer. Cancer Res. 1982;42(10):4265--4269.PubMedGoogle Scholar
  31. 31.
    Trimble EL, Thompson S, Christian MC, Minasian L. Intraperitoneal chemotherapy for women with epithelial ovarian cancer. Oncologist. 2008;13(4):403--409.PubMedGoogle Scholar
  32. 32.
    Vergote I, Amant F, Leunen K, et al. Intraperitoneal chemotherapy in patients with advanced ovarian cancer: the con view. Oncologist. 2008;13(4):410--414.PubMedGoogle Scholar
  33. 33.
    DiSaia PJ, Morrow M, Kanabus J, Piechal W, Townsend DE. Two new tissue culture lines from ovarian cancer. Gynecol Oncol. 1975;3(3):215--219.PubMedGoogle Scholar
  34. 34.
    Ioachim HL, Dorsett BH, Sabbath M, Barber HR. Electron microscopy, tissue culture, and immunology of ovarian carcinoma. Natl Cancer Inst Monogr. 1975;42:45--62.PubMedGoogle Scholar
  35. 35.
    Woods LK, Morgan RT, Quinn LA, Moore GE, Semple TU, Stedman KE. Comparison of four new cell lines from patients with adenocarcinoma of the ovary. Cancer Res. 1979;39(11):4449--4459.PubMedGoogle Scholar
  36. 36.
    Hamilton TC, Young RC, Louie KG, et al. Characterization of a xenograft model of human ovarian carcinoma which produces ascites and intraabdominal carcinomatosis in mice. Cancer Res. 1984;44(11):5286--5290.PubMedGoogle Scholar
  37. 37.
    Ozols RF, Louie KG, Plowman J, et al. Enhanced melphalan cytotoxicity in human ovarian cancer in vitro and in tumor-bearing nude mice by buthionine sulfoximine depletion of glutathione. Biochem Pharmacol. 1987;36(1):147--153.PubMedGoogle Scholar
  38. 38.
    Burbridge MF, Kraus-Berthier L, Naze M, Pierre A, Atassi G, Guilbaud N. Biological and pharmacological characterisation of three models of human ovarian carcinoma established in nude mice: use of the CA125 tumour marker to predict antitumour activity. Int J Oncol. 1999;15(6):1155--1162.PubMedGoogle Scholar
  39. 39.
    Molpus KL, Koelliker D, Atkins L, et al. Characterization of a xenograft model of human ovarian carcinoma which produces intraperitoneal carcinomatosis and metastases in mice. Int J Cancer. 1996;68(5):588--595.PubMedGoogle Scholar
  40. 40.
    Ward BG, Wallace K, Shepherd JH, Balkwill FR. Intraperitoneal xenografts of human epithelial ovarian cancer in nude mice. Cancer Res. 1987;47(10):2662--2667.PubMedGoogle Scholar
  41. 41.
    Fu X, Hoffman RM. Human ovarian carcinoma metastatic models constructed in nude mice by orthotopic transplantation of histologically-intact patient specimens. Anticancer Res. 1993;13(2):283--286.PubMedGoogle Scholar
  42. 42.
    Bao R, Connolly DC, Murphy M, et al. Activation of cancer-specific gene expression by the survivin promoter. J Natl Cancer Inst. 2002;94(7):522--528.PubMedGoogle Scholar
  43. 43.
    Vanderhyden BC, Shaw TJ, Ethier JF. Animal models of ovarian cancer. Reprod Biol Endocrinol. 2003;1:67.PubMedGoogle Scholar
  44. 44.
    Fidler IJ. Critical factors in the biology of human cancer metastasis: twenty-eighth G.H.A. Clowes memorial award lecture. Cancer Res. 1990;50(19):6130--6138.PubMedGoogle Scholar
  45. 45.
    Kerbel RS. Human tumor xenografts as predictive preclinical models for anticancer drug activity in humans: better than commonly perceived-but they can be improved. Cancer Biol Ther. 2003;2(4 Suppl 1):S134--139.PubMedGoogle Scholar
  46. 46.
    Voskoglou-Nomikos T, Pater JL, Seymour L. Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin Cancer Res. 2003;9(11):4227--4239.PubMedGoogle Scholar
  47. 47.
    Nishida T, Sugiyama T, Kataoka A, Ushijima K, Yakushiji M. Histologic characterization of rat ovarian carcinoma induced by intraovarian insertion of a 7,12-dimethylbenz[a]anthracene-coated suture: common epithelial tumors of the ovary in rats? Cancer. 1998;83(5):965--970.PubMedGoogle Scholar
  48. 48.
    Sekiya S, Endoh N, Kikuchi Y, et al. In vivo and in vitro studies of experimental ovarian adenocarcinoma in rats. Cancer Res. 1979;39(3):1108--1112.PubMedGoogle Scholar
  49. 49.
    Tunca JC, Erturk E, Erturk E, Bryan GT. Chemical induction of ovarian tumors in rats. Gynecol Oncol. 1985;21(1):54--64.PubMedGoogle Scholar
  50. 50.
    Stewart SL, Querec TD, Ochman AR, et al. Characterization of a carcinogenesis rat model of ovarian preneoplasia and neoplasia. Cancer Res. 2004;64(22):8177--8183.PubMedGoogle Scholar
  51. 51.
    Wang Y, Zhang Z, Lu Y, et al. Enhanced susceptibility to chemical induction of ovarian tumors in mice with a germ line p53 mutation. Mol Cancer Res. 2008;6(1):99--109.PubMedGoogle Scholar
  52. 52.
    Silva EG, Tornos C, Deavers M, Kaisman K, Gray K, Gershenson D. Induction of epithelial neoplasms in the ovaries of guinea pigs by estrogenic stimulation. Gynecol Oncol. 1998;71(2):240--246.PubMedGoogle Scholar
  53. 53.
    Silva EG, Tornos C, Fritsche HA Jr, et al. The induction of benign epithelial neoplasms of the ovaries of guinea pigs by testosterone stimulation: a potential animal model. Mod Pathol. 1997;10(9):879--883.PubMedGoogle Scholar
  54. 54.
    Fathalla MF. Incessant ovulation -- a factor in ovarian neoplasia? Lancet. 1971;2(7716):163.PubMedGoogle Scholar
  55. 55.
    Murdoch WJ. Carcinogenic potential of ovulatory genotoxicity. Biol Reprod. 2005;73(4):586--590.PubMedGoogle Scholar
  56. 56.
    Clow OL, Hurst PR, Fleming JS. Changes in the mouse ovarian surface epithelium with age and ovulation number. Mol Cell Endocrinol. 2002;191(1):105--111.PubMedGoogle Scholar
  57. 57.
    Tan OL, Hurst PR, Fleming JS. Location of inclusion cysts in mouse ovaries in relation to age, pregnancy, and total ovulation number: implications for ovarian cancer? J Pathol. 2005;205(4):483--490.PubMedGoogle Scholar
  58. 58.
    Auersperg N, Maines-Bandiera SL, Dyck HG. Ovarian carcinogenesis and the biology of ovarian surface epithelium. J Cell Physiol. 1997;173(2):261--265.PubMedGoogle Scholar
  59. 59.
    Scully RE. Pathology of ovarian cancer precursors. J Cell Biochem Suppl. 1995;23:208--218.PubMedGoogle Scholar
  60. 60.
    Long JH. The growth in vitro of mouse germinal epithelium. Carnegie Inst Wash Pub Contrib Embryol. 1940;28:89--95.Google Scholar
  61. 61.
    Hamilton TC, Henderson WJ, Eaton C. Isolation and growth of the rat ovarian germinal epithelium. In: Richards RJ, Rajan KT, eds. Tissue Culture in Medical Research (II). Oxford: Pergamon Press; 1980:237--244.Google Scholar
  62. 62.
    Adams AT, Auersperg N. Transformation of cultured rat ovarian surface epithelial cells by Kirsten murine sarcoma virus. Cancer Res. 1981;41(6):2063--2072.PubMedGoogle Scholar
  63. 63.
    Dubeau L, Velicescu M, Sherrod AE, Schreiber G, Holt G. Culture of human fetal ovarian epithelium in a chemically-defined, serum-free medium: a model for ovarian carcinogenesis. Anticancer Res. 1990;10(5A):1233--1240.PubMedGoogle Scholar
  64. 64.
    Kruk PA, Maines-Bandiera SL, Auersperg N. A simplified method to culture human ovarian surface epithelium. Lab Invest. 1990;63(1):132--136.PubMedGoogle Scholar
  65. 65.
    Siemens CH, Auersperg N. Serial propagation of human ovarian surface epithelium in tissue culture. J Cell Physiol. 1988;134(3):347--356.PubMedGoogle Scholar
  66. 66.
    Nicosia SV, Johnson JH, Streibel EJ. Isolation and ultrastructure of rabbit ovarian mesothelium (surface epithelium). Int J Gynecol Pathol. 1984;3(4):348--360.PubMedGoogle Scholar
  67. 67.
    Nicosia SV, Johnson JH. Surface morphology of ovarian mesothelium (surface epithelium) and of other pelvic and extrapelvic mesothelial sites in the rabbit. Int J Gynecol Pathol. 1984;3(3):249--260.PubMedGoogle Scholar
  68. 68.
    Kido M, Shibuya M. Isolation and characterization of mouse ovarian surface epithelial cell lines. Pathol Res Pract. 1998;194(10):725--730.PubMedGoogle Scholar
  69. 69.
    Roby KF, Taylor CC, Sweetwood JP, et al. Development of a syngeneic mouse model for events related to ovarian cancer. Carcinogenesis. 2000;21(4):585--591.PubMedGoogle Scholar
  70. 70.
    Hoffman AG, Burghardt RC, Tilley R, Auersperg N. An in vitro model of ovarian epithelial carcinogenesis: changes in cell--cell communication and adhesion occurring during neoplastic progression. Int J Cancer. 1993;54(5):828--838.PubMedGoogle Scholar
  71. 71.
    Adams AT, Auersperg N. A cell line, ROSE 199, derived from normal rat ovarian surface epithelium. Exp Cell Biol. 1985;53(4):181--188.PubMedGoogle Scholar
  72. 72.
    Chang S, Khoo C, DePinho RA. Modeling chromosomal instability and epithelial carcinogenesis in the telomerase-deficient mouse. Semin Cancer Biol. 2001;11(3):227--239.PubMedGoogle Scholar
  73. 73.
    Maines-Bandiera SL, Kruk PA, Auersperg N. Simian virus 40-transformed human ovarian surface epithelial cells escape normal growth controls but retain morphogenetic responses to extracellular matrix. Am J Obstet Gynecol. 1992;167(3):729--735.PubMedGoogle Scholar
  74. 74.
    Tsao SW, Mok SC, Fey EG, et al. Characterization of human ovarian surface epithelial cells immortalized by human papilloma viral oncogenes (HPV-E6E7 ORFs). Exp Cell Res. 1995;218(2):499--507.PubMedGoogle Scholar
  75. 75.
    Nitta M, Katabuchi H, Ohtake H, Tashiro H, Yamaizumi M, Okamura H. Characterization and tumorigenicity of human ovarian surface epithelial cells immortalized by SV40 large T antigen. Gynecol Oncol. 2001;81(1):10--17.PubMedGoogle Scholar
  76. 76.
    Gregoire L, Rabah R, Schmelz EM, Munkarah A, Roberts PC, Lancaster WD. Spontaneous malignant transformation of human ovarian surface epithelial cells in vitro. Clin Cancer Res. 2001;7(12):4280--4287.PubMedGoogle Scholar
  77. 77.
    Godwin AK, Testa JR, Handel LM, et al. Spontaneous transformation of rat ovarian surface epithelial cells: association with cytogenetic changes and implications of repeated ovulation in the etiology of ovarian cancer. J Natl Cancer Inst. 1992;84(8):592--601.PubMedGoogle Scholar
  78. 78.
    Testa JR, Getts LA, Salazar H, et al. Spontaneous transformation of rat ovarian surface epithelial cells results in well to poorly differentiated tumors with a parallel range of cytogenetic complexity. Cancer Res. 1994;54(10):2778--2784.PubMedGoogle Scholar
  79. 79.
    Abdollahi A, Bao R, Hamilton TC. LOT1 is a growth suppressor gene down-regulated by the epidermal growth factor receptor ligands and encodes a nuclear zinc-finger protein. Oncogene. 1999;18(47):6477--6487.PubMedGoogle Scholar
  80. 80.
    Abdollahi A, Getts LA, Sonoda G, et al. Genome scanning detects amplification of the cathepsin B gene (CtsB) in transformed rat ovarian surface epithelial cells. J Soc Gynecol Investig. 1999;6(1):32--40.PubMedGoogle Scholar
  81. 81.
    Abdollahi A, Godwin AK, Miller PD, et al. Identification of a gene containing zinc-finger motifs based on lost expression in malignantly transformed rat ovarian surface epithelial cells. Cancer Res. 1997;57(10):2029--2034.PubMedGoogle Scholar
  82. 82.
    Roberts D, Williams SJ, Cvetkovic D, et al. Decreased expression of retinol-binding proteins is associated with malignant transformation of the ovarian surface epithelium. DNA Cell Biol. 2002;21(1):11--19.PubMedGoogle Scholar
  83. 83.
    Rose GS, Tocco LM, Granger GA, et al. Development and characterization of a clinically useful animal model of epithelial ovarian cancer in the Fischer 344 rat. Am J Obstet Gynecol. 1996;175(3 Pt 1):593--599.PubMedGoogle Scholar
  84. 84.
    Chen T, Pengetnze Y, Taylor CC. Src inhibition enhances paclitaxel cytotoxicity in ovarian cancer cells by caspase-9-independent activation of caspase-3. Mol Cancer Ther. 2005;4(2):217--224.PubMedGoogle Scholar
  85. 85.
    George JA, Chen T, Taylor CC. SRC tyrosine kinase and multidrug resistance protein-1 inhibitions act independently but cooperatively to restore paclitaxel sensitivity to paclitaxel-resistant ovarian cancer cells. Cancer Res. 2005;65(22):10381--10388.PubMedGoogle Scholar
  86. 86.
    Greenaway J, Moorehead R, Shaw P, Petrik J. Epithelial-stromal interaction increases cell proliferation, survival and tumorigenicity in a mouse model of human epithelial ovarian cancer. Gynecol Oncol. 2008;108(2):385--394.PubMedGoogle Scholar
  87. 87.
    Pengetnze Y, Steed M, Roby KF, Terranova PF, Taylor CC. Src tyrosine kinase promotes survival and resistance to chemotherapeutics in a mouse ovarian cancer cell line. Biochem Biophys Res Commun. 2003;309(2):377--383.PubMedGoogle Scholar
  88. 88.
    Sanches R, Kuiper M, Penault-Llorca F, Aunoble B, D'Incan C, Bignon YJ. Antitumoral effect of interleukin-12-secreting fibroblasts in a mouse model of ovarian cancer: implications for the use of ovarian cancer biopsy-derived fibroblasts as a vehicle for regional gene therapy. Cancer Gene Ther. 2000;7(5):707--720.PubMedGoogle Scholar
  89. 89.
    Urzua U, Roby KF, Gangi LM, Cherry JM, Powell JI, Munroe DJ. Transcriptomic analysis of an in vitro murine model of ovarian carcinoma: functional similarity to the human disease and identification of prospective tumoral markers and targets. J Cell Physiol. 2006;206(3):594--602.PubMedGoogle Scholar
  90. 90.
    Zhang L, Yang N, Garcia JR, et al. Generation of a syngeneic mouse model to study the effects of vascular endothelial growth factor in ovarian carcinoma. Am J Pathol. 2002;161(6):2295--2309.PubMedGoogle Scholar
  91. 91.
    Zhang L, Yang N, Park JW, et al. Tumor-derived vascular endothelial growth factor up-regulates angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer. Cancer Res. 2003;63(12):3403--3412.PubMedGoogle Scholar
  92. 92.
    Roberts PC, Mottillo EP, Baxa AC, et al. Sequential molecular and cellular events during neoplastic progression: a mouse syngeneic ovarian cancer model. Neoplasia. 2005;7(10):944--956.PubMedGoogle Scholar
  93. 93.
    Yee D, Morales FR, Hamilton TC, Von Hoff DD. Expression of insulin-like growth factor I, its binding proteins, and its receptor in ovarian cancer. Cancer Res. 1991;51(19):5107--5112.PubMedGoogle Scholar
  94. 94.
    Resnicoff M, Ambrose D, Coppola D, Rubin R. Insulin-like growth factor-1 and its receptor mediate the autocrine proliferation of human ovarian carcinoma cell lines. Lab Invest. 1993;69(6):756--760.PubMedGoogle Scholar
  95. 95.
    Coppola D, Saunders B, Fu L, Mao W, Nicosia SV. The insulin-like growth factor 1 receptor induces transformation and tumorigenicity of ovarian mesothelial cells and down-regulates their Fas-receptor expression. Cancer Res. 1999;59(13):3264--3270.PubMedGoogle Scholar
  96. 96.
    Hirano S, Ito N, Takahashi S, Tamaya T. Clinical implications of insulin-like growth factors through the presence of their binding proteins and receptors expressed in gynecological cancers. Eur J Gynaecol Oncol. 2004;25(2):187--191.PubMedGoogle Scholar
  97. 97.
    Ouban A, Muraca P, Yeatman T, Coppola D. Expression and distribution of insulin-like growth factor-1 receptor in human carcinomas. Hum Pathol. 2003;34(8):803--808.PubMedGoogle Scholar
  98. 98.
    Davies BR, Auersperg N, Worsley SD, Ponder BA. Transfection of rat ovarian surface epithelium with erb-B2/neu induces transformed phenotypes in vitro and the tumorigenic phenotype in vivo. Am J Pathol. 1998;152(1):297--306.PubMedGoogle Scholar
  99. 99.
    Schumacher JJ, Dings RP, Cosin J, Subramanian IV, Auersperg N, Ramakrishnan S. Modulation of angiogenic phenotype alters tumorigenicity in rat ovarian epithelial cells. Cancer Res. 2007;67(8):3683--3690.PubMedGoogle Scholar
  100. 100.
    Davies BR, Steele IA, Edmondson RJ, et al. Immortalisation of human ovarian surface epithelium with telomerase and temperature-sensitive SV40 large T antigen. Exp Cell Res. 2003;288(2):390--402.PubMedGoogle Scholar
  101. 101.
    Liu J, Yang G, Thompson-Lanza JA, et al. A genetically defined model for human ovarian cancer. Cancer Res. 2004;64(5):1655--1663.PubMedGoogle Scholar
  102. 102.
    Yang G, Rosen DG, Mercado-Uribe I, et al. Knockdown of p53 combined with expression of the catalytic subunit of telomerase is sufficient to immortalize primary human ovarian surface epithelial cells. Carcinogenesis. 2007;28(1):174--182.PubMedGoogle Scholar
  103. 103.
    Auersperg N, Pan J, Grove BD, et al. E-cadherin induces mesenchymal-to-epithelial transition in human ovarian surface epithelium. Proc Natl Acad Sci U S A. 1999;96(11):6249--6254.PubMedGoogle Scholar
  104. 104.
    Ong A, Maines-Bandiera SL, Roskelley CD, Auersperg N. An ovarian adenocarcinoma line derived from SV40/E-cadherin-transfected normal human ovarian surface epithelium. Int J Cancer. 2000;85(3):430--437.PubMedGoogle Scholar
  105. 105.
    Cuatrecasas M, Erill N, Musulen E, Costa I, Matias-Guiu X, Prat J. K-ras mutations in nonmucinous ovarian epithelial tumors: a molecular analysis and clinicopathologic study of 144 patients. Cancer. 1998;82(6):1088--1095.PubMedGoogle Scholar
  106. 106.
    Cuatrecasas M, Villanueva A, Matias-Guiu X, Prat J. K-ras mutations in mucinous ovarian tumors: a clinicopathologic and molecular study of 95 cases. Cancer. 1997;79(8):1581--1586.PubMedGoogle Scholar
  107. 107.
    Fujita M, Enomoto T, Inoue M, et al. Alteration of the p53 tumor suppressor gene occurs independently of K-ras activation and more frequently in serous adenocarcinomas than in other common epithelial tumors of the human ovary. Jpn J Cancer Res. 1994;85(12):1247--1256.PubMedGoogle Scholar
  108. 108.
    Ichikawa Y, Nishida M, Suzuki H, et al. Mutation of K-ras protooncogene is associated with histological subtypes in human mucinous ovarian tumors. Cancer Res. 1994;54(1):33--35.PubMedGoogle Scholar
  109. 109.
    Mok SC, Bell DA, Knapp RC, et al. Mutation of K-ras protooncogene in human ovarian epithelial tumors of borderline malignancy. Cancer Res. 1993;53(7):1489--1492.PubMedGoogle Scholar
  110. 110.
    Singer G, Oldt R 3rd, Cohen Y, et al. Mutations in BRAF and KRAS characterize the development of low-grade ovarian serous carcinoma. J Natl Cancer Inst. 2003;95(6):484--486.PubMedGoogle Scholar
  111. 111.
    Varras MN, Sourvinos G, Diakomanolis E, et al. Detection and clinical correlations of ras gene mutations in human ovarian tumors. Oncology. 1999;56(2):89--96.PubMedGoogle Scholar
  112. 112.
    Orsulic S. An RCAS-TVA-based approach to designer mouse models. Mamm Genome. 2002;13(10):543--547.PubMedGoogle Scholar
  113. 113.
    Orsulic S, Li Y, Soslow RA, Vitale-Cross LA, Gutkind JS, Varmus HE. Induction of ovarian cancer by defined multiple genetic changes in a mouse model system. Cancer Cell. 2002;1(1):53--62.PubMedGoogle Scholar
  114. 114.
    Bates P, Young JAT, Varmus HE. A receptor for subgroup A Rous sarcoma virus is related to the low density lipoprotein receptor. Cell. 1993;74(6):1043--1051.PubMedGoogle Scholar
  115. 115.
    Federspiel MJ, Swing DA, Eagleson B, Reid SW, Hughes SH. Expression of transduced genes in mice generated by infecting blastocysts with avian leukosis virus-based retroviral vectors. Proc Natl Acad Sci U S A. 1996;93(10):4931--4936.PubMedGoogle Scholar
  116. 116.
    Hughes SH, Greenhouse JJ, Petropoulos CJ, Sutrave P. Adaptor plasmids simplify the insertion of foreign DNA into helper-independent retroviral vectors. J Virol. 1987;61(10):3004--3012.PubMedGoogle Scholar
  117. 117.
    Du Z, Podsypanina K, Huang S, et al. Introduction of oncogenes into mammary glands in vivo with an avian retroviral vector initiates and promotes carcinogenesis in mouse models. Proc Natl Acad Sci U S A. 2006;103(46):17396--17401.PubMedGoogle Scholar
  118. 118.
    Fisher GH, Orsulic S, Holland E, et al. Development of a flexible and specific gene delivery system for production of murine tumor models. Oncogene. 1999;18(38):5253--5260.PubMedGoogle Scholar
  119. 119.
    Fisher GH, Wellen SL, Klimstra D, et al. Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes. Genes Dev. 2001;15(24):3249--3262.PubMedGoogle Scholar
  120. 120.
    Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, Fuller GN. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet. 2000;25(1):55--57.PubMedGoogle Scholar
  121. 121.
    Holland EC, Hively WP, DePinho RA, Varmus HE. A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev. 1998;12(23):3675--3685.PubMedGoogle Scholar
  122. 122.
    Lewis BC, Klimstra DS, Socci ND, Xu S, Koutcher JA, Varmus HE. The absence of p53 promotes metastasis in a novel somatic mouse model for hepatocellular carcinoma. Mol Cell Biol. 2005;25(4):1228--1237.PubMedGoogle Scholar
  123. 123.
    Lewis BC, Klimstra DS, Varmus HE. The c-myc and PyMT oncogenes induce different tumor types in a somatic mouse model for pancreatic cancer. Genes Dev. 2003;17(24):3127--3138.PubMedGoogle Scholar
  124. 124.
    Xing D, Orsulic S. A genetically defined mouse ovarian carcinoma model for the molecular characterization of pathway-targeted therapy and tumor resistance. Proc Natl Acad Sci U S A. 2005;102(19):6936--6941.PubMedGoogle Scholar
  125. 125.
    Xing D, Orsulic S. A mouse model for the molecular characterization of brca1-associated ovarian carcinoma. Cancer Res. 2006;66(18):8949--8953.PubMedGoogle Scholar
  126. 126.
    Xu X, Wagner KU, Larson D, et al. Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nat Genet. 1999;22(1):37--43.PubMedGoogle Scholar
  127. 127.
    Jonkers J, Meuwissen R, van der Gulden H, Peterse H, van der Valk M, Berns A. Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat Genet. 2001;29(4):418--425.PubMedGoogle Scholar
  128. 128.
    Cass I, Baldwin RL, Varkey T, Moslehi R, Narod SA, Karlan BY. Improved survival in women with BRCA-associated ovarian carcinoma. Cancer. 2003;97(9):2187--2195.PubMedGoogle Scholar
  129. 129.
    Brinster RL, Chen HY, Trumbauer M, Senear AW, Warren R, Palmiter RD. Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs. Cell. 1981;27(1 Pt 2):223--231.PubMedGoogle Scholar
  130. 130.
    Costantini F, Lacy E. Introduction of a rabbit beta-globin gene into the mouse germ line. Nature. 1981;294(5836):92--94.PubMedGoogle Scholar
  131. 131.
    Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH. Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci U S A. 1980;77(12):7380--7384.PubMedGoogle Scholar
  132. 132.
    Wagner EF, Stewart TA, Mintz B. The human beta-globin gene and a functional viral thymidine kinase gene in developing mice. Proc Natl Acad Sci U S A. 1981;78(8):5016--5020.PubMedGoogle Scholar
  133. 133.
    Hanahan D, Wagner EF, Palmiter RD. The origins of oncomice: a history of the first transgenic mice genetically engineered to develop cancer. Genes Dev. 2007;21(18):2258--2270.PubMedGoogle Scholar
  134. 134.
    Thomas KR, Capecchi MR. Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature. 1990;346(6287):847--850.PubMedGoogle Scholar
  135. 135.
    Clarke AR, Maandag ER, van Roon M, et al. Requirement for a functional Rb-1 gene in murine development. Nature. 1992;359(6393):328--330.PubMedGoogle Scholar
  136. 136.
    Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA. Effects of an Rb mutation in the mouse. Nature. 1992;359(6393):295--300.PubMedGoogle Scholar
  137. 137.
    Lee EY, Chang CY, Hu N, et al. Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature. 1992;359(6393):288--294.PubMedGoogle Scholar
  138. 138.
    Jacks T. Tumor suppressor gene mutations in mice. Annu Rev Genet. 1996;30:603--636.PubMedGoogle Scholar
  139. 139.
    Dutertre M, Gouedard L, Xavier F, et al. Ovarian granulosa cell tumors express a functional membrane receptor for anti-Mullerian hormone in transgenic mice. Endocrinology. 2001;142(9):4040--4046.PubMedGoogle Scholar
  140. 140.
    Garson K, Macdonald E, Dube M, Bao R, Hamilton TC, Vanderhyden BC. Generation of tumors in transgenic mice expressing the SV40 T antigen under the control of ovarian-specific promoter 1. J Soc Gynecol Investig. 2003;10(4):244--250.PubMedGoogle Scholar
  141. 141.
    Kananen K, Markkula M, Rainio E, Su JG, Hsueh AJ, Huhtaniemi IT. Gonadal tumorigenesis in transgenic mice bearing the mouse inhibin alpha-subunit promoter/simian virus T-antigen fusion gene: characterization of ovarian tumors and establishment of gonadotropin-responsive granulosa cell lines. Mol Endocrinol. 1995;9(5):616--627.PubMedGoogle Scholar
  142. 142.
    Keri RA, Lozada KL, Abdul-Karim FW, Nadeau JH, Nilson JH. Luteinizing hormone induction of ovarian tumors: oligogenic differences between mouse strains dictates tumor disposition. Proc Natl Acad Sci U S A. 2000;97(1):383--387.PubMedGoogle Scholar
  143. 143.
    Rahman NA, Kananen Rilianawati K, Paukku T, et al. Transgenic mouse models for gonadal tumorigenesis. Mol Cell Endocrinol. 1998;145(1--2):167--174.PubMedGoogle Scholar
  144. 144.
    Risma KA, Clay CM, Nett TM, Wagner T, Yun J, Nilson JH. Targeted overexpression of luteinizing hormone in transgenic mice leads to infertility, polycystic ovaries, and ovarian tumors. Proc Natl Acad Sci U S A. 1995;92(5):1322--1326.PubMedGoogle Scholar
  145. 145.
    Selvakumaran M, Bao R, Crijns AP, Connolly DC, Weinstein JK, Hamilton TC. Ovarian epithelial cell lineage-specific gene expression using the promoter of a retrovirus-like element. Cancer Res. 2001;61(4):1291--1295.PubMedGoogle Scholar
  146. 146.
    Josso N, di Clemente N, Gouedard L. Anti-Mullerian hormone and its receptors. Mol Cell Endocrinol. 2001;179(1--2):25--32.PubMedGoogle Scholar
  147. 147.
    Teixeira J, Maheswaran S, Donahoe PK. Mullerian inhibiting substance: an instructive developmental hormone with diagnostic and possible therapeutic applications. Endocr Rev. 2001;22(5):657--674.PubMedGoogle Scholar
  148. 148.
    Leung EH, Leung PC, Auersperg N. Differentiation and growth potential of human ovarian surface epithelial cells expressing temperature-sensitive SV40 T antigen. In Vitro Cell Dev Biol Animal. 2001;37(8):515--521.Google Scholar
  149. 149.
    Masiakos PT, MacLaughlin DT, Maheswaran S, et al. Human ovarian cancer, cell lines, and primary ascites cells express the human Mullerian inhibiting substance (MIS) type II receptor, bind, and are responsive to MIS. Clin Cancer Res. 1999;5(11):3488--3499.PubMedGoogle Scholar
  150. 150.
    Connolly DC, Bao R., Nikitin AY, et al. Female mice chimeric for expression of the SV40 TAg under control of the MISIIR promoter develop epithelial ovarian cancer. Cancer Res. 2003;63:1389--1397.PubMedGoogle Scholar
  151. 151.
    Hensley H, Quinn BA, Wolf RL, et al. Magnetic resonance imaging for detection and determination of tumor volume in a genetically engineered mouse model of ovarian cancer. Cancer Biol Ther. 2007;6(11):1717–1725.Google Scholar
  152. 152.
    Daikoku T, Tranguch S, Trofimova IN, et al. Cyclooxygenase-1 is overexpressed in multiple genetically engineered mouse models of epithelial ovarian cancer. Cancer Res. 2006;66(5):2527--2531.PubMedGoogle Scholar
  153. 153.
    Mabuchi S, Altomare DA, Connolly DC, et al. RAD001 (Everolimus) delays tumor onset and progression in a transgenic mouse model of ovarian cancer. Cancer Res. 2007;67(6):2408--2413.PubMedGoogle Scholar
  154. 154.
    Pieretti-Vanmarcke R, Donahoe PK, Pearsall LA, et al. Mullerian inhibiting substance enhances subclinical doses of chemotherapeutic agents to inhibit human and mouse ovarian cancer. Proc Natl Acad Sci U S A. 2006;103(46):17426--17431.PubMedGoogle Scholar
  155. 155.
    Pieretti-Vanmarcke R, Donahoe PK, Szotek P, et al. Recombinant human Mullerian inhibiting substance inhibits long-term growth of MIS type II receptor-directed transgenic mouse ovarian cancers in vivo. Clin Cancer Res. 2006;12(5):1593--1598.PubMedGoogle Scholar
  156. 156.
    Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, et al. Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian inhibiting substance responsiveness. Proc Natl Acad Sci U S A. 2006;103(30):11154--11159.PubMedGoogle Scholar
  157. 157.
    Connolly DC, Bao R, Nikitin AY, et al. Molecular analyses of a transgenic mouse model of human epithelial ovarian cancer. Proc Annu Meet Am Assoc Cancer Res. 2003;44:957.Google Scholar
  158. 158.
    Hanahan D. Heritable formation of pancreatic beta-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature. 1985;315(6015):115--122.PubMedGoogle Scholar
  159. 159.
    Chen J, Tobin GJ, Pipas JM, Van Dyke T. T-antigen mutant activities in vivo: roles of p53 and pRB binding in tumorigenesis of the choroid plexus. Oncogene. 1992;7(6):1167--1175.PubMedGoogle Scholar
  160. 160.
    Maroulakou IG, Anver M, Garrett L, Green JE. Prostate and mammary adenocarcinoma in transgenic mice carrying a rat C3(1) simian virus 40 large tumor antigen fusion gene. Proc Natl Acad Sci U S A. 1994;91(23):11236--11240.PubMedGoogle Scholar
  161. 161.
    Greenberg NM, DeMayo F, Finegold MJ, et al. Prostate cancer in a transgenic mouse. Proc Natl Acad Sci U S A. 1995;92(8):3439--3443.PubMedGoogle Scholar
  162. 162.
    Kasper S, Sheppard PC, Yan Y, et al. Development, progression, and androgen-dependence of prostate tumors in probasin-large T antigen transgenic mice: a model for prostate cancer. Lab Invest. 1998;78(6):i--xv.PubMedGoogle Scholar
  163. 163.
    Grippo PJ, Sandgren EP. Highly invasive transitional cell carcinoma of the bladder in a simian virus 40 T-antigen transgenic mouse model. Am J Pathol. 2000;157(3):805--813.PubMedGoogle Scholar
  164. 164.
    Chailley-Heu B, Rambaud C, Barlier-Mur AM, et al. A model of pulmonary adenocarcinoma in transgenic mice expressing the simian virus 40 T antigen driven by the rat Calbindin-D9K (CaBP9K) promoter. J Pathol. 2001;195(4):482--489.PubMedGoogle Scholar
  165. 165.
    Bergers G, Brekken R, McMahon G, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol. 2000;2(10):737--744.PubMedGoogle Scholar
  166. 166.
    Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science. 1999;284(5415):808--812.PubMedGoogle Scholar
  167. 167.
    Casanovas O, Hicklin DJ, Bergers G, Hanahan D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell. 2005;8(4):299--309.PubMedGoogle Scholar
  168. 168.
    Inoue M, Hager JH, Ferrara N, Gerber HP, Hanahan D. VEGF-A has a critical, nonredundant role in angiogenic switching and pancreatic beta cell carcinogenesis. Cancer Cell. 2002;1(2):193--202.PubMedGoogle Scholar
  169. 169.
    Nozawa H, Chiu C, Hanahan D. Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci U S A. 2006;103(33):12493--12498.PubMedGoogle Scholar
  170. 170.
    Du YC, Lewis BC, Hanahan D, Varmus H. Assessing tumor progression factors by somatic gene transfer into a mouse model: Bcl-xL promotes islet tumor cell invasion. PLoS Biol. 2007;5(10):2255--2269.Google Scholar
  171. 171.
    Deeb KK, Michalowska AM, Yoon CY, et al. Identification of an integrated SV40 T/t-antigen cancer signature in aggressive human breast, prostate, and lung carcinomas with poor prognosis. Cancer Res. 2007;67(17):8065--8080.PubMedGoogle Scholar
  172. 172.
    Danilovich N, Roy I, Sairam MR. Ovarian pathology and high incidence of sex cord tumors in follitropin receptor knockout (FORKO) mice. Endocrinology. 2001;142(8):3673--3684.PubMedGoogle Scholar
  173. 173.
    Chen X, Aravindakshan J, Yang Y, Sairam MR. Early alterations in ovarian surface epithelial cells and induction of ovarian epithelial tumors triggered by loss of FSH receptor. Neoplasia. 2007;9(6):521--531.PubMedGoogle Scholar
  174. 174.
    Abel MH, Huhtaniemi I, Pakarinen P, Kumar TR, Charlton HM. Age-related uterine and ovarian hypertrophy in FSH receptor knockout and FSHbeta subunit knockout mice. Reproduction. 2003;125(2):165--173.PubMedGoogle Scholar
  175. 175.
    Jackson EL, Willis N, Mercer K, et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev. 2001;15(24):3243--3248.PubMedGoogle Scholar
  176. 176.
    Ludwig T, Fisher P, Murty V, Efstratiadis A. Development of mammary adenocarcinomas by tissue-specific knockout of Brca2 in mice. Oncogene. 2001;20(30):3937--3948.PubMedGoogle Scholar
  177. 177.
    Marino S, Vooijs M, van Der Gulden H, Jonkers J, Berns A. Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev. 2000;14(8):994--1004.PubMedGoogle Scholar
  178. 178.
    Tuveson DA, Zhu L, Gopinathan A, et al. Mist1-KrasG12D knock-in mice develop mixed differentiation metastatic exocrine pancreatic carcinoma and hepatocellular carcinoma. Cancer Res. 2006;66(1):242--247.PubMedGoogle Scholar
  179. 179.
    Chodankar R, Kwang S, Sangiorgi F, et al. Cell-nonautonomous induction of ovarian and uterine serous cystadenomas in mice lacking a functional Brca1 in ovarian granulosa cells. Curr Biol. 2005;15(6):561--565.PubMedGoogle Scholar
  180. 180.
    Clark-Knowles KV, Garson K, Jonkers J, Vanderhyden BC. Conditional inactivation of Brca1 in the mouse ovarian surface epithelium results in an increase in preneoplastic changes. Exp Cell Res. 2007;313(1):133--145.PubMedGoogle Scholar
  181. 181.
    Dinulescu DM, Ince TA, Quade BJ, Shafer SA, Crowley D, Jacks T. Role of K-ras and Pten in the development of mouse models of endometriosis and endometrioid ovarian cancer. Nat Med. 2005;11(1):63--70.PubMedGoogle Scholar
  182. 182.
    Flesken-Nikitin A, Choi KC, Eng JP, Shmidt EN, Nikitin AY. Induction of carcinogenesis by concurrent inactivation of p53 and Rb1 in the mouse ovarian surface epithelium. Cancer Res. 2003;63(13):3459--3463.PubMedGoogle Scholar
  183. 183.
    Wu R, Hendrix-Lucas N, Kuick R, et al. Mouse model of human ovarian endometrioid adenocarcinoma based on somatic defects in the Wnt/beta-catenin and PI3K/Pten signaling pathways. Cancer Cell. 2007;11(4):321--333.PubMedGoogle Scholar
  184. 184.
    Aunoble B, Sanches R, Didier E, Bignon YJ. Major oncogenes and tumor suppressor genes involved in epithelial ovarian cancer (review). Int J Oncol. 2000;16(3):567--576.PubMedGoogle Scholar
  185. 185.
    Feeley KM, Wells M. Precursor lesions of ovarian epithelial malignancy. Histopathology. 2001;38(2):87--95.PubMedGoogle Scholar
  186. 186.
    Farley J, Smith LM, Darcy KM, et al. Cyclin E expression is a significant predictor of survival in advanced, suboptimally debulked ovarian epithelial cancers: a gynecologic oncology group study. Cancer Res. 2003;63(6):1235--1241.PubMedGoogle Scholar
  187. 187.
    Gras E, Pons C, Machin P, Matias-Guiu X, Prat J. Loss of heterozygosity at the RB-1 locus and pRB immunostaining in epithelial ovarian tumors: a molecular, immunohistochemical, and clinicopathologic study. Int J Gynecol Pathol. 2001;20(4):335--340.PubMedGoogle Scholar
  188. 188.
    Hashiguchi Y, Tsuda H, Yamamoto K, Inoue T, Ishiko O, Ogita S. Combined analysis of p53 and RB pathways in epithelial ovarian cancer. Hum Pathol. 2001;32(9):988--996.PubMedGoogle Scholar
  189. 189.
    Havrilesky LJ, Berchuck A. Molecular alterations in sporadic ovarian cancer. In: Rubin SC, Sutton GP, eds. Ovarian Cancer, 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2001:23--42.Google Scholar
  190. 190.
    Li SB, Schwartz PE, Lee WH, Yang-Feng TL. Allele loss at the retinoblastoma locus in human ovarian cancer. J Natl Cancer Inst. 1991;83(9):637--640.PubMedGoogle Scholar
  191. 191.
    Tuveson DA, Shaw AT, Willis NA, et al. Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell. 2004;5(4):375--387.PubMedGoogle Scholar
  192. 192.
    Catasus L, Bussaglia E, Rodrguez I, et al. Molecular genetic alterations in endometrioid carcinomas of the ovary: similar frequency of beta-catenin abnormalities but lower rate of microsatellite instability and PTEN alterations than in uterine endometrioid carcinomas. Hum Pathol. 2004;35(11):1360--1368.PubMedGoogle Scholar
  193. 193.
    Obata K, Morland SJ, Watson RH, et al. Frequent PTEN/MMAC mutations in endometrioid but not serous or mucinous epithelial ovarian tumors. Cancer Res. 1998;58(10):2095--2097.PubMedGoogle Scholar
  194. 194.
    Sato N, Tsunoda H, Nishida M, et al. Loss of heterozygosity on 10q23.3 and mutation of the tumor suppressor gene PTEN in benign endometrial cyst of the ovary: possible sequence progression from benign endometrial cyst to endometrioid carcinoma and clear cell carcinoma of the ovary. Cancer Res. 2000;60(24):7052--7056.PubMedGoogle Scholar
  195. 195.
    Fukunaga M, Nomura K, Ishikawa E, Ushigome S. Ovarian atypical endometriosis: its close association with malignant epithelial tumours. Histopathology. 1997;30(3):249--255.PubMedGoogle Scholar
  196. 196.
    Erzen M, Rakar S, Klancnik B, Syrjanen K. Endometriosis-associated ovarian carcinoma (EAOC): an entity distinct from other ovarian carcinomas as suggested by a nested case-control study. Gynecol Oncol. 2001;83(1):100--108.PubMedGoogle Scholar
  197. 197.
    Swiersz LM. Role of endometriosis in cancer and tumor development. Ann N Y Acad Sci. 2002;955:281--292; discussion 93--95, 396--406.PubMedGoogle Scholar
  198. 198.
    Amemiya S, Sekizawa A, Otsuka J, Tachikawa T, Saito H, Okai T. Malignant transformation of endometriosis and genetic alterations of K-ras and microsatellite instability. Int J Gynaecol Obstet. 2004;86(3):371--376.PubMedGoogle Scholar
  199. 199.
    Otsuka J, Okuda T, Sekizawa A, et al. K-ras mutation may promote carcinogenesis of endometriosis leading to ovarian clear cell carcinoma. Med Electron Microsc. 2004;37(3):188--192.PubMedGoogle Scholar
  200. 200.
    Vercellini P, Trecca D, Oldani S, Fracchiolla NS, Neri A, Crosignani PG. Analysis of p53 and ras gene mutations in endometriosis. Gynecol Obstet Invest. 1994;38(1):70--71.PubMedGoogle Scholar
  201. 201.
    Caduff RF, Svoboda-Newman SM, Bartos RE, Ferguson AW, Frank TS. Comparative analysis of histologic homologues of endometrial and ovarian carcinoma. Am J Surg Pathol. 1998;22(3):319--326.PubMedGoogle Scholar
  202. 202.
    Enomoto T, Weghorst CM, Inoue M, Tanizawa O, Rice JM. K-ras activation occurs frequently in mucinous adenocarcinomas and rarely in other common epithelial tumors of the human ovary. Am J Pathol. 1991;139(4):777--785.PubMedGoogle Scholar
  203. 203.
    Sieben NL, Macropoulos P, Roemen GM, et al. In ovarian neoplasms, BRAF, but not KRAS, mutations are restricted to low-grade serous tumours. J Pathol. 2004;202(3):336--340.PubMedGoogle Scholar
  204. 204.
    Berchuck A, Heron KA, Carney ME, et al. Frequency of germline and somatic BRCA1 mutations in ovarian cancer. Clin Cancer Res. 1998;4(10):2433--2437.PubMedGoogle Scholar
  205. 205.
    Pal T, Permuth-Wey J, Betts JA, et al. BRCA1 and BRCA2 mutations account for a large proportion of ovarian carcinoma cases. Cancer. 2005;104(12):2807--2816.PubMedGoogle Scholar
  206. 206.
    Dubeau L. The cell of origin of ovarian epithelial tumors and the surface epithelium dogma: does the emperor have no clothes? Gynecol Oncol. 1999;72:437--442.PubMedGoogle Scholar
  207. 207.
    Boyd J, Sonoda Y, Federici MG, et al. Clinicopathologic features of BRCA-linked and sporadic ovarian cancer. JAMA. 2000;283(17):2260--2265.PubMedGoogle Scholar
  208. 208.
    Rubin SC, Benjamin I, Behbakht K, et al. Clinical and pathological features of ovarian cancer in women with germ-line mutations of BRCA1. N Engl J Med. 1996;335(19):1413--1416.PubMedGoogle Scholar
  209. 209.
    Olive KP, Tuveson DA. The use of targeted mouse models for preclinical testing of novel cancer therapeutics. Clin Cancer Res. 2006;12(18):5277--5287.PubMedGoogle Scholar
  210. 210.
    Auzenne E, Ghosh SC, Khodadadian M, et al. Hyaluronic acid-paclitaxel: antitumor efficacy against CD44(+) human ovarian carcinoma xenografts. Neoplasia. 2007;9(6):479--486.PubMedGoogle Scholar
  211. 211.
    Kim TJ, Ravoori M, Landen CN, et al. Antitumor and antivascular effects of AVE8062 in ovarian carcinoma. Cancer Res. 2007;67(19):9337--9345.PubMedGoogle Scholar
  212. 212.
    Klostergaard J, Auzenne E, Ghosh S, Farquhar D, Rivera B, Price RE. Magnetic resonance imaging-based prospective detection of intraperitoneal human ovarian carcinoma xenografts treatment response. Int J Gynecol Cancer. 2006;16(Suppl 1):111--117.PubMedGoogle Scholar
  213. 213.
    Sallinen H, Anttila M, Narvainen J, et al. A highly reproducible xenograft model for human ovarian carcinoma and application of MRI and ultrasound in longitudinal follow-up. Gynecol Oncol. 2006;103(1):315--320.PubMedGoogle Scholar
  214. 214.
    Lyshchik A, Hobbs SB, Fleischer AC, et al. Ovarian volume measurements in mice with high-resolution ultrasonography. J Ultrasound Med. 2007;26(10):1419--1425.PubMedGoogle Scholar
  215. 215.
    Leyton J, Lockley M, Aerts JL, et al. Quantifying the activity of adenoviral E1A CR2 deletion mutants using renilla luciferase bioluminescence and 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography imaging. Cancer Res. 2006;66(18):9178--9185.PubMedGoogle Scholar
  216. 216.
    Chaudhuri TR, Mountz JM, Rogers BE, Partridge EE, Zinn KR. Light-based imaging of green fluorescent protein-positive ovarian cancer xenografts during therapy. Gynecol Oncol. 2001;82(3):581--589.PubMedGoogle Scholar
  217. 217.
    Subramanian IV, Bui Nguyen TM, Truskinovsky AM, Tolar J, Blazar BR, Ramakrishnan S. Adeno-associated virus-mediated delivery of a mutant endostatin in combination with carboplatin treatment inhibits orthotopic growth of ovarian cancer and improves long-term survival. Cancer Res. 2006;66(8):4319--4328.PubMedGoogle Scholar
  218. 218.
    Chang CL, Wu TC, Hung CF. Control of human mesothelin-expressing tumors by DNA vaccines. Gene Ther. 2007;14(16):1189--1198.PubMedGoogle Scholar
  219. 219.
    Guse K, Dias JD, Bauerschmitz GJ, et al. Luciferase imaging for evaluation of oncolytic adenovirus replication in vivo. Gene Ther. 2007;14(11):902--911.PubMedGoogle Scholar
  220. 220.
    Hung CF, Tsai YC, He L, et al. Vaccinia virus preferentially infects and controls human and murine ovarian tumors in mice. Gene Ther. 2007;14(1):20--29.PubMedGoogle Scholar
  221. 221.
    Hung CF, Tsai YC, He L, Wu TC. Control of mesothelin-expressing ovarian cancer using adoptive transfer of mesothelin peptide-specific CD8+ T cells. Gene Ther. 2007;14(12):921--929.PubMedGoogle Scholar
  222. 222.
    Komarova S, Kawakami Y, Stoff-Khalili MA, Curiel DT, Pereboeva L. Mesenchymal progenitor cells as cellular vehicles for delivery of oncolytic adenoviruses. Mol Cancer Ther. 2006;5(3):755--766.PubMedGoogle Scholar
  223. 223.
    Choy G, O'Connor S, Diehn FE, et al. Comparison of noninvasive fluorescent and bioluminescent small animal optical imaging. Biotechniques. 2003;35(5):1022--1026, 1028–1030.PubMedGoogle Scholar
  224. 224.
    Tung CH, Mahmood U, Bredow S, Weissleder R. In vivo imaging of proteolytic enzyme activity using a novel molecular reporter. Cancer Res. 2000;60(17):4953--4958.PubMedGoogle Scholar
  225. 225.
    Bremer C, Tung CH, Weissleder R. In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat Med. 2001;7(6):743--748.PubMedGoogle Scholar
  226. 226.
    Hama Y, Urano Y, Koyama Y, et al. A target cell-specific activatable fluorescence probe for in vivo molecular imaging of cancer based on a self-quenched avidin-rhodamine conjugate. Cancer Res. 2007;67(6):2791--2799.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Fox Chase Cancer CenterPhiladelphiaUSA

Personalised recommendations