Advertisement

Mesoscopic Modeling of Two-Phase Transport in Polymer Electrolyte Fuel Cells

  • Partha P. Mukherjee
  • Chao-Yang Wang
Chapter
Part of the Modern Aspects of Electrochemistry book series (MAOE)

Abstract

Fuel cells, owing to their high energy efficiency, environmental friendliness and low noise, are widely considered as the twenty-first century energy-conversion devices for mobile, stationary and portable power. Among the different types of fuel cells, the polymer electrolyte fuel cell (PEFC) has emerged as a promising power source for a wide range of applications.

Keywords

Liquid Water Capillary Pressure Catalyst Layer Lattice Boltzmann Polymer Electrolyte Fuel Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

PPM would like to thank V. P. Schulz, A. Wiegmann and J. Becker from Fraunhofer ITWM, Germany for collaboration with GDL microstructure generation. Financial support from NSF through grant No. 0609727, ECEC industrial sponsors and the Director’s Fellowship to PPM from Los Alamos National Laboratory LDRD Program is gratefully acknowledged.

REFERENCES

  1. 1.
    C.Y. Wang, in Handbook of Fuel Cells – Fundamentals, Technology and Applications, vol. 3, ed. by W. Vielstich, A. Lamm, H.A. Gasteiger (Wiley, Chichester, 2003), p. 337Google Scholar
  2. 2.
    C.Y. Wang, Chem. Rev. 104, 4727 (2004)CrossRefGoogle Scholar
  3. 3.
    Z.H. Wang, C.Y. Wang, K.S. Chen, J. Power Sources 94, 40 (2001)CrossRefGoogle Scholar
  4. 4.
    U. Pasaogullari, C.Y. Wang, J. Electrochem. Soc. 151, 399 (2004)CrossRefGoogle Scholar
  5. 5.
    U. Pasaogullari, C.Y. Wang, J. Electrochem. Soc. 152, A380 (2005)CrossRefGoogle Scholar
  6. 6.
    U. Pasaogullari, P.P. Mukherjee, C.Y. Wang, K.S. Chen, J. Electrochem. Soc. 154, B823 (2007)CrossRefGoogle Scholar
  7. 7.
    Y. Wang, C.Y. Wang, J. Electrochem. Soc. 153, A1193 (2006)CrossRefGoogle Scholar
  8. 8.
    Y. Wang, C.Y. Wang, J. Electrochem. Soc. 154, B636 (2007)CrossRefGoogle Scholar
  9. 9.
    A.Z. Weber, J. Newman, J. Electrochem. Soc. 152, A677 (2005)CrossRefGoogle Scholar
  10. 10.
    T. Berning, N. Djilali, J. Electrochem. Soc. 150, A1589 (2003)CrossRefGoogle Scholar
  11. 11.
    M. Noponen, E. Birgersson, J. Ihonen, M. Vynnycky, A. Lundblad, G. Lindbergh, Fuel Cells 4, 365 (2004)CrossRefGoogle Scholar
  12. 12.
    S. Dutta, S. Shimpalee, J.W. Van Zee, Int. J. Heat Mass Transfer 44, 2029 (2001)CrossRefGoogle Scholar
  13. 13.
    S. Mazumder, J.V. Cole, J. Electrochem. Soc. 150, A1510 (2003)CrossRefGoogle Scholar
  14. 14.
    J. Nam, M. Kaviany, Int. J. Heat Mass Transfer 46, 4595 (2003)CrossRefGoogle Scholar
  15. 15.
    W. He, J.S. Yi, T.V. Nguyen, AIChE J. 46, 2053 (2000)CrossRefGoogle Scholar
  16. 16.
    L. You, H. Liu, Int. J. Heat Mass Transfer 45, 2277 (2002)CrossRefGoogle Scholar
  17. 17.
    J.J. Baschuk, X. Li, J. Power Sources 86, 181 (2000)CrossRefGoogle Scholar
  18. 18.
    A.Z. Weber, J. Newman, Chem. Rev. 104, 4679 (2004)CrossRefGoogle Scholar
  19. 19.
    K.S. Udell, Int. J. Heat Mass Transfer 28, 485 (1985)CrossRefGoogle Scholar
  20. 20.
    M.C. Leverett, AIME Trans. 142, 152 (1941).Google Scholar
  21. 21.
    J.T. Gostick, M.W. Fowler, M.A. Ioannidis, M.D. Pritzker, Y.M. Volfkovich, A. Sakars, J. Power Sources 156, 375 (2006)CrossRefGoogle Scholar
  22. 22.
    J.D. Fairweather, P. Cheung, J. St-Pierre, D.T. Schwartz, Electrochem. Commun. 9, 2340 (2007)CrossRefGoogle Scholar
  23. 23.
    T.V. Nguyen, G. Lin, H. Ohn, X. Wang, Electrochem. Solid-State Lett. 11, B127 (2008)CrossRefGoogle Scholar
  24. 24.
    K.G. Gallagher, R.M. Darling, T.W. Patterson, M.L. Perry, J. Electrochem. Soc. 155, B1225 (2008).CrossRefGoogle Scholar
  25. 25.
    P.P. Mukherjee, C.Y. Wang, J. Electrochem. Soc. 153, A840 (2006)CrossRefGoogle Scholar
  26. 26.
    P.P. Mukherjee, C.Y. Wang, J. Electrochem. Soc. 154, B1121 (2007)CrossRefGoogle Scholar
  27. 27.
    P.P. Mukherjee, PhD Dissertation, Pennsylvania State University (2007)Google Scholar
  28. 28.
    K.L. Moore, K.S. Reeves, DOE Hydrogen Program Annual Merit Review Proceedings, Arlington, VA, USA, May 23–26 (2005)Google Scholar
  29. 29.
    Adler, P.M., 1992, “Porous Media: Geometry and Transports,” Butterworth-Heinemann, StonehamGoogle Scholar
  30. 30.
    P.M. Adler, C.G. Jacquin, J.A. Quiblier, Int. J. Multiphase Flow 16, 691 (1990)CrossRefGoogle Scholar
  31. 31.
    D.P. Bentz, N.S. Martys, Transport in Porous Media 17, 221 (1995)CrossRefGoogle Scholar
  32. 32.
    M.F. Mathias, J. Roth, J. Fleming, W. Lehnert, in Handbook of Fuel CellsFundamentals, Technology and Applications, vol.3, Ch. 42, p. 517, ed. by W. Lietsich, A. Lamm, H.A. Gasteiger (Wiley, Chicester, 2003), p. 517Google Scholar
  33. 33.
    V.P. Schulz, J. Becker, A. Wiegmann, P.P. Mukherjee, C.Y. Wang, J. Electrochem. Soc. 154, B419 (2007)CrossRefGoogle Scholar
  34. 34.
    K. Schladitz, S. Peters, D. Reinel-Bitzer, A. Wiegmann, J. Ohser, Comput. Mater. Sci. 38, 56 (2006)CrossRefGoogle Scholar
  35. 35.
    S. Chen, G. Doolen, Ann. Rev. Fluid Mech. 30, 329 (1998)CrossRefGoogle Scholar
  36. 36.
    A.K. Gunstensen, D.H. Rothman, S. Zaleski, G. Zanetti, Phys. Rev. A 43, 4320 (1991)CrossRefGoogle Scholar
  37. 37.
    X. Shan, H. Chen, Phys. Rev. E 47, 1815 (1993)CrossRefGoogle Scholar
  38. 38.
    M.R. Swift, W.R. Osborn, J.M. Yeomans, Phys. Rev. Lett. 75, 830 (1995)CrossRefGoogle Scholar
  39. 39.
    X.Y. He, S.Y. Chen, R.Y. Zhang, J. of Comp. Phys. 152, 642 (1999)CrossRefGoogle Scholar
  40. 40.
    P. Bhatnagar, E. Gross, M. Krook, Phys. Rev. 94, 511 (1954)CrossRefGoogle Scholar
  41. 41.
    H. Chen, S. Chen, W.H. Matthaeus, Phys. Rev. A 45, R5339 (1992)CrossRefGoogle Scholar
  42. 42.
    N. Martys, H. Chen, Phys. Rev. E 53, 743 (1996)CrossRefGoogle Scholar
  43. 43.
    X. Shan, G.D. Doolen, Phys. Rev. E 54, 3614 (1996)CrossRefGoogle Scholar
  44. 44.
    X. Shan, G.D. Doolen, J. Stat. Phys. 81, 379 (1995)CrossRefGoogle Scholar
  45. 45.
    S. Hou, X. Shan, Q. Zou, G. Doolen, W. Soll, J. Comput. Phys. 138, 695 (1997)CrossRefGoogle Scholar
  46. 46.
    Z.L. Yang, T.N. Dinh, R.R. Nourgaliev, B.R. Sehgal, Int. J. Heat Mass Transf. 44, 195 (2001)CrossRefGoogle Scholar
  47. 47.
    Q. Kang, D. Zhang, S. Chen, Phys. Fluids 14, 3203 (2002)CrossRefGoogle Scholar
  48. 48.
    Q. Kang, D. Zhang, S. Chen, J. Fluid Mech. 545, 41 (2005)CrossRefGoogle Scholar
  49. 49.
    R. Lenormand, E. Touboul, C. Zarcone, J. Fluid Mech. 189, 165 (1988)CrossRefGoogle Scholar
  50. 50.
    R.P. Ewing, B. Berkowitz, Adv. Water Res. 24, 309 (2001)CrossRefGoogle Scholar
  51. 51.
    X.G. Yang, F.Y. Zhang, A. Lubawy, C.Y. Wang, Electrochem. & Solid-State Letters 7, A408 (2004)CrossRefGoogle Scholar
  52. 52.
    F.A.L. Dullien, Porous Media: Fluid Transport and Pore Structure (Academic, San Diego, CA 1992)Google Scholar
  53. 53.
    J. Bear, Dynamics of Fluids in Porous Media (Dover, New York 1972)Google Scholar
  54. 54.
    D. Tiab, E. Donaldson, Petrophysics: Theory and Practice of Measuring Reservoir Rock and Transport Properties (Gulf Publishing Company, Houston 1996)Google Scholar
  55. 55.
    C. Pan, M. Hilpert, C.T. Miller, Water Resour. Res. 40, 1 (2004)Google Scholar
  56. 56.
    C. Pan, Ph. D. Dissertation, Univ. of North Carolina, Chapel Hill, North Carolina, USA (2003)Google Scholar
  57. 57.
    P. Lavallee, J.P. Boon, A. Noullez, Physica D 47, 233, 1991.CrossRefGoogle Scholar
  58. 58.
    D.G. Avraam, A.C. Payatakes, Transp. Porous Media 20, 135 (1995)CrossRefGoogle Scholar
  59. 59.
    P.K. Sinha, P.P. Mukherjee, C.Y. Wang, J. Mater. Chem. 17, 3089 (2007)CrossRefGoogle Scholar
  60. 60.
    H. Li, C. Pan, C.T. Miller, Phys. Rev. E 72, 026705 (2005)CrossRefGoogle Scholar
  61. 61.
    P.P. Mukherjee, C.Y. Wang, Q. Kang, Electrochimica Acta 54, 6861 (2009)CrossRefGoogle Scholar
  62. 62.
    P.P. Mukherjee, C.Y. Wang, ECS Trans. 3, 1085 (2006)CrossRefGoogle Scholar
  63. 63.
    P.M. Wilde, M. Mandel, M. Murata, N. Berg, Fuel Cells 4, 180 (2004)CrossRefGoogle Scholar
  64. 64.
    J. Ihonen, M. Mikkola, G. Lindbergh, J. Electrochem. Soc. 151, A1152 (2004)CrossRefGoogle Scholar
  65. 65.
    X.D. Niu, T. Munekata, S.A. Hyodo, K. Suga, J. Power Sources 172, 542 (2007)CrossRefGoogle Scholar
  66. 66.
    T. Koido, T. Furusawa, K. Moriyama, J. Power Sources 175, 127 (2008)CrossRefGoogle Scholar
  67. 67.
    P.P. Mukherjee, G. Wang, C.Y. Wang, in Modern Aspects of Electrochemistry, vol. 40, ed. by R.E. White, C.G. Vayenas, M.E. Gamboa-Aldeco (Springer, New York, 2007), p. 285Google Scholar
  68. 68.
    V.P. Schulz, P.P. Mukherjee, J. Becker, A. Wiegmann, C.Y. Wang, ECS Trans. 3, 1069 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Oak Ridge National LaboratoryOak RidgeUSA
  2. 2.Electrochemical Engine Center (ECEC), and Department of Mechanical and Nuclear EngineeringThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations