Ovarian Cancer pp 229-240 | Cite as

Ras-Superfamily GTP-ases in Ovarian Cancer

  • Kwai Wa Cheng
  • Roshan Agarwal
  • Gordon B. MillsEmail author
Part of the Cancer Treatment and Research book series (CTAR, volume 149)


Small guanosine triphosphatases (GTPase), together with their associated regulators and effectors, play an important role in signal transduction pathways and as regulators of diverse cellular processes, including differentiation, cell division, cell proliferation, vesicle transport, nuclear assembly, and cytoskeleton formation. The Ras sarcoma (Ras) oncoproteins, including HRas, KRas, and NRas, are the founding members of the Ras-related oncoprotein superfamily. Comparative genomic analyses based on sequence and functional domain homology have revealed that this superfamily has more than 170 members,1 which can be subdivided into five major branches: the Ras, Rho, Rab, Ran, and Arf subfamilies.2, 3, 4, 5, 6 Variations in structure7and posttranslational modifications control specific cellular localization of Ras-superfamily proteins to specific subcellular compartments and recruitment of downstream effectors that allow these small GTPases to function as sophisticated...


Ovarian Cancer Guanine Nucleotide Dissociation Inhibitor RAB27a Gene Murine Sarcoma Viral Oncogene Homolog Ovarian Cancer Cell Invasion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work was supported by grants from the NCI (PO1CA099031), and CCSG (P30CA16672) to GBM, the ovarian cancer research fund (PPD/MDACC/01.08.01) to GBM and KWC. Department of Defense Breast Cancer Ideal Award W81XWH-06-1-0488 to KWC, and a Cancer Research UK Clinician Scientist award (C2757/A5902) to RA.


  1. 1.
    Colicelli J. Human RAS superfamily proteins and related GTPases. Science STKE. 2004:RE13.Google Scholar
  2. 2.
    Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature. 2002;420:629–635.CrossRefPubMedGoogle Scholar
  3. 3.
    Pfeffer S, Aivazian D. Targeting Rab GTPases to distinct membrane compartments. Nat Rev Mol Cell Biol. 2004;5:886–896.CrossRefPubMedGoogle Scholar
  4. 4.
    Rocks O, Peyker A, Bastiaens PI. Spatio-temporal segregation of Ras signals: one ship, three anchors, many harbors. Curr Opin Cell Biol. 2006;18:351–357.CrossRefPubMedGoogle Scholar
  5. 5.
    Quimby BB, Dasso M. The small GTPase Ran: interpreting the signs. Curr Opin Cell Biol. 2003;15:338–344.CrossRefPubMedGoogle Scholar
  6. 6.
    D'Souza-Schorey C, Chavrier P. ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol. 2006;7:347–358.CrossRefPubMedGoogle Scholar
  7. 7.
    Biou V, Cherfils J. Structural principles for the multispecificity of small GTP-binding proteins. Biochemistry. 2004;43:6833–6840.CrossRefPubMedGoogle Scholar
  8. 8.
    Repasky GA, Chenette EJ, Der CJ. Renewing the conspiracy theory debate: does Raf function alone to mediate Ras oncogenesis? Trends Cell Biol. 2004;14:639–647.CrossRefPubMedGoogle Scholar
  9. 9.
    Bishop AL, Hall A. Rho GTPases and their effector proteins. Biochem J. 2000;348:241–255.CrossRefPubMedGoogle Scholar
  10. 10.
    Vetter IR, Wittinghofer A. The guanine nucleotide-binding switch in three dimensions. Science. 2001;294:1299–1304.CrossRefPubMedGoogle Scholar
  11. 11.
    Herrmann C. Ras-effector interactions: after one decade. Curr Opin Struct Biol. 2003;13:122–129.CrossRefPubMedGoogle Scholar
  12. 12.
    Bourne HR, Sanders DA, McCormick F. The GTPase superfamily: conserved structure and molecular mechanism. Nature. 1991;349:117–127.CrossRefPubMedGoogle Scholar
  13. 13.
    Rossman KL, Der CJ, Sondek J. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol. 2005;6:167–180.CrossRefPubMedGoogle Scholar
  14. 14.
    Schmidt A, Hall A. Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev. 2002;16:1587–1609.CrossRefPubMedGoogle Scholar
  15. 15.
    Bernards A, Settleman J. GAP control: regulating the regulators of small GTPases. Trends Cell Biol. 2004;14:377–385.CrossRefPubMedGoogle Scholar
  16. 16.
    Konstantinopoulos PA, Karamouzis MV, Papavassiliou AG. Post-translational modifications and regulation of the RAS superfamily of GTPases as anticancer targets. Nat Rev Drug Discov. 2007;6(7):541–555.CrossRefPubMedGoogle Scholar
  17. 17.
    Cox AD, Der CJ. Ras family signaling: therapeutic targeting. Cancer Biol Ther. 2002;1:599–606.PubMedGoogle Scholar
  18. 18.
    DerMardirossian C, Bokoch GM. GDIs: central regulatory molecules in Rho GTPase activation. Trends Cell Biol. 2005;15:356–363.CrossRefPubMedGoogle Scholar
  19. 19.
    Seabra MC, Wasmeier C. Controlling the location and activation of Rab GTPases. Curr Opin Cell Biol. 2004;16:451–457.CrossRefPubMedGoogle Scholar
  20. 20.
    Downward J. Targeting RAS signalling pathways in cancer therapy. Nat Rev. 2003;3(1):11–22.CrossRefGoogle Scholar
  21. 21.
    Bos JL. Ras oncogenes in human cancer: a review. Cancer Res. 1989;49(17):4682–4689.PubMedGoogle Scholar
  22. 22.
    Shayesteh L, Lu Y, Kuo WL, et al. PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet. 1999;21(1):99–102.CrossRefPubMedGoogle Scholar
  23. 23.
    Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–954.CrossRefPubMedGoogle Scholar
  24. 24.
    Schubbert S, Shannon K, Bollag G. Hyperactive Ras in developmental disorders and cancer. Nat Rev. 2007;7(4):295–308.Google Scholar
  25. 25.
    Orsulic S, Li Y, Soslow RA, Vitale-Cross LA, Gutkind JS, Varmus HE. Induction of ovarian cancer by defined multiple genetic changes in a mouse model system. Cancer Cell. 2002;1(1):53–62.CrossRefPubMedGoogle Scholar
  26. 26.
    Mayr D, Hirschmann A, Lohrs U, Diebold J. KRAS and BRAF mutations in ovarian tumors: a comprehensive study of invasive carcinomas, borderline tumors and extraovarian implants. Gynecol Oncol. 2006;103(3):883–887.CrossRefPubMedGoogle Scholar
  27. 27.
    Bell DA. Origins and molecular pathology of ovarian cancer. Mod Pathol. 2005(Suppl 2):S19–S32.Google Scholar
  28. 28.
    Shih IeM, Kurman RJ. Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis. Am J Pathol. 2004;164(5):1511–1518.PubMedGoogle Scholar
  29. 29.
    Kurman RJ, Shih IeM. Pathogenesis of ovarian cancer: lessons from morphology and molecular biology and their clinical implications. Int J Gynecol Pathol. 2008;27(2):151–160.PubMedGoogle Scholar
  30. 30.
    Scambia G, Masciullo V, Benedetti Panici P, et al. Prognostic significance of ras/p21 alterations in human ovarian cancer. Br J Cancer. 1997;75(10):1547–1553.PubMedGoogle Scholar
  31. 31.
    Scambia G, Catozzi L, Panici PB, et al. Expression of ras oncogene p21 protein in normal and neoplastic ovarian tissues: correlation with histopathologic features and receptors for estrogen, progesterone, and epidermal growth factor. Am J Obstet Gynecol. 1993;168(1 Pt 1):71–78.PubMedGoogle Scholar
  32. 32.
    Yaginuma Y, Yamashita K, Kuzumaki N, Fujita M, Shimizu T. Ras oncogene product p21 expression and prognosis of human ovarian tumors. Gynecol Oncol. 1992;46(1):45–50.CrossRefPubMedGoogle Scholar
  33. 33.
    Rodenburg CJ, Koelma IA, Nap M, Fleuren GJ. Immunohistochemical detection of the ras oncogene product p21 in advanced ovarian cancer. Lack of correlation with clinical outcome. Arch Pathol Lab Med. 1988;112(2):151–154.PubMedGoogle Scholar
  34. 34.
    Zhou DJ, Gonzalez-Cadavid N, Ahuja H, Battifora H, Moore GE, Cline MJ. A unique pattern of proto-oncogene abnormalities in ovarian adenocarcinomas. Cancer. 1988;62(8):1573–1586.CrossRefPubMedGoogle Scholar
  35. 35.
    van Dam PA, Vergote IB, Lowe DG, et al. Expression of c-erbB-2, c-myc, and c-ras oncoproteins, insulin-like growth factor receptor I, and epidermal growth factor receptor in ovarian carcinoma. J Clin Pathol. 1994;47(10):914–919.CrossRefPubMedGoogle Scholar
  36. 36.
    Cuatrecasas M, Erill N, Musulen E, Costa I, Matias-Guiu X, Prat J. K-ras mutations in nonmucinous ovarian epithelial tumors: a molecular analysis and clinicopathologic study of 144 patients. Cancer. 1998;82(6):1088–1095.CrossRefPubMedGoogle Scholar
  37. 37.
    Varras MN, Sourvinos G, Diakomanolis E, et al. Detection and clinical correlations of ras gene mutations in human ovarian tumors. Oncology. 1999;56(2):89–96.CrossRefPubMedGoogle Scholar
  38. 38.
    Sahai E, Marshall CJ. RHO-GTPases and cancer. Nat Rev Cancer. 2002;2:133–142.CrossRefPubMedGoogle Scholar
  39. 39.
    Burbelo P, Wellstein A, Pestell RG. Altered Rho GTPase signaling pathways in breast cancer cells. Breast Cancer Res Treat. 2004;84(1):43–58.CrossRefPubMedGoogle Scholar
  40. 40.
    Ridley AJ. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol. 2006;16:522–529.CrossRefPubMedGoogle Scholar
  41. 41.
    Kleer CG, Griffith KA, Sabel MS, et al. Rho-GTPase is a novel tissue biomarker associated with biologically aggressive carcinomas of the breast. Breast Cancer Res Treat. 2005;93:101–110.CrossRefPubMedGoogle Scholar
  42. 42.
    Kamai T, Tsujii T, Arai K, et al. Significant association of Rho/ROCK pathway with invasion and metastasis of bladder cancer. Clin Cancer Res. 2003;9:2632–2641.PubMedGoogle Scholar
  43. 43.
    Clark EA, Golub TR, Lander ES, Hynes RO. Genomic analysis of metastasis reveals an essential role for RhoC. Nature. 2000;406(6795):532–535.CrossRefPubMedGoogle Scholar
  44. 44.
    Fidyk N, Wang JB, Cerione RA. Influencing cellular transformation by modulating the rates of GTP hydrolysis by Cdc42. Biochemistry. 2006;45:7750–7762.CrossRefPubMedGoogle Scholar
  45. 45.
    Lin R, Cerione RA, Manor D. Specific contributions of the small GTPases Rho, Rac, and Cdc42 to Dbl transformation. J Biol Chem. 1999;274:23633–23641.CrossRefPubMedGoogle Scholar
  46. 46.
    Horiuchi A, Imai T, Wang C, et al. Up-regulation of small GTPases, RhoA and RhoC, is associated with tumor progression in ovarian carcinoma. Lab Invest. 2003;83(6):861–870.PubMedGoogle Scholar
  47. 47.
    Han Z, Xu G, Zhou J, et al. Inhibition of motile and invasive properties of ovarian cancer cells by ASODN against Rho-associated protein kinase. Cell Commun Adhes. 2005;12(1–2):59–69.CrossRefPubMedGoogle Scholar
  48. 48.
    Durkin ME, Ullmannova V, Guan M, Popescu NC. Deleted in liver cancer 3 (DLC-3), a novel Rho GTPase-activating protein, is downregulated in cancer and inhibits tumor cell growth. Oncogene. 2007;6(31):4580–4589.CrossRefGoogle Scholar
  49. 49.
    Touchot N, Chardin P, Tavitian A. Four additional members of the ras gene superfamily isolated by an oligonucleotide strategy: molecular cloning of YPT-related cDNAs from a rat brain library. Proc Natl Acad Sci U S A. 1987;84(23):8210–8214.CrossRefPubMedGoogle Scholar
  50. 50.
    Zerial M, McBride H. Rab proteins as membrane organizers. Nat Rev Mol Cell Biol. 2001;2:107–117.CrossRefPubMedGoogle Scholar
  51. 51.
    Schwartz SL, Cao C, Pylypenko O, Rak A, Wandinger-Ness A. Rab GTPases at a glance. J Cell Sci. 2007;120(Pt 22):3905–3910.CrossRefPubMedGoogle Scholar
  52. 52.
    Bucci C, Chiariello M. Signal transduction gRABs attention. Cell Signal. 2006;18(1):1–8.CrossRefPubMedGoogle Scholar
  53. 53.
    Miaczynska M, Christoforidis S, Giner A, et al. APPL proteins link Rab5 to nuclear signal transduction via an endosomal compartment. Cell. 2004;116:445–456.CrossRefPubMedGoogle Scholar
  54. 54.
    Miaczynska M, Pelkmans L, Zerial M. Not just a sink: endosomes in control of signal transduction. Curr Opin Cell Biol. 2004;16:400–406.CrossRefPubMedGoogle Scholar
  55. 55.
    Wu M, Yin G, Zhao X, et al. Human RAB24, interestingly and predominantly distributed in the nuclei of COS-7 cells, is colocalized with cyclophilin A and GABARAP. Int J Mol Med. 2006;17:749–754.PubMedGoogle Scholar
  56. 56.
    Alto NM, Soderling J, Scott JD. Rab32 is an A-kinase anchoring protein and participates in mitochondrial dynamics. J Cell Biol. 2002;158:659–668.CrossRefPubMedGoogle Scholar
  57. 57.
    Hood DA, Irrcher I, Ljubicic V, Joseph AM. Coordination of metabolic plasticity in skeletal muscle. J Exp Biol. 2006;209:2265–2275.CrossRefPubMedGoogle Scholar
  58. 58.
    Del Nery E, Miserey-Lenkei S, Falguieres T, et al. Rab6A and Rab6A' GTPases play non-overlapping roles in membrane trafficking. Traffic. 2006;7:394–407.CrossRefPubMedGoogle Scholar
  59. 59.
    Fan Y, Xin XY, Chen BL, Ma X. Knockdown of RAB25 expression by RNAi inhibits growth of human epithelial ovarian cancer cells in vitro and in vivo. Pathology. 2006;38:561–567.CrossRefPubMedGoogle Scholar
  60. 60.
    Iida H, Noda M, Kaneko T, Doiguchi M, Mori T. Identification of rab12 as a vesicle-associated small GTPase highly expressed in Sertoli cells of rat testis. Mol Reprod Dev. 2005;71:178–185.CrossRefPubMedGoogle Scholar
  61. 61.
    Kouranti I, Sachse M, Arouche N, Goud B, Echard A. Rab35 regulates an endocytic recycling pathway essential for the terminal steps of cytokinesis. Curr Biol. 2006;16:1719–1725.CrossRefPubMedGoogle Scholar
  62. 62.
    Wang W, Wyckoff JB, Frohlich VC, et al. Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling. Cancer Res. 2002;62:6278–6288.PubMedGoogle Scholar
  63. 63.
    Yu X, Prekeris R, Gould GW. Role of endosomal Rab GTPases in cytokinesis. Eur J Cell Biol. 2007;86:25–35.CrossRefPubMedGoogle Scholar
  64. 64.
    Roach WG, Chavez JA, Miinea CP, Lienhard GE. Substrate specificity and effect on GLUT4 translocation of the Rab GTPase-activating protein Tbc1d1. Biochem J. 2007;403:353–358.CrossRefPubMedGoogle Scholar
  65. 65.
    Wang Y, Ng EL, Tang BL. Rab23: what exactly does it traffic? Traffic. 2006;7:746–750.CrossRefPubMedGoogle Scholar
  66. 66.
    Cheng KW, Lahad JP, Gray JW, Mills GB. Emerging role of RAB GTPases in cancer and human disease. Cancer Res. 2005;65:2516–2519.CrossRefPubMedGoogle Scholar
  67. 67.
    Chua CE, Tang BL. Alpha-synuclein and Parkinson's disease: the first roadblock. J Cell Mol Med. 2006;10:837–846.CrossRefPubMedGoogle Scholar
  68. 68.
    Di Pietro SM, Dell'Angelica EC. The cell biology of Hermansky-Pudlak syndrome: recent advances. Traffic. 2005;6:525–533.CrossRefPubMedGoogle Scholar
  69. 69.
    Inglis PN, Boroevich KA, Leroux MR. Piecing together a ciliome. Trends Genet. 2006;22:491–500.CrossRefPubMedGoogle Scholar
  70. 70.
    Ménasché G, Pastural E, Feldmann J, et al. Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nat Genet. 2000;25(2):173–176.CrossRefPubMedGoogle Scholar
  71. 71.
    Croizet-Berger K, Daumerie C, Couvreur M, Courtoy PJ, van den Hove MF. The endocytic catalysts, Rab5a and Rab7, are tandem regulators of thyroid hormone production. Proc Natl Acad Sci U S A. 2002;99(12):8277–8282.CrossRefPubMedGoogle Scholar
  72. 72.
    He H, Dai F, Yu L, et al. Identification and characterization of nine novel human small GTPases showing variable expressions in liver cancer tissues. Gene Expr. 2002;10(5–6):231–242.PubMedGoogle Scholar
  73. 73.
    Cheng KW, Lahad JP, Kuo WL, et al. The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers. Nat Med. 2004;10(11):1251–1256.CrossRefPubMedGoogle Scholar
  74. 74.
    Calvo A, Xiao N, Kang J, et al. Alterations in gene expression profiles during prostate cancer progression, functional correlations to tumorigenicity and down-regulation of selenoprotein-P in mouse and human tumors. Cancer Res. 2002;62:5325–5335.PubMedGoogle Scholar
  75. 75.
    Mor O, Nativ O, Stein A, et al. Molecular analysis of transitional cell carcinoma using cDNA microarray. Oncogene. 2003;22:7702–7710.CrossRefPubMedGoogle Scholar
  76. 76.
    Natrajan R, Williams RD, Hing SN, et al. Array CGH profiling of favourable histology Wilms tumours reveals novel gains and losses associated with relapse. J Pathol. 2006;210(1):49–58.CrossRefPubMedGoogle Scholar
  77. 77.
    Caswell PT, Spence HJ, Parsons M, et al. Rab25 associates with alpha5beta1 integrin to promote invasive migration in 3D microenvironments. Dev Cell. 2007;13(4):496–510.CrossRefPubMedGoogle Scholar
  78. 78.
    Coudert B, Anthoney A, Fiedler W, et al. European Organization for Research and Treatment of Cancer (EORTC). Phase II trial with ISIS 5132 in patients with small-cell (SCLC) and non-small cell (NSCLC) lung cancer. A European Organization for Research and Treatment of Cancer (EORTC) Early Clinical Studies Group report. Eur J Cancer. 2001;37(17):2194–2198.CrossRefPubMedGoogle Scholar
  79. 79.
    End DW, Smets G, Todd AV, et al. Characterization of the antitumor effects of the selective farnesyl protein transferase inhibitor R115777 in vivo and in vitro. Cancer Res. 2001;61(1):131–137.PubMedGoogle Scholar
  80. 80.
    Rao S, Cunningham D, de Gramont A, et al. Phase III double-blind placebo-controlled study of farnesyl transferase inhibitor R115777 in patients with refractory advanced colorectal cancer. J Clin Oncol. 2004;22(19):3950–3957.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Kwai Wa Cheng
    • 1
  • Roshan Agarwal
    • 1
  • Gordon B. Mills
    • 1
    Email author
  1. 1.Department of System Biology, M.D. Anderson Cancer CenterUniversity of TexasHoustonUSA

Personalised recommendations