Ovarian Cancer pp 297-318 | Cite as

Cell Adhesion in Ovarian Cancer

  • Wafic M. ElMasri
  • Giovanna Casagrande
  • Ebony Hoskins
  • Daniel Kimm
  • Elise C. KohnEmail author
Part of the Cancer Treatment and Research book series (CTAR, volume 149)


Epithelial ovarian cancer is the most common cause of death among gynecologic malignancies in the Western world.1The disease presents late in more than two thirds of patients with spread in the peritoneal cavity on surfaces, intraparenchymal metastases, and in suspension in peritoneal and pleural effusions. Dissemination to and compromise of critical end organs is often the cause of patient morbidity and mortality. Methods of dissemination include the common hematogenous and lymphatic spread, but also shedding into the peritoneal cavity. It is this shedding and subsequent adherence to the serosal and organ surfaces that provides the first step in subsequent carcinomatosis and further metastasis. The advance into the peritoneal cavity, early compared with that seen with other adenocarcinomas of the pelvis and abdomen, is attributed to the ability of ovarian cancer (and fallopian tube cancers) to release tumor cells into the local environment and potential spaces of the...


Vascular Endothelial Growth Factor Ovarian Cancer Epidermal Growth Factor Receptor Focal Adhesion Kinase Epithelial Ovarian Cancer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58:71–96.PubMedCrossRefGoogle Scholar
  2. 2.
    Nollet F, Kools P, van Roy F. Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J Mol Biol. 2000;299(3):551–572.PubMedCrossRefGoogle Scholar
  3. 3.
    Yagi T, Takeichi M. Cadherin superfamily genes: functions, genomic organization, and neurologic diversity. Genes Dev. 2000;14(10):1169–1180.PubMedGoogle Scholar
  4. 4.
    Takeichi M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science. 1991;251(5000):1451–1455.PubMedCrossRefGoogle Scholar
  5. 5.
    Goodwin M, Yap AS. Classical cadherin adhesion molecules: coordinating cell adhesion, signaling and the cytoskeleton. J Mol Histol. 2004;35(8–9):839–844.PubMedCrossRefGoogle Scholar
  6. 6.
    McCrea PD, Turck CW, Gumbiner B. A homolog of the armadillo protein in Drosophila (plakoglobin) associated with E-cadherin. Science. 1991;254(5036):1359–13561.PubMedCrossRefGoogle Scholar
  7. 7.
    Aberle H, Butz S, Stappert J, Weissig H, Kemler R, Hoschuetzky H. Assembly of the cadherin–catenin complex in vitro with recombinant proteins. J Cell Sci. 1994;107(Pt 12):3655–3663.PubMedGoogle Scholar
  8. 8.
    Drees F, Pokutta S, Yamada S, Nelson WJ, Weis WI. Alpha-catenin is a molecular switch that binds E-cadherin-beta-catenin and regulates actin-filament assembly. Cell. 2005;123(5):903–915.PubMedCrossRefGoogle Scholar
  9. 9.
    Kobielak A, Fuchs E. Alpha-catenin: at the junction of intercellular adhesion and actin dynamics. Nat Rev Mol Cell Biol. 2004;5(8):614–625.PubMedCrossRefGoogle Scholar
  10. 10.
    Rimm DL, Koslov ER, Kebriaei P, Cianci CD, Morrow JS. Alpha 1(E)-catenin is an actin-binding and -bundling protein mediating the attachment of F-actin to the membrane adhesion complex. Proc Natl Acad Sci USA. 1995;92(19):8813–8817.PubMedCrossRefGoogle Scholar
  11. 11.
    Daniel JM, Reynolds AB. The tyrosine kinase substrate p120cas binds directly to E-cadherin but not to the adenomatous polyposis coli protein or alpha-catenin. Mol Cell Biol. 1995;15(9):4819–4824.PubMedGoogle Scholar
  12. 12.
    Xiao K, Allison DF, Buckley KM, et al. Cellular levels of p120 catenin function as a set point for cadherin expression levels in microvascular endothelial cells. J Cell Biol. 2003;163(3):535–545.PubMedCrossRefGoogle Scholar
  13. 13.
    Huber AH, Stewart DB, Laurents DV, Nelson WJ, Weis WI. The cadherin cytoplasmic domain is unstructured in the absence of beta-catenin. A possible mechanism for regulating cadherin turnover. J Biol Chem. 2001;276(15):12301–12309.PubMedCrossRefGoogle Scholar
  14. 14.
    Chen YT, Stewart DB, Nelson WJ. Coupling assembly of the E-cadherin/beta-catenin complex to efficient endoplasmic reticulum exit and basal-lateral membrane targeting of E-cadherin in polarized MDCK cells. J Cell Biol. 1999;144(4):687–699.PubMedCrossRefGoogle Scholar
  15. 15.
    Daugherty RL, Gottardi CJ. Phospho-regulation of Beta-catenin adhesion and signaling functions. Physiology (Bethesda) 2007;22:303–309.Google Scholar
  16. 16.
    Gottardi CJ, Wong E, Gumbiner BM. E-cadherin suppresses cellular transformation by inhibiting beta-catenin signaling in an adhesion-independent manner. J Cell Biol. 2001;153(5):1049–1060.PubMedCrossRefGoogle Scholar
  17. 17.
    Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science. 2004;303(5663):1483–1487.PubMedCrossRefGoogle Scholar
  18. 18.
    Behrens J, von Kries JP, Kuhl M, et al. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature. 1996;382(6592):638–642.PubMedCrossRefGoogle Scholar
  19. 19.
    Cadigan KM, Nusse R. Wnt signaling: a common theme in animal development. Genes Dev. 1997;11(24):3286–3305.PubMedCrossRefGoogle Scholar
  20. 20.
    Huber O, Bierkamp C, Kemler R. Cadherins and catenins in development. Curr Opin Cell Biol. 1996;8(5):685–691.PubMedCrossRefGoogle Scholar
  21. 21.
    Hajra KM, Fearon ER. Cadherin and catenin alterations in human cancer. Genes Chromosomes Cancer. 2002;34(3):255–268.PubMedCrossRefGoogle Scholar
  22. 22.
    Polakis P. Wnt signaling and cancer. Genes Dev. 2000;14(15):1837–1851.PubMedGoogle Scholar
  23. 23.
    Bullions LC, Notterman DA, Chung LS, Levine AJ. Expression of wild-type alpha-catenin protein in cells with a mutant alpha-catenin gene restores both growth regulation and tumor suppressor activities. Mol Cell Biol. 1997;17(8):4501–4508.PubMedGoogle Scholar
  24. 24.
    Andl CD, Rustgi AK. No one-way street: cross-talk between e-cadherin and receptor tyrosine kinase (RTK) signaling: a mechanism to regulate RTK activity. Cancer Biol Ther. 2005;4(1):28–31.PubMedCrossRefGoogle Scholar
  25. 25.
    Hoschuetzky H, Aberle H, Kemler R. Beta-catenin mediates the interaction of the cadherin–catenin complex with epidermal growth factor receptor. J Cell Biol. 1994;127(5):1375–1380.PubMedCrossRefGoogle Scholar
  26. 26.
    Qian X, Karpova T, Sheppard AM, McNally J, Lowy DR. E-cadherin-mediated adhesion inhibits ligand-dependent activation of diverse receptor tyrosine kinases. EMBO J. 2004;23(8):1739–1748.PubMedCrossRefGoogle Scholar
  27. 27.
    Fujita Y, Krause G, Scheffner M, et al. Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nat Cell Biol. 2002;4(3):222–231.PubMedCrossRefGoogle Scholar
  28. 28.
    Kaibuchi K, Kuroda S, Fukata M, Nakagawa M. Regulation of cadherin-mediated cell–cell adhesion by the Rho family GTPases. Curr Opin Cell Biol. 1999;11(5):591–596.PubMedCrossRefGoogle Scholar
  29. 29.
    Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7(2):131–142.PubMedCrossRefGoogle Scholar
  30. 30.
    Cavallaro U, Christofori G. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer. 2004;4(2):118–132.PubMedGoogle Scholar
  31. 31.
    Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol. 2005;17(5):548–558.PubMedCrossRefGoogle Scholar
  32. 32.
    Vleminckx K, Vakaet L Jr, Mareel M, Fiers W, van Roy F. Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell. 1991;66(1):107–119.PubMedCrossRefGoogle Scholar
  33. 33.
    Hirohashi S. Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. Am J Pathol. 1998;153(2):333–339.PubMedGoogle Scholar
  34. 34.
    Conacci-Sorrell M, Zhurinsky J, Ben-Ze'ev A. The cadherin–catenin adhesion system in signaling and cancer. J Clin Invest. 2002;109(8):987–991.PubMedGoogle Scholar
  35. 35.
    Cano A, Perez-Moreno MA, Rodrigo I, et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000;2(2):76–83.PubMedCrossRefGoogle Scholar
  36. 36.
    Perez-Moreno MA, Locascio A, Rodrigo I, et al. A new role for E12/E47 in the repression of E-cadherin expression and epithelial-mesenchymal transitions. J Biol Chem. 2001;276(29):27424–27431.PubMedCrossRefGoogle Scholar
  37. 37.
    Davies BR, Worsley SD, Ponder BA. Expression of E-cadherin, alpha-catenin and beta-catenin in normal ovarian surface epithelium and epithelial ovarian cancers. Histopathology. 1998;32(1):69–80.PubMedCrossRefGoogle Scholar
  38. 38.
    Sundfeldt K, Piontkewitz Y, Ivarsson K, et al. E-cadherin expression in human epithelial ovarian cancer and normal ovary. Int J Cancer. 1997;74(3):275–280.PubMedCrossRefGoogle Scholar
  39. 39.
    Auersperg N, Edelson MI, Mok SC, Johnson SW, Hamilton TC. The biology of ovarian cancer. Semin Oncol. 1998;25(3):281–304.PubMedGoogle Scholar
  40. 40.
    Auersperg N, Maines-Bandiera SL, Dyck HG, Kruk PA. Characterization of cultured human ovarian surface epithelial cells: phenotypic plasticity and premalignant changes. Lab Invest. 1994;71(4):510–518.PubMedGoogle Scholar
  41. 41.
    Dyck HG, Hamilton TC, Godwin AK, Lynch HT, Maines-Bandiera S, Auersperg N. Autonomy of the epithelial phenotype in human ovarian surface epithelium: changes with neoplastic progression and with a family history of ovarian cancer. Int J Cancer. 1996;69(6):429–436.PubMedCrossRefGoogle Scholar
  42. 42.
    Veatch AL, Carson LF, Ramakrishnan S. Differential expression of the cell–cell adhesion molecule E-cadherin in ascites and solid human ovarian tumor cells. Int J Cancer. 1994;58(3):393–399.PubMedCrossRefGoogle Scholar
  43. 43.
    Ross JS, del Rosario AD, Figge HL, Sheehan C, Fisher HA, Bui HX. E-cadherin expression in papillary transitional cell carcinoma of the urinary bladder. Hum Pathol. 1995;26(9):940–944.PubMedCrossRefGoogle Scholar
  44. 44.
    Sundfeldt K. Cell–cell adhesion in the normal ovary and ovarian tumors of epithelial origin; an exception to the rule. Mol Cell Endocrinol. 2003;202(1–2):89–96.PubMedGoogle Scholar
  45. 45.
    Umbas R, Schalken JA, Aalders TW, et al. Expression of the cellular adhesion molecule E-cadherin is reduced or absent in high-grade prostate cancer. Cancer Res. 1992;52(18):5104–5109.PubMedGoogle Scholar
  46. 46.
    Vanderburg CR, Hay ED. E-cadherin transforms embryonic corneal fibroblasts to stratified epithelium with desmosomes. Acta Anat (Basel). 1996;157(2):87–104.CrossRefGoogle Scholar
  47. 47.
    Patel IS, Madan P, Getsios S, Bertrand MA, MacCalman CD. Cadherin switching in ovarian cancer progression. Int J Cancer. 2003;106(2):172–177.PubMedCrossRefGoogle Scholar
  48. 48.
    Paredes J, Correia AL, Ribeiro AS, Albergaria A, Milanezi F, Schmitt FC. P-cadherin expresion in breast cancer: a review. Breast Cancer Res. 2007;9:214–225.PubMedCrossRefGoogle Scholar
  49. 49.
    Bevilacqua MP, Nelson RM. Selectins. J Clin Invest. 1993;91(2):379–387.PubMedCrossRefGoogle Scholar
  50. 50.
    Tedder TF, Steeber DA, Chen A, Engel P. The selectins: vascular adhesion molecules. FASEB J. 1995;9(10):866–873.PubMedGoogle Scholar
  51. 51.
    Barthel SR, Gavino JD, Descheny L, Dimitroff CJ. Targeting selectins and selectin ligands in inflammation and cancer. Expert Opin Ther Targets. 2007;11(11):1473–1491.PubMedCrossRefGoogle Scholar
  52. 52.
    Alessandro R, Seidita G, Flugy AM, et al. Role of S128R polymorphism of E-selectin in colon metastasis formation. Int J Cancer. 2007;121(3):528–535.PubMedCrossRefGoogle Scholar
  53. 53.
    Ferroni P, Roselli M, Martini F, et al. Prognostic value of soluble P-selectin levels in colorectal cancer. Int J Cancer. 2004;111(3):404–408.PubMedCrossRefGoogle Scholar
  54. 54.
    Flugy AM, D'Amato M, Russo D, et al. E-selectin modulates the malignant properties of T84 colon carcinoma cells. Biochem Biophys Res Commun. 2002;293(3):1099–1106.PubMedCrossRefGoogle Scholar
  55. 55.
    Roselli M, Mineo TC, Martini F, et al. Soluble selectin levels in patients with lung cancer. Int J Biol Markers. 2002;17(1):56–62.PubMedGoogle Scholar
  56. 56.
    Kannagi R. Regulatory roles of carbohydrate ligands for selectins in the homing of lymphocytes. Curr Opin Struct Biol. 2002;12(5):599–608.PubMedCrossRefGoogle Scholar
  57. 57.
    Munro JM, Lo SK, Corless C, et al. Expression of sialyl-Lewis X, an E-selectin ligand, in inflammation, immune processes, and lymphoid tissues. Am J Pathol. 1992;141(6):1397–1408.PubMedGoogle Scholar
  58. 58.
    Brandley BK, Swiedler SJ, Robbins PW. Carbohydrate ligands of the LEC cell adhesion molecules. Cell. 1990;63(5):861–863.PubMedCrossRefGoogle Scholar
  59. 59.
    Phillips ML, Nudelman E, Gaeta FC, et al. ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand, sialyl-Lex. Science. 1990;250(4984):1130–1132.PubMedCrossRefGoogle Scholar
  60. 60.
    Springer TA. Adhesion receptors of the immune system. Nature. 1990;346(6283):425–434.PubMedCrossRefGoogle Scholar
  61. 61.
    Mayadas TN. Selectins. In: Brodt P, ed. Cell Adhesion and Invasion in Cancer Metastasis. Austin, Texas: R.G Landes Company; 1996:77–92.Google Scholar
  62. 62.
    Bevilacqua MP, Pober JS, Mendrick DL, Cotran RS, Gimbrone MA Jr. Identification of an inducible endothelial-leukocyte adhesion molecule. Proc Natl Acad Sci USA. 1987;84(24):9238–9242.PubMedCrossRefGoogle Scholar
  63. 63.
    Kristiansen G, Denkert C, Schluns K, Dahl E, Pilarsky C, Hauptmann S. CD24 is expressed in ovarian cancer and is a new independent prognostic marker of patient survival. Am J Pathol. 2002;161(4):1215–1221.PubMedGoogle Scholar
  64. 64.
    Witz IP. The involvement of selectins and their ligands in tumor-progression. Immunol Lett. 2006;104(1–2):89–93.PubMedCrossRefGoogle Scholar
  65. 65.
    Banks RE, Gearing AJ, Hemingway IK, Norfolk DR, Perren TJ, Selby PJ. Circulating intercellular adhesion molecule-1 (ICAM-1), E-selectin and vascular cell adhesion molecule-1 (VCAM-1) in human malignancies. Br J Cancer. 1993;68(1):122–124.PubMedGoogle Scholar
  66. 66.
    Ferdeghini M, Gadducci A, Prontera C, et al. Preoperative serum intercellular adhesion molecule-1 (ICAM-1) and E-selectin (endothelial cell leukocyte adhesion molecule, ELAM-1) in patients with epithelial ovarian cancer. Anticancer Res. 1995;15(5B):2255–2260.PubMedGoogle Scholar
  67. 67.
    Kanoh A, Seko A, Ideo H, et al. Ectopic expression of N-acetylglucosamine 6-O-sulfotransferase 2 in chemotherapy-resistant ovarian adenocarcinomas. Glycoconj J. 2006;23(5–6):453–460.PubMedCrossRefGoogle Scholar
  68. 68.
    Uchimura K, El-Fasakhany FM, Hori M, et al. Specificities of N-acetylglucosamine-6-O-sulfotransferases in relation to L-selectin ligand synthesis and tumor-associated enzyme expression. J Biol Chem. 2002;277(6):3979–3984.PubMedCrossRefGoogle Scholar
  69. 69.
    Tamada Y, Iida S, Aoki D, Nozawa S, Irimura T. Carbohydrate epitopes and mucins expressed by 17 human ovarian carcinoma cell lines. Oncol Res. 1999;11(5):233–241.PubMedGoogle Scholar
  70. 70.
    Federici MF, Kudryashov V, Saigo PE, Finstad CL, Lloyd KO. Selection of carbohydrate antigens in human epithelial ovarian cancers as targets for immunotherapy: serous and mucinous tumors exhibit distinctive patterns of expression. Int J Cancer. 1999;81(2):193–198.PubMedCrossRefGoogle Scholar
  71. 71.
    Rosen DG, Wang L, Atkinson JN, et al. Potential markers that complement expression of CA125 in epithelial ovarian cancer. Gynecol Oncol. 2005;99(2):267–277.PubMedCrossRefGoogle Scholar
  72. 72.
    Lim SC, Oh SH. The role of CD24 in various human epithelial neoplasias. Pathol Res Pract. 2005;201(7):479–486.PubMedCrossRefGoogle Scholar
  73. 73.
    Nakahara S, Raz A. Biological modulation by lectins and their ligands in tumor progression and metastasis. Curr Med Chem Anticancer Agents. 2008;8(1):22–36.CrossRefGoogle Scholar
  74. 74.
    Aychek TMK, Sagi-Assif O, Levy-Nissenbaum O, Israeli-Amit M, Pasmanik-Chor M, Jacob-Hirsch J, Amariglio N, Rechavi G, Witz IP. E-selectin regulates gene expression in metastatic colorectal carcinoma cells and enhances HMGB1 release. Int J Cancer. 2008 Oct 15;123(8):1741–50.Google Scholar
  75. 75.
    Mannori G, Santoro D, Carter L, Corless C, Nelson RM, Bevilacqua MP. Inhibition of colon carcinoma cell lung colony formation by a soluble form of E-selectin. Am J Pathol. 1997;151(1):233–243.PubMedGoogle Scholar
  76. 76.
    Khatib AM, Fallavollita L, Wancewicz EV, Monia BP, Brodt P. Inhibition of hepatic endothelial E-selectin expression by C-raf antisense oligonucleotides blocks colorectal carcinoma liver metastasis. Cancer Res. 2002;62(19):5393–5398.PubMedGoogle Scholar
  77. 77.
    Borsig L, Wong R, Feramisco J, Nadeau DR, Varki NM, Varki A. Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc Natl Acad Sci U S A. 2001;98(6):3352–3357.PubMedCrossRefGoogle Scholar
  78. 78.
    Borsig L, Wong R, Hynes RO, Varki NM, Varki A. Synergistic effects of L- and P-selectin in facilitating tumor metastasis can involve non-mucin ligands and implicate leukocytes as enhancers of metastasis. Proc Natl Acad Sci U S A. 2002;99(4):2193–2198.PubMedCrossRefGoogle Scholar
  79. 79.
    Karpatkin S, Pearlstein E, Ambrogio C, Coller BS. Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. J Clin Invest. 1988;81(4):1012–1019.PubMedCrossRefGoogle Scholar
  80. 80.
    Kim YJ, Borsig L, Varki NM, Varki A. P-selectin deficiency attenuates tumor growth and metastasis. Proc Natl Acad Sci U S A. 1998;95(16):9325–9330.PubMedCrossRefGoogle Scholar
  81. 81.
    Nieswandt B, Hafner M, Echtenacher B, Mannel DN. Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res. 1999;59(6):1295–1300.PubMedGoogle Scholar
  82. 82.
    Burdick MM, McCarty OJ, Jadhav S, Konstantopoulos K. Cell–cell interactions in inflammation and cancer metastasis. IEEE Eng Med Biol Mag. 2001;20(3):86–91.PubMedCrossRefGoogle Scholar
  83. 83.
    Gurney D, Poole C, Kehoe S, Lip GY, Blann AD. Soluble P-selectin is influenced by cancer chemotherapy. Platelets. 2001;12(1):37–38.PubMedCrossRefGoogle Scholar
  84. 84.
    Nguyen M, Eilber FR, Defrees S. Novel synthetic analogs of sialyl Lewis X can inhibit angiogenesis in vitro and in vivo. Biochem Biophys Res Commun. 1996;228(3):716–723.PubMedCrossRefGoogle Scholar
  85. 85.
    Witz IP. The selectin-selectin ligand axis in tumor progression. Cancer Metastasis Rev. 2008;27(1):19–30.PubMedCrossRefGoogle Scholar
  86. 86.
    Nguyen M, Folkman J, Bischoff J. 1-Deoxymannojirimycin inhibits capillary tube formation in vitro. Analysis of N-linked oligosaccharides in bovine capillary endothelial cells. J Biol Chem. 1992;267(36):26157–26165.PubMedGoogle Scholar
  87. 87.
    Kannagi R, Izawa M, Koike T, Miyazaki K, Kimura N. Carbohydrate-mediated cell adhesion in cancer metastasis and angiogenesis. Cancer Sci. 2004;95(5):377–384.PubMedCrossRefGoogle Scholar
  88. 88.
    Kneuer C, Ehrhardt C, Radomski MW, Bakowsky U. Selectins – potential pharmacological targets? Drug Discov Today. 2006;11(21–22):1034–1040.PubMedCrossRefGoogle Scholar
  89. 89.
    Ley K. The role of selectins in inflammation and disease. Trends Mol Med. 2003;9(6):263–268.PubMedCrossRefGoogle Scholar
  90. 90.
    Bhushan M, Bleiker TO, Ballsdon AE, et al. Anti-E-selectin is ineffective in the treatment of psoriasis: a randomized trial. Br J Dermatol. 2002;146(5):824–831.PubMedCrossRefGoogle Scholar
  91. 91.
    Tsuchihashi S, Fondevila C, Shaw GD, et al. Molecular characterization of rat leukocyte P-selectin glycoprotein ligand-1 and effect of its blockade: protection from ischemia-reperfusion injury in liver transplantation. J Immunol. 2006;176(1):616–624.PubMedGoogle Scholar
  92. 92.
    Kaila N, Thomas BET. Design and synthesis of sialyl Lewis(x) mimics as E- and P-selectin inhibitors. Med Res Rev. 2002;22(6):566–601.PubMedCrossRefGoogle Scholar
  93. 93.
    Romano SJ. Selectin antagonists: therapeutic potential in asthma and COPD. Treat Respir Med. 2005;4(2):85–94.PubMedCrossRefGoogle Scholar
  94. 94.
    Bedard PW, Clerin V, Sushkova N, et al. Characterization of the novel P-selectin inhibitor PSI-697 [2-(4-chlorobenzyl)-3-hydroxy-7,8,9,10-tetrahydrobenzo[h] quinoline-4-carboxylic acid] in vitro and in rodent models of vascular inflammation and thrombosis. J Pharmacol Exp Ther. 2008;324(2):497–506.PubMedCrossRefGoogle Scholar
  95. 95.
    Kaila N, Janz K, Huang A, et al. 2-(4-Chlorobenzyl)-3-hydroxy-7,8,9,10-tetrahydrobenzo[H]quinoline-4-carboxylic acid (PSI-697): identification of a clinical candidate from the quinoline salicylic acid series of P-selectin antagonists. J Med Chem. 2007;50(1):40–64.PubMedCrossRefGoogle Scholar
  96. 96.
    Davidson B, Espina V, Steinberg SM, et al. Proteomic analysis of malignant ovarian cancer effusions as a tool for biologic and prognostic profiling. Clin Cancer Res. 2006;12(3 Pt 1):791–799.PubMedCrossRefGoogle Scholar
  97. 97.
    Hodgson L, Kohn EC, Dong C. Extracellular lipid-mediated signaling in tumor-cell activation and pseudopod protrusion. Int J Cancer. 2000;88(4):593–600.PubMedCrossRefGoogle Scholar
  98. 98.
    Kassis J, Klominek J, Kohn EC. Tumor microenvironment: what can effusions teach us? Diagn Cytopathol. 2005;33(5):316–319.PubMedCrossRefGoogle Scholar
  99. 99.
    Galbraith CG, Yamada KM, Galbraith JA. Polymerizing actin fibers position integrins primed to probe for adhesion sites. Science. 2007;315(5814):992–995.PubMedCrossRefGoogle Scholar
  100. 100.
    Basson MD, Yu CF, Herden-Kirchoff O, et al. Effects of increased ambient pressure on colon cancer cell adhesion. J Cell Biochem. 2000;78(1):47–61.PubMedCrossRefGoogle Scholar
  101. 101.
    Thamilselvan V, Basson MD. Pressure activates colon cancer cell adhesion by inside-out focal adhesion complex and actin cytoskeletal signaling. Gastroenterology. 2004;126(1):8–18.PubMedCrossRefGoogle Scholar
  102. 102.
    Basson MD. An intracellular signal pathway that regulates cancer cell adhesion in response to extracellular forces. Cancer Res. 2008;68(1):2–4.PubMedCrossRefGoogle Scholar
  103. 103.
    Hood JD, Cheresh DA. Role of integrins in cell invasion and migration. Nat Rev Cancer. 2002;2(2):91–100.PubMedCrossRefGoogle Scholar
  104. 104.
    Ahmed N, Riley C, Oliva K, Rice G, Quinn M. Ascites induces modulation of alpha6beta1 integrin and urokinase plasminogen activator receptor expression and associated functions in ovarian carcinoma. Br J Cancer. 2005;92(8):1475–1485.PubMedCrossRefGoogle Scholar
  105. 105.
    Brunton VG, MacPherson IR, Frame MC. Cell adhesion receptors, tyrosine kinases and actin modulators: a complex three-way circuitry. Biochim Biophys Acta. 2004;1692(2–3):121–144.PubMedGoogle Scholar
  106. 106.
    Alessandro R, Masiero L, Lapidos K, Spoonster J, Kohn EC. Endothelial cell spreading on type IV collagen and spreading-induced FAK phosphorylation is regulated by Ca2+ influx. Biochem Biophys Res Commun. 1998;248(3):635–640.PubMedCrossRefGoogle Scholar
  107. 107.
    Salasznyk RM, Klees RF, Williams WA, Boskey A, Plopper GE. Focal adhesion kinase signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells. Exp Cell Res. 2007;313(1):22–37.PubMedCrossRefGoogle Scholar
  108. 108.
    Mon NN, Ito S, Senga T, Hamaguchi M. FAK signaling in neoplastic disorders: a linkage between inflammation and cancer. Ann N Y Acad Sci. 2006;1086:199–212.PubMedCrossRefGoogle Scholar
  109. 109.
    Yee KL, Weaver VM, Hammer DA. Integrin-mediated signalling through the MAP-kinase pathway. IET Syst Biol. 2008;2(1):8–15.PubMedCrossRefGoogle Scholar
  110. 110.
    Halder J, Lin YG, Merritt WM, et al. Therapeutic efficacy of a novel focal adhesion kinase inhibitor TAE226 in ovarian cancer. Cancer Res. 2007;67:10976–10983.PubMedCrossRefGoogle Scholar
  111. 111.
    Judson PL, He X, Cance WG, Van Le L. Overexpression of focal adhesion kinase, a protein tyrosine kinase, in ovarian carcinoma. Cancer. 1999;86(8):1551–1556.PubMedCrossRefGoogle Scholar
  112. 112.
    Sood AK, Coffin JE, Schneider GB, et al. Biological significance of focal adhesion kinase in ovarian cancer: role in migration and invasion. Am J Pathol. 2004;165(4):1087–1095.PubMedGoogle Scholar
  113. 113.
    Schaller MD, Hildebrand JD, Shannon JD, Fox JW, Vines RR, Parsons JT. Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Mol Cell Biol. 1994;14(3):1680–1688.PubMedGoogle Scholar
  114. 114.
    Ishizawar R, Parsons SJ. c-Src and cooperating partners in human cancer. Cancer Cell. 2004;6(3):209–214.PubMedCrossRefGoogle Scholar
  115. 115.
    Wiener JR, Windham TC, Estrella VC, et al. Activated SRC protein tyrosine kinase is overexpressed in late-stage human ovarian cancers. Gynecol Oncol. 2003;88(1):73–79.PubMedCrossRefGoogle Scholar
  116. 116.
    Steinberg M. Dasatinib: a tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia and philadelphia chromosome-positive acute lymphoblastic leukemia. Clin Ther. 2007;29(11):2289–2308.PubMedCrossRefGoogle Scholar
  117. 117.
    Chen HC, Appeddu PA, Isoda H, Guan JL. Phosphorylation of tyrosine 397 in focal adhesion kinase is required for binding phosphatidylinositol 3-kinase. J Biol Chem. 1996;271(42):26329–26334.PubMedCrossRefGoogle Scholar
  118. 118.
    Shayesteh L, Lu Y, Kuo WL, et al. PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet. 1999;21(1):99–102.PubMedCrossRefGoogle Scholar
  119. 119.
    Yuan ZQ, Sun M, Feldman RI, et al. Frequent activation of AKT2 and induction of apoptosis by inhibition of phosphoinositide-3-OH kinase/Akt pathway in human ovarian cancer. Oncogene. 2000;19(19):2324–2330.PubMedCrossRefGoogle Scholar
  120. 120.
    Mills GB, Kohn E, Lu Y, et al. Linking molecular diagnostics to molecular therapeutics: targeting the PI3K pathway in breast cancer. Semin Oncol. 2003;30(5 Suppl 16):93–104.PubMedCrossRefGoogle Scholar
  121. 121.
    Hanks SK, Ryzhova L, Shin NY, Brabek J. Focal adhesion kinase signaling activities and their implications in the control of cell survival and motility. Front Biosci. 2003;8:d982–d996.PubMedCrossRefGoogle Scholar
  122. 122.
    Davidson B, Goldberg I, Reich R, et al. AlphaV- and beta1-integrin subunits are commonly expressed in malignant effusions from ovarian carcinoma patients. Gynecol Oncol. 2003;90(2):248–257.PubMedCrossRefGoogle Scholar
  123. 123.
    Casey RC, Burleson KM, Skubitz KM, et al. Beta 1-integrins regulate the formation and adhesion of ovarian carcinoma multicellular spheroids. Am J Pathol. 2001;159(6):2071–2080.PubMedGoogle Scholar
  124. 124.
    Strobel T, Cannistra SA. Beta1-integrins partly mediate binding of ovarian cancer cells to peritoneal mesothelium in vitro. Gynecol Oncol. 1999;73(3):362–367.PubMedCrossRefGoogle Scholar
  125. 125.
    Khatib AM, Nip J, Fallavollita L, Lehmann M, Jensen G, Brodt P. Regulation of urokinase plasminogen activator/plasmin-mediated invasion of melanoma cells by the integrin vitronectin receptor alphaVbeta3. Int J Cancer. 2001;91(3):300–308.PubMedCrossRefGoogle Scholar
  126. 126.
    Shibata K, Kikkawa F, Nawa A, Suganuma N, Hamaguchi M. Fibronectin secretion from human peritoneal tissue induces Mr 92,000 type IV collagenase expression and invasion in ovarian cancer cell lines. Cancer Res. 1997;57(23):5416–5420.PubMedGoogle Scholar
  127. 127.
    Brooks PC, Stromblad S, Sanders LC, et al. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell. 1996;85(5):683–693.PubMedCrossRefGoogle Scholar
  128. 128.
    Said N, Najwer I, Motamed K. Secreted protein acidic and rich in cysteine (SPARC) inhibits integrin-mediated adhesion and growth factor-dependent survival signaling in ovarian cancer. Am J Pathol. 2007;170(3):1054–1063.PubMedCrossRefGoogle Scholar
  129. 129.
    Yamamoto S, Tsuda H, Honda K, et al. Actinin-4 expression in ovarian cancer: a novel prognostic indicator independent of clinical stage and histological type. Mod Pathol. 2007;20(12):1278–1285.PubMedCrossRefGoogle Scholar
  130. 130.
    Brown MR, Blanchette JO, Kohn EC. Angiogenesis in ovarian cancer. Baillieres Best Pract Res Clin Obstet Gynaecol. 2000;14(6):901–918.PubMedCrossRefGoogle Scholar
  131. 131.
    Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285(21):1182–1186.PubMedCrossRefGoogle Scholar
  132. 132.
    Liotta LA, Kleinerman J, Saidel GM. Quantitative relationships of intravascular tumor cells, tumor vessels, and pulmonary metastases following tumor implantation. Cancer Res. 1974;34(5):997–1004.PubMedGoogle Scholar
  133. 133.
    Sieczkiewicz GJ, Hussain M, Kohn EC. Angiogenesis and metastasis. Cancer Treat Res. 2002;107:353–381.PubMedGoogle Scholar
  134. 134.
    Bamberger ES, Perrett CW. Angiogenesis in epithelian ovarian cancer. Mol Pathol. 2002;55(6):348–359.PubMedCrossRefGoogle Scholar
  135. 135.
    Barton DP, Cai A, Wendt K, Young M, Gamero A, De Cesare S. Angiogenic protein expression in advanced epithelial ovarian cancer. Clin Cancer Res. 1997;3(9):1579–1586.PubMedGoogle Scholar
  136. 136.
    Kohn EC. Angiogenesis in ovarian carcinoma: a formidable biomarker. Cancer. 1997;80(12):2219–2221.PubMedCrossRefGoogle Scholar
  137. 137.
    Rasila KK, Burger RA, Smith H, Lee FC, Verschraegen C. Angiogenesis in gynecological oncology-mechanism of tumor progression and therapeutic targets. Int J Gynecol Cancer. 2005;15(5):710–726.PubMedCrossRefGoogle Scholar
  138. 138.
    Hollingsworth HC, Kohn EC, Steinberg SM, Rothenberg ML, Merino MJ. Tumor angiogenesis in advanced stage ovarian carcinoma. Am J Pathol. 1995;147(1):33–41.PubMedGoogle Scholar
  139. 139.
    Burger RA, Sill MW, Monk BJ, Greer BE, Sorosky JI. Phase II trial of bevacizumab in persistent or recurrent epithelial ovarian cancer or primary peritoneal cancer: a Gynecologic Oncology Group Study. J Clin Oncol. 2007;25(33):5165–5171.PubMedCrossRefGoogle Scholar
  140. 140.
    Azad NS, Posadas EM, Kwitkowski VE, et al. Combination targeted therapy with sorafenib and bevacizumab results in enhanced toxicity and anti-tumor activity. J Clin Oncol. 2008 Aug 1;26(22):3709–14.Google Scholar
  141. 141.
    Castilla MA, Neria F, Renedo G, et al. Tumor-induced endothelial cell activation: role of vascular endothelial growth factor. Am J Physiol Cell Physiol. 2004;286(5):C1170–C1176.PubMedCrossRefGoogle Scholar
  142. 142.
    Dvorak HF, Brown LF, Detmar M, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol. 1995;146(5):1029–1039.PubMedGoogle Scholar
  143. 143.
    Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest. 1999;103(2):159–165.PubMedCrossRefGoogle Scholar
  144. 144.
    Wang J, Luo F, Lu JJ, Chen PK, Liu P, Zheng W. VEGF expression and enhanced production by gonadotropins in ovarian epithelial tumors. Int J Cancer. 2002;97(2):163–167.PubMedCrossRefGoogle Scholar
  145. 145.
    Boocock CA, Charnock-Jones DS, Sharkey AM, et al. Expression of vascular endothelial growth factor and its receptors flt and KDR in ovarian carcinoma. J Natl Cancer Inst. 1995;87(7):506–516.PubMedCrossRefGoogle Scholar
  146. 146.
    Millauer B, Longhi MP, Plate KH, et al. Dominant-negative inhibition of Flk-1 suppresses the growth of many tumor types in vivo. Cancer Res. 1996;56(7):1615–1620.PubMedGoogle Scholar
  147. 147.
    Roman CD, Choy H, Nanney L, et al. Vascular endothelial growth factor-mediated angiogenesis inhibition and postoperative wound healing in rats. J Surg Res. 2002;105(1):43–47.PubMedCrossRefGoogle Scholar
  148. 148.
    Presta LG, Chen H, O'Connor SJ, et al. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res. 1997;57(20):4593–4599.PubMedGoogle Scholar
  149. 149.
    Azad NS, Annunziata C, Barrett T, et al. Dual targeting of vascular endothelial growth factor (VEGF) with sorafenib and bevacizumab: clinical and translational results. J Clin Oncol (Meeting Abstracts). 2007;25(18 Suppl):3542.Google Scholar
  150. 150.
    Azad NS, Annunziata CM, Steinberg SM, et al. Lack of reliability of CA125 response criteria with anti-VEGF molecularly targeted therapy. Cancer. 2008;112(8):1726–1732.PubMedCrossRefGoogle Scholar
  151. 151.
    Belotti D, Rieppi M, Nicoletti MI, et al. Paclitaxel (Taxol(R)) inhibits motility of paclitaxel-resistant human ovarian carcinoma cells. Clin Cancer Res. 1996;2(10):1725–1730.PubMedGoogle Scholar
  152. 152.
    Lu C, Kamat AA, Lin YG, et al. Dual targeting of endothelial cells and pericytes in antivascular therapy for ovarian carcinoma. Clin Cancer Res. 2007;13(14):4209–4217.PubMedCrossRefGoogle Scholar
  153. 153.
    Maisonpierre PC, Suri C, Jones PF, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science. 1997;277(5322):55–60.PubMedCrossRefGoogle Scholar
  154. 154.
    Tsigkos S, Koutsilieris M, Papapetropoulos A. Angiopoietins in angiogenesis and beyond. Expert Opin Investig Drugs. 2003;12(6):933–941.PubMedCrossRefGoogle Scholar
  155. 155.
    Zhang L, Yang N, Park JW, et al. Tumor-derived vascular endothelial growth factor up-regulates angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer. Cancer Res. 2003;63(12):3403–3412.PubMedGoogle Scholar
  156. 156.
    Hata K, Udagawa J, Fujiwaki R, Nakayama K, Otani H, Miyazaki K. Expression of angiopoietin-1, angiopoietin-2, and Tie2 genes in normal ovary with corpus luteum and in ovarian cancer. Oncology. 2002;62(4):340–348.PubMedCrossRefGoogle Scholar
  157. 157.
    Ornitz DM, Itoh N. Fibrolast growth factors. Genome Biol. 2001;2(3):REVIEWS3005.Google Scholar
  158. 158.
    Folkman J, Klagsbrun M. Angiogenic factors. Science. 1987;235(4787):442–447.PubMedCrossRefGoogle Scholar
  159. 159.
    Crickard K, Gross JL, Crickard U, et al. Basic fibroblast growth factor and receptor expression in human ovarian cancer. Gynecol Oncol. 1994;55(2):277–284.PubMedCrossRefGoogle Scholar
  160. 160.
    Nguyen M, Watanabe H, Budson AE, Richie JP, Hayes DF, Folkman J. Elevated levels of an angiogenic peptide, basic fibroblast growth factor, in the urine of patients with a wide spectrum of cancers. J Natl Cancer Inst. 1994;86(5):356–361.PubMedCrossRefGoogle Scholar
  161. 161.
    Birrer MJ, Johnson ME, Hao K, et al. Whole genome oligonucleotide-based array comparative genomic hybridization analysis identified fibroblast growth factor 1 as a prognostic marker for advanced-stage serous ovarian adenocarcinomas. J Clin Oncol. 2007;25(16):2281–2287.PubMedCrossRefGoogle Scholar
  162. 162.
    Batley BL, Doherty AM, Hamby JM, et al. Inhibition of FGF-1 receptor tyrosine kinase activity by PD 161570, a new protein-tyrosine kinase inhibitor. Life Sci. 1998;62(2):143–150.PubMedCrossRefGoogle Scholar
  163. 163.
    Kammasud N, Boonyarat C, Tsunoda S, et al. Novel inhibitor for fibroblast growth factor receptor tyrosine kinase. Bioorg Med Chem Lett. 2007;17(17):4812–4818.PubMedCrossRefGoogle Scholar
  164. 164.
    Landgren E, Klint P, Yokote K, Claesson-Welsh L. Fibroblast growth factor receptor-1 mediates chemotaxis independently of direct SH2-domain protein binding. Oncogene. 1998;17(3):283–291.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Wafic M. ElMasri
    • 1
  • Giovanna Casagrande
    • 1
  • Ebony Hoskins
    • 1
  • Daniel Kimm
    • 1
  • Elise C. Kohn
    • 1
    Email author
  1. 1.Medical Oncology Branch, Center for Cancer ResearchNational Cancer InstituteBethesdaUSA

Personalised recommendations