Advertisement

Atomistic Modeling in Study of Polymer Electrolyte Fuel Cells – A Review

  • Xiangyang Zhou
  • Juanjuan Zhou
  • Yijin Yin
Chapter
Part of the Modern Aspects of Electrochemistry book series (MAOE)

Abstract

Polymer electrolyte fuel cell (PEFC) is considered as one of the most promising power sources for futurist’s hydrogen economy. As shown in Fig. 1, operation of a Nafion-based PEFC is dictated by transport processes and electrochemical reactions at catalyst/polymer electrolyte interfaces and transport processes in the polymer electrolyte membrane (PEM), in the catalyst layers consisting of precious metal (Pt or Ru) catalysts on porous carbon support and polymer electrolyte clusters, in gas diffusion layers (GDLs), and in flow channels. Specifically, oxidants, fuel, and reaction products flow in channels of millimeter scale and diffuse in GDL with a structure of micrometer scale. Nafion, a sulfonic acid tetrafluorethylene copolymer and the most commonly used polymer electrolyte, consists of nanoscale hydrophobic domains and proton conducting hydrophilic domains with a scale of 2–5 nm. The diffusivities of the reactants (O2, H2, and methanol) and reaction products (water and CO2) in Nafion and proton conductivity of Nafion strongly depend on the nanostructures and their responses to the presence of water. Polymer electrolyte clusters in the catalyst layers also play a critical role in the catalysis of the nano-sized Pt catalysts. Electrochemical reactions occur at the interfaces between catalysts (Pt or Pt/Ru) and Nafion. The catalytic activity of the Pt catalysts is believed to be dictated by transport processes, adsorption/desorption, and charge transfer in the interfacial area. While transport processes may occur in an area of a few nanometers, adsorption/desorption and charge transfer occur within a region of a few angstroms from the surface of a nano-particulate catalyst. Thus, modeling or simulation of PEFC is a multiscale problem.

Keywords

Proton Transfer Polymer Electrolyte Atomistic Modeling Molecular Dynamic Method Sulfonic Acid Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

The authors would like to thank the National Science Foundation for financial support for this work via Grant # CBET-0933393.

REFERENCES

  1. 1.
    K.D. Kreuer, S.J. Paddison, E. Spohr, M. Schuster, Chem. Rev. 104, 4637 (2004)CrossRefGoogle Scholar
  2. 2.
    K.D. Kreuer, Solid State Ionics 94, 5562 (1997)CrossRefGoogle Scholar
  3. 3.
    E. Spohr, P. Commer, A.A. Kornyshev, J. Phys. Chem. B 106, 10560 (2002)CrossRefGoogle Scholar
  4. 4.
    D. Seeliger, C. Hartnig, E. Spohr, Electrochim. Acta 50, 4234 (2005)CrossRefGoogle Scholar
  5. 5.
    S. Walbran, A.A. Kornysheva, J. Chem. Phys. 114, 10039 (2001)CrossRefGoogle Scholar
  6. 6.
    M. Tuckerman, K. Laasonen, M. Sprik, and M. Parrinello, J. Phys. Chem. 99, 5749 (1995)CrossRefGoogle Scholar
  7. 7.
    J.A. Morrone, M.E. Tuckermana, J. Chem. Phys. 117, 4403 (2002)CrossRefGoogle Scholar
  8. 8.
    A. Zunger, A. Franceschetti, G. Bester, W.B. Jones, K. Kim, P.A. Graf, L-W. Wang, A. Canning, O. Marques, C. Voemel, J. Dongarra, J. Langou, S. Tomov, J. Phys. B: Conference Series 46, 292 (2006)CrossRefGoogle Scholar
  9. 9.
    S.E. Thompson and S. Parthasarathy, Materials Today 9, 20 (2006)CrossRefGoogle Scholar
  10. 10.
    W. Goddard III, B. Merinov, A.V. Duin, T. Jacob, M. Blanco, V. Molinero, S.S. Jang, Y.H. Jang, Mol. Simul. 32, 251 (2006)CrossRefGoogle Scholar
  11. 11.
    J. Hafner, Acta Mater. 48, 71 (2000)CrossRefGoogle Scholar
  12. 12.
    P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964)CrossRefGoogle Scholar
  13. 13.
    W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133 (1965)Google Scholar
  14. 14.
    U.V. Barth, L. Hedin, J. Phys. C: Solid St. Phys. 5, 1629 (1972)CrossRefGoogle Scholar
  15. 15.
    J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5075 (1981)CrossRefGoogle Scholar
  16. 16.
    J.P. Perdew, Phys. Rev. B 33, 8822 (1986)CrossRefGoogle Scholar
  17. 17.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)CrossRefGoogle Scholar
  18. 18.
    W.A. Goddard III, T. Cagin, M. Blanco, N. Vaidehi, S. Dasgupta, W. Floriano, M. Belmares, J. Kua, G. Zamanakos, S. Kashihara, M. Iotov, G. Gao, Comput. Theor. Polym. Sci. 11, 329 (2001)CrossRefGoogle Scholar
  19. 19.
    R. Car, M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)CrossRefGoogle Scholar
  20. 20.
    M.P. Allen, Computational Soft Matter: From Synthetic Polymers to Proteins, 23, 1 (2004)Google Scholar
  21. 21.
    L. Mayo, B.D. Olafson, W.A. Goddard III, J. Phys. Chem. 94, 8897 (1990)CrossRefGoogle Scholar
  22. 22.
    P. Jannasch, Curr. Opin. Colloid Interface Sci. 8, 96 (2003)CrossRefGoogle Scholar
  23. 23.
    E. Chalkova, X. Zhou, C. Ambler, M.A. Hofmann, J.A. Weston, H.R. Allcock, S.N. Lvov, Electrochem. Solid-State Lett. 10, 221 (2002)CrossRefGoogle Scholar
  24. 24.
    P. Spinelli, C. Francia, E.P. Ambrosio, M. Lucariello, J. Power Sources 178, 517 (2008)CrossRefGoogle Scholar
  25. 25.
    M.D. Macia, J.M. Campina, E. Herrero, J.M. Feliu, J. Electroanal. Chem 564, 141 (2004)CrossRefGoogle Scholar
  26. 26.
    M. Watanabe, S. Motto, J. Electroanal. Chem. 60, 275 (1975)CrossRefGoogle Scholar
  27. 27.
    J. Kua, W.A. Goddard III, J. Am. Chem. Soc. 121, 10928 (1999)CrossRefGoogle Scholar
  28. 28.
    A.B. Anderson, E. Grantscharova, S. Seong, J. Electrochem. Soc. 148, 2075 (1996)CrossRefGoogle Scholar
  29. 29.
    A.B. Anderson, Int. J. Quantum Chem., 49, 581 (1994)CrossRefGoogle Scholar
  30. 30.
    T. Jacob, B.V. Merinov, W.A. Goodard III, Chem. Phys. Lett. 385, 374 (2004)CrossRefGoogle Scholar
  31. 31.
    G. Barabino, C. Gavotti, M. Marchesi, Chem. Phys. Lett. 104, 478 (1984)CrossRefGoogle Scholar
  32. 32.
    C.Y. Lee, J.A. McCammon, P.J. Rossky, J. Chem. Phys. 80, 4448 (1984)CrossRefGoogle Scholar
  33. 33.
    E. Spohr, K. Heinzinger, Electrochim. Acta 33, 1211 (1988)CrossRefGoogle Scholar
  34. 34.
    P.S. Crozier, R.L. Rowley, D. Henderson, J. Chem. Phys. 113, 9202 (2000)CrossRefGoogle Scholar
  35. 35.
    C. Hartnig, M.T.M. Koper, J. Phys. Chem. B 108, 3824 (2004)CrossRefGoogle Scholar
  36. 36.
    E. Spohr, J. Phys. Chem. 93, 6171 (1989)CrossRefGoogle Scholar
  37. 37.
    J.I. Siepmann, M. Sprik, J. Chem. Phys. 102, 511 (1995)CrossRefGoogle Scholar
  38. 38.
    I.-C. Yeh, M.L. Berkowitz, Chem. Phys. Lett. 301, 81 (1999)CrossRefGoogle Scholar
  39. 39.
    E. Spohr, J. Chem. Phys. 107, 6342 (1997)CrossRefGoogle Scholar
  40. 40.
    E. Spohr, Electrochim. Acta 49, 23 (2003)CrossRefGoogle Scholar
  41. 41.
    J.P. Badiali, M.L. Rosinberg, J. Goodisman, J. Electroanal. Chem. Interfacial Electrochem. 130, 31 (1981)CrossRefGoogle Scholar
  42. 42.
    W. Schmickler, J. Electroanal. Chem. Interfacial Electrochem. 150, 19 (1983)CrossRefGoogle Scholar
  43. 43.
    J.W. Halley, D. Price, Phys. Rev. B 35, 9095 (1987); K. Rice, Phys. Rev. 31, 1051 (1928)CrossRefGoogle Scholar
  44. 44.
    D.L. Price, J.W. Halley, Phys. Rev. B 38, 9357 (1988)CrossRefGoogle Scholar
  45. 45.
    J. Goodisman, J. Chem. Phys. 90, 5756 (1989)CrossRefGoogle Scholar
  46. 46.
    D.L. Price, J.W. Halley, J. Chem. Phys. 102, 6603 (1995)CrossRefGoogle Scholar
  47. 47.
    J.W. Halley, A. Mazzolo, Y. Zhou, and D. Price, J. Electroanal. Chem. 450, 273 (1998)CrossRefGoogle Scholar
  48. 48.
    S. Izvekov, A. Mazzolo, K. VanOpdorp, G.A. Voth, J. Chem. Phys. 114, 3248 (2001)CrossRefGoogle Scholar
  49. 49.
    P. Vassilev, R.A. van Santen, M.T.M. Koper, J. Chem. Phys. 122, 54701 (2005)CrossRefGoogle Scholar
  50. 50.
    A.B. Anderson and N.C. Debnath, J. Am. Chem. Soc. 105, 18 (1983)CrossRefGoogle Scholar
  51. 51.
    S. Seong, A.B. Anderson, J. Phys. Chem. 100, 11744 (1996)CrossRefGoogle Scholar
  52. 52.
    A.B. Anderson, T.V. Albu, J. Am. Chem. Soc. 121, 11855 (1999)CrossRefGoogle Scholar
  53. 53.
    T.V. Albu, A.B. Anderson, Electrochim. Acta 46, 3001 (2001)CrossRefGoogle Scholar
  54. 54.
    R.A. Sidik, A.B. Anderson, J. Electroanal. Chem. 528, 69 (2002)CrossRefGoogle Scholar
  55. 55.
    A.B. Anderson, N.M. Neshev, R.A. Sidik, P. Shiller, Electrochim. Acta 47, 2999 (2002)CrossRefGoogle Scholar
  56. 56.
    A.B. Anderson, Electrochim. Acta 48, 3743 (2003)CrossRefGoogle Scholar
  57. 57.
    J. Narayanasamy, A.B. Anderson, J. Phys. Chem. B 107, 6898 (2003)CrossRefGoogle Scholar
  58. 58.
    M.F. Toney, J.N. Howard, J. Richer, G.L. Borges, J.G. Gordon, O.R. Melroy, D.G. Wiesler, D. Yee, and L.B. Sorensen, Nature 368, 444 (1994)CrossRefGoogle Scholar
  59. 59.
    Y. Lozovoi, A. Alavi, J. Kohanoff, R.M. Lynden-Bell, J. Chem. Phys. 115, 1661 (2001)CrossRefGoogle Scholar
  60. 60.
    J.-S. Filhol, M. Neurock, Angew. Chem., Int. Ed. 45, 402 (2006)CrossRefGoogle Scholar
  61. 61.
    C.D. Taylor, S.A. Wasileski, J.-S. Filhol, M. Neurock, Phys. Rev. B 73, 165402 (2006)CrossRefGoogle Scholar
  62. 62.
    M.J. Janik, C.D. Taylor, M Neurock, J. Electrochem. Soc. 156, B126 (2009)CrossRefGoogle Scholar
  63. 63.
    K. Raghavan, K. Foster, K. Motakabbir, M. Berkowitz, J. Chem. Phys. 94, 2110 (1991)CrossRefGoogle Scholar
  64. 64.
    E. Spohr, J. Chem. Phys. 93, 6171 (1989)CrossRefGoogle Scholar
  65. 65.
    S. Senapati, A. Chandra, J. Chem. Phys. 113, 8817 (2000)CrossRefGoogle Scholar
  66. 66.
    X. Xia, M.L. Berkowitz, Phys. Rev. Lett. 74, 3193 (1995)CrossRefGoogle Scholar
  67. 67.
    I.-C. Yeh, M.L. Berkowitz, J. Chem. Phys. 112, 10491 (2000)CrossRefGoogle Scholar
  68. 68.
    P.G. Kusalik, I.M. Svishchev, Science 265, 1219 (1994)CrossRefGoogle Scholar
  69. 69.
    I.M. Svishchev, P.G. Kusalik, J. Wang, R.J. Boyd, J. Chem. Phys. 105, 4742 (1996)CrossRefGoogle Scholar
  70. 70.
    M.F. Toney, J.N. Howard, J. Richer, G.L. Borges, J.G. Gordon, O.R. Melroy, D.G. Wiesler, D. Yee, L.D. Sorensen, Surf. Sci. 335, 326 (1995)CrossRefGoogle Scholar
  71. 71.
    J.I. Siepmann, M. Sprik, J. Chem. Phys. 102, 511 (1995)CrossRefGoogle Scholar
  72. 72.
    J.W. Halley, A. Mazzolo, Y. Zhou, D. Proce, J. Electroanal. Soc. 450, 273 (1998)CrossRefGoogle Scholar
  73. 73.
    P.B. Balbuena, E.J. Lamas, Y. Wang, Electrochim. Acta 50, 3788 (2005)CrossRefGoogle Scholar
  74. 74.
    E.J. Lamas, P.B. Balbuena, Electrochim. Acta 51, 5904 (2006)CrossRefGoogle Scholar
  75. 75.
    A.P. Sutton, J. Chen, Philos. Mag. Lett. 61, 139 (1990)CrossRefGoogle Scholar
  76. 76.
    H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, J. Phys. Chem. 91, 6269 (1987)CrossRefGoogle Scholar
  77. 77.
    I. Kusaka, Z.G. Wang, J.H. Seinfeld, J. Phys. Chem. 108, 6829 (1998)CrossRefGoogle Scholar
  78. 78.
    A.K. Rappe, W.A. Goddard, J. Phys. Chem. 95, 3358 (1991)CrossRefGoogle Scholar
  79. 79.
    MSI, Force-field based simulations, San Diego, 1997Google Scholar
  80. 80.
    S.J. Paddison, T.A. Zawodzinski, Solid State Ionics 115, 333 (1998)CrossRefGoogle Scholar
  81. 81.
    A.C.T. van Duin, S. Dasgupta, F. Lorant, and W.A. Goddard, J. Phys. Chem. A, 105(41), 9396 (2001)CrossRefGoogle Scholar
  82. 82.
    H. Steininger, S. Lehwald, H. Ibach, Surf. Sci. 123, 1 (1982)CrossRefGoogle Scholar
  83. 83.
    C. Puglia, A. Nilsson, B. Hernnaes, O. Karis, P. Bennich, N. Martensson, Surf. Sci. 342, 119 (1995)CrossRefGoogle Scholar
  84. 84.
    J.L. Gland, B.A. Sexton, G.B. Fisher, Surf. Sci. 95, 587 (1980)CrossRefGoogle Scholar
  85. 85.
    D.A. Outka, J. Stoehr, W. Jark, P. Stevens, J. Solomon, R.J. Madix, Phys. Rev. B 35, 4119 (1987)CrossRefGoogle Scholar
  86. 96.
    W. Wurth, J. Stoehr, P. Feulner, X. Pan, K.R. Bauchspiess, Y. Baba, E. Hudel, G. Rocker, D. Menzel, Phys. Rev. Lett. 65, 2426 (1990)CrossRefGoogle Scholar
  87. 97.
    B.C. Stipe, M.A. Rezaei, W. Ho, Science 279, 1907 (1998)CrossRefGoogle Scholar
  88. 98.
    B. Hammer, J.K. Nørskov, Adv. Catal. 45, 71 (2000)CrossRefGoogle Scholar
  89. 99.
    B. Hammer, L.B. Hansen, J.K. Nørskov, Phys. Rev. B 59, 7413 (1999)CrossRefGoogle Scholar
  90. 90.
    J. Greeley, J.K. Nørskov, M. Mavrikakis, Annu. Rev. Phys. Chem. 53, 319 (2002)CrossRefGoogle Scholar
  91. 91.
    A. Ruban, B. Hammer, P. Stoltze, H.L. Skriver, J.K. Nørskov, J. Mol. Catal. A 115, 421 (1997)CrossRefGoogle Scholar
  92. 92.
    A. Eichler, J. Hafner. Phys. Rev. Lett. 79, 4481 (1997)CrossRefGoogle Scholar
  93. 93.
    T. Toda, H. Igarashi, H. Uchida, M. Watanabe, J. Electroanal. Chem. 146, 3750 (1999)CrossRefGoogle Scholar
  94. 94.
    A. Ruban, H.L. Skriver, J.K. Nørskov, Phys. Rev. B 59, 15990 (1999)CrossRefGoogle Scholar
  95. 95.
    Y. Xu, A.V. Ruban, M. Mavrikakis, J. Am. Chem. Soc. 126, 4717 (2004)CrossRefGoogle Scholar
  96. 96.
    P.B. Balbuena, D. Altomare, L. Agapito, J.M. Seminario, J. Phys. Chem. B 107, 13671 (2003)CrossRefGoogle Scholar
  97. 97.
    Z.D. Wei, F. Yin, L.L. Li, X.W. Wei, X.A. Liu, J. Electroanal. Chem. 541, 185 (2003)CrossRefGoogle Scholar
  98. 98.
    R.R. Nazmutdinov, G.A. Tsirlina, O.A. Petrii, Y.I. Kharkats, A.M. Kuznetsov, Electrochim. Acta 45, 3521 (2000)CrossRefGoogle Scholar
  99. 99.
    O.A. Petrii, R.R. Nazmutdinov, M.D. Bronshtein, G.A. Tsirlina, Electrochim. Acta 52, 3493 (2007)CrossRefGoogle Scholar
  100. 100.
    A. Damjanovic, V. Brusic, Electrochim. Acta 12, 615 (1967)CrossRefGoogle Scholar
  101. 101.
    E. Yeager, M. Razaq, D. Gervasio, A. Razaq, Electrocatalysis and Oxygen Electrochemistry Proc. 92, 440 (1992)Google Scholar
  102. 102.
    C.D. Taylor, M.J. Janik, M. Neurock, R.G. Kelly, Mol. Simul. 33, 429 (2007)CrossRefGoogle Scholar
  103. 103.
    M.J. Janik, M. Neurock, Electrochim. Acta 52, 5517 (2007)CrossRefGoogle Scholar
  104. 104.
    A.B. Anderson, T.V. Albu, J. Electrochem. Soc. 147, 4229 (2000)CrossRefGoogle Scholar
  105. 105.
    T. Li, P.B. Balbuena, Chem. Phys. Lett. 367, 439 (2003)CrossRefGoogle Scholar
  106. 106.
    J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jónsson, J. Phys. Chem. B 108, 17886 (2004)CrossRefGoogle Scholar
  107. 107.
    J. Zhang, M.B. Vukmirovic, Y. Xu, M. Mavrikakis, R.R. Adzic, Ang. Chem. Int. Ed. 44, 2132 (2005)CrossRefGoogle Scholar
  108. 108.
    R. Jinnouchi, K. Okazaki, Microscale Thermophys. Eng. 7, 15 (2003)CrossRefGoogle Scholar
  109. 109.
    Y. Wang, P.B. Balbuena J. Phys. Chem. B 109, 14896 (2005)CrossRefGoogle Scholar
  110. 110.
    J.-S. Filhol, M. Neurock, Angew. Chem. Int. Ed. 45, 402 (2006)CrossRefGoogle Scholar
  111. 111.
    M.J. Buehler, A.C.T. van Duin, T. Jacob, Y. Jang, B. Merinov, W.A. Goddard III, MRS Proceedings Fall 2005Google Scholar
  112. 112.
    M.T.M. Koper, Surf. Sci. 548, 1 (2004)CrossRefGoogle Scholar
  113. 113.
    A.B. Anderson, E. Grantscharova, J. Phys. Chem. 99, 9143 (1995)CrossRefGoogle Scholar
  114. 114.
    T.E. Shubina, C. Hartnigw, M.T.M. Koper, Phys. Chem. Chem. Phys. 6, 4215 (2004)CrossRefGoogle Scholar
  115. 115.
    T.E. Shubina, M.T.M. Koper, Electrochim. Acta 47, 3621 (2002)CrossRefGoogle Scholar
  116. 116.
    P. Liu, A. Logadottir, J.K. Nørskov, Electrochim. Acta 48, 3731 (2003)CrossRefGoogle Scholar
  117. 117.
    D. Cao, G.-Q. Lu, A. Wieckowski, S.A. Wasileski, M. Neurock, J. Phys. Chem. B 109, 11622 (2005)CrossRefGoogle Scholar
  118. 118.
    X. Gong, Z. Liu, R. Raval, P. Hu, J. Am. Chem. Soc. 126, 8 (2004)CrossRefGoogle Scholar
  119. 119.
    X. Gong, P. Hu, R. Raval, J. Chem. Phys. 119, 6324 (2003)CrossRefGoogle Scholar
  120. 120.
    C.J. Zhang, P. Hu, J. Am. Chem. Soc. 122, 2134 (2000)CrossRefGoogle Scholar
  121. 121.
    S. Desai, M. Neurock, Electrochim. Acta 48, 3759 (2003)CrossRefGoogle Scholar
  122. 122.
    C. Hartnig, J. Grimminger, E. Spohr, Electrochim. Acta 52, 2236 (2007)CrossRefGoogle Scholar
  123. 123.
    C. Hartnig, E. Spohr, Chem. Phys. 319, 185 (2005)CrossRefGoogle Scholar
  124. 124.
    J. Ludwig, D.G. Vlachos, A.C.T. van Duin W.A. Goddard, J. Phys. Chem. B 110, 4274 (2006)CrossRefGoogle Scholar
  125. 125.
    A.A. Kulikovsky, E. Spohr, NIC Symposium 32, 269 (2006)Google Scholar
  126. 126.
    J. Choi, H. Lee, S. Moon, J. Colloid Interface Sci. 238, 188 (2001)CrossRefGoogle Scholar
  127. 127.
    R. Pomes, B. Roux, Biophys. J. 71, 19 (1996)CrossRefGoogle Scholar
  128. 128.
    Y.S. Park, T. Hatae, H. Itoh, M.Y. Jang, Y. Yamazaki, Electrochim. Acta 50, 592 (2004)Google Scholar
  129. 129.
    S. Banerjee, D.E. Curtin, J. Fluorine Chem. 125, 1211 (2004)CrossRefGoogle Scholar
  130. 130.
    C.J.D. von Grotthuss. Ann. Chim. 8, 54 (1806)Google Scholar
  131. 131.
    S. Urata, J. Irisawa, A. Takada, S. Tsuzuki, W. Shinodab, M. Mikami, Phys. Chem. Chem. Phys. 6, 3325 (2004)CrossRefGoogle Scholar
  132. 132.
    S.J. Paddison, J.A. Elliottb, Phys. Chem. Chem. Phys. 8, 2193 (2006)CrossRefGoogle Scholar
  133. 133.
    S.J. Paddison, J.A. Elliottb, J. Phys. Chem. A 109, 7583 (2005)CrossRefGoogle Scholar
  134. 134.
    M. Eikerling, S.J. Paddison, L.R. Pratt, T.A. Zawodzinski Jr, Chem. Phys. Lett. 368, 108 (2003)CrossRefGoogle Scholar
  135. 135.
    S.J. Paddison, T.A. Zawodzinski Jr, Solid State Ionics 113115, 333 (1998)CrossRefGoogle Scholar
  136. 136.
    J. Ennari, M. Elomaa, F. Sundholm, Polymer 40, 5035 (1999)CrossRefGoogle Scholar
  137. 137.
    J. Ennari, I. Neelov, F. Sundholm, Polymer 41, 2149 (2000)CrossRefGoogle Scholar
  138. 138.
    X. Zhou, Z. Chen, F. Delgado, D. Brenner, R. Srivastava, J. Electrochem. Soc. 154, B82 (2007)CrossRefGoogle Scholar
  139. 139.
    S.S. Jang, V. Molinero, T. Cüagın, W.A. Goddard III, J. Phys. Chem. B 108, 3149 (2004)CrossRefGoogle Scholar
  140. 140.
    S. Dokmaisrijan, E. Spohr, Journal of Molecular Liquids 129, 92 (2006)CrossRefGoogle Scholar
  141. 141.
    D. Seeliger, C. Hartnig, E. Spohr, Electrochim. Acta 50, 4234 (2005)CrossRefGoogle Scholar
  142. 142.
    M.K. Petersen, F. Wang, N.P. Blake, H. Metiu, G.A. Voth, J. Phys. Chem. B 109, 3727 (2005)CrossRefGoogle Scholar
  143. 143.
    M.K. Petersen, G.A. Voth, J. Phys. Chem. B 110, 18594 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Xiangyang Zhou
    • 1
  • Juanjuan Zhou
    • 1
  • Yijin Yin
    • 1
  1. 1.Department of Mechanical and Aerospace EngineeringUniversity of MiamiCoral GablesUSA

Personalised recommendations